The jOOQ™ User Manual

SQL was never meant to be abstracted. To be confined in the narrow
boundaries of heavy mappers, hiding the beauty and simplicity of relational
data. SQL was never meant to be object-oriented. SQL was never meant to
be anything other than... SQL!

The jOOQ User Manual

Overview

This manual is divided into six main sections:

Getting started with JOOQ

This section will get you started with jOOQ quickly. It contains simple explanations about what

jO0Q is, what jOOQ isn't and how to set it up for the first time

- SQL building
This section explains all about the jOOQ syntax used for building queries through the query DSL
and the query model API. It explains the central factories, the supported SQL statements and
various other syntax elements

- Code generation
This section explains how to configure and use the built-in source code generator

- SQL execution
This section will get you through the specifics of what can be done with jJOOQ at runtime, in order
to execute queries, perform CRUD operations, import and export data, and hook into the jOOQ
execution lifecycle for debugging

- Reference

This section is a reference for elements in this manual

© 2009 - 2025 by Data Geekery™ GmbH. Page 2 /826

#Overview

The jOOQ User Manual

Table of contents

1. Copyright, LICENSE, ANd TraG@MArKS.ov it
2. Getting started WIth JOOQo
2.1, HOW O r€ad ThiS MANUAL...... it
2.2. The sample database used in this manual
2.3. Different Use CaSES fOI JOOQ ... it
2.3.1.j00Q as a SQL builder withOUT COOE GENEIATION.........c.iiiiiicieies e 25
2.3.2.j00Q as a SQL builder with code generation

2.3.3. JOOQ AS @ SQL BXECULOI ...ttt ettt s ettt
2.3.4. JOOQ TOF CRUD ..ottt
2.3.5. JOOQ TOF PROS ..ottt
2.4, DOWNIOAAING JOOQ. ..o
25 TULOTIAIS oo
2.5.7. JOOQ N 7 CASY STEPS. .ttt
2.5 1.1, SEEP T2 PrOPAIATION. ..ttt bR 31
2.5.1.2. SEEP 2: YOUE ATADASE. ... e 32
2.5.1.3. SEP 3: COAE GENETATION. ...t 33
2.5.1.4. Step 4: CONNECE TO YOUT AALADASE. ... 35
2.51.5. Step 5:
2.5.1.6. Step 6:
2.51.7. Step 7:
2.5.2. Using jOOQ with Flyway...
2.5.3. USING JOOQ WITN JDANG. ...ttt
JOOQ ANA JAVA 8.t ns

2.6.]
2.7, JOOQ @NA SCAIA- et
2.8.]
29.]

+ JOOQ NGO GIOOVY .o
CTOOQ AN KON e ettt ettt
2.10. JOOQ AN NOSQL ..ottt
217, JOOQ @NA JPA s
212, BUITA YOUT OWN .ottt
2.13. JOOQ and backwards-COMPATIDITITY.ot 49
3 SQL DUIIAING £
3.1. The query DSL type
3.2. The DSLContext API
3.2.T. SQL DHAIECE vttt
3.2.2. SQL Dialect Family......ccccoovviriirrininn.

3.2.3. Connection vs. DataSource
32,4 CUSTOM GBEA. it
3.2.5. CUSTOM EXOCULELISTENEIS. oottt ettt
3.2.6. CUSTOM SEELINES. 1.ttt E bbbttt
3.2.6.1. Auto-attach Records
3.2.6.2. BACKSIASN ESCAPING. ...ttt

3.2.6.3. EXCCULE LOGEING. . vttt s ettt
320,21 FEECN WaITHNES. 1. e
3200, 5. IAONEIIOE STYIE..o i
3.2.6.6. IN-NIST PAATING ..ttt
3.2.6.7. JDBC FIags....ccccouvvvvunn.

3.2.6.8. Keyword style
3.2.6.9. Map JPA Annotations
3.2.6.10. Object qualification
3.2.6.11. Optimistic Locking

© 2009 - 2025 by Data Geekery™ GmbH. Page 3/826

The jOOQ User Manual

302,01 2. PaATAMIELET LY PES ettt
3.2.6. 13 REFIECHON CATNING. ...t
3.2.6.14. Return all columns on store

3.2.6.15. Runtime schema and table mapping
3.2.6.16. Scalar subqueries fOr STOred FUNCLIONS.o 67
3.2.6. 77, SEATEIMENT TYDC ettt E 88kt
3.2.6.18. UPAALabI@ Primary KOYS. ...
32,7, TRFEAA SATELY ..otk
3.3, SQL STATEMENTS (DMLt ettt ettt ettt
3.3.7. JOOQ'S DSL @NA MOAEI APl oo
3.3.2. TNE WITH CIBUSE ..ot
3.3.3. T WITH RECURSIVE CIAUSE... ..t
3.3.4. THE SELECT STATEIMENT. ..ottt
3341, SELECT CIAUSE ...t
3.3 4. 7.1, PrOJECLION TYPE SATRLY ..ot
3.3.4.1.2. SelectField....
3L 3i T 3. SELECT e
330474, SELECT DISTINCT oottt
3.3.4.1.5. SELECT DISTINCT ON.iiiiiiiitieiieiieietieeieeieet ettt
3.3.4.7.6. CONVENIENCE METNOMS.iiiiiiii s
33042, FROM ClAUSE ... e
3304271, JOIN OPOIATON .ttt
3.3:4.2.2. IMPHCE PATN JOIN .o
33430 WHERE CIAUSE ...
3.3.4.4. CONNECT BY CIAUSE ...t
3.3.4.5. GROUP BY ClAUSE ...
3.3.4.5. 7. GROUP BY COIUMNS....ouiiiiiiiiinite st
3.3.4.5.2. GROUP BY ROLLUP ..ottt e
3.3.4.5.3. GROUP BY CUBE

3.3.4.5.4. GROUP BY GROUPING SETS
3.3.4.5.5. GROUP BY €MPLY BrOUDPING ST ...ttt ettt 89
33146, HAVING ClAUSE ...t 90
3347 WINDOW CIAUSE. ...ttt 91
3.3.4.8. ORDER BY ClAUSE .. oot 92
3.3.4.8. 1. Ordering DY fIEIA INTEX 93
3.3.4.8.2. Ordering @Nd NULLSiiie bbb 93
3.3.4.8.3. Ordering USING CASE EXPIESSIONS. .. . vttt 95
3.3.4.8.4. Oracle's ORDER SIBLINGS BY ClaUS ..ottt 96
3349, LIMIT L OFFSET ClAUSE. ..ot 96
334710, WITH TIES CIaUSE. ittt
BB T SEEK ClAUSE ..o
3.3.4.12. FOR UPDATE clause
331413, SO OPEIATIONS. .. ettt
334130, TYPE SATEIY. e
3.3.4.13.2. Projection rowtype........ccoevevrnne TSP RPTTRO 103
3.3.4.13.3. Differences t0 STANAAITT SQLe.... oo oo ettt ettt 104
B34 31A, UNION. s 108
33U 3.5. UNTON ALL .ottt 110
3340300, INTERSECT .o 111
3304037 INTERSECT ALL ottt 113
33U 3.8, EXCEPT e 114
331 13.9. EXCEPT ALL i 115
3.3.4.14. Lexical and 108iCal SELECT ClaUSE OFQ@N . ..o 116

3.3.5. THE INSERT SEATEMENT.....oviiveiet ettt 118
© 2009 - 2025 by Data Geekery™ GmbH. Page 4 /826

The jOOQ User Manual

3.3.5.1. INSERT .. VALUES
3.3.5.2. INSERT .. DEFAULT VALUES

3.3.5.3. INSERT .. SET..........

3.3.5.4. INSERT .. SELECT

3.3.5.5. INSERT .. ON DUPLICATE KEY UPDATEcoiittiieiiiiieie ettt 124
3.3.5.6. INSERT .. ON DUPLICATE KEY IGNORE.........coiieiiiieeeseeeee ettt 128
3.3.5.7. INSERT .. ON CONFLICT o1ttt bbb 133
3.3.5.8. INSERT .. RETURNINGootitiet ettt ettt 137
3.3.6. TNE UPDATE STATEMIENT.....oiiiviieiiiiet ettt 139
B.3L0. T, UPDATE . SET oottt 139
3.3.6.2. UPDATE .. SET ROW ..ottt bbb 140
3.3.6.3. UPDATE .. FROMooiiitiiee ettt 142
3.3.6.4, UPDATE .. WHERE ...ttt 145
3.3.6.5. UPDATE .. RETURNINGc.itiiitiiies ettt ettt 147
3.3.7. THE DELETE SEATEMIENT. ..ttt bbb
3.3.7.1. DELETE .. WHERE.............

3.3.7.2. DELETE .. RETURNING

3.3.8. TNE MERGE SEATEIMENT. ..ottt
3381 USING 1o ON i b2 a3t
3.3.8.2. WHEN MATCHED THEN UPDATE ..ottt ettt 153
3.3.8.3. WHEN MATCHED THEN DELETE ...ttt 155
3.3.8.4. WHEN NOT MATCHED THEN INSERT ..ottt ettt 157
3.4, SQL STATEMENTS (DDL).eiiiiiiieeeiees ettt ettt ettt sttt ettt ettt
341, THE ALTER STALEIMENT. ..ottt ettt sttt
BT ALTER INDEX ittt s sab e s e b e ss b b ss
34110 ALTER INDEX .. RENAME ...t
34717120 ALTER INDEX TF EXISTS oottt bbb
B2 ALTER SCTHEMA ..ottt
3.4.1.2.1. ALTER SCHEMA .. RENAME....

3.4.1.2.2. ALTER SCHEMA IF EXISTS ..ottt
34130 ALTER SEQUENCE ..ottt bbb bbbt
3.4.1.3.1. ALTER SEQUENCE .. RENAMEoiiiiiet ettt 165
3.4.1.3.2. ALTER SEQUENCE .. RESTART ..ottt bbb bbb 166
3.4.1.3.3. ALTER SEQUENCE TF EXISTS ..ottt ettt 167
BT ALTER TABLE ... s b 168
3.4.1.4.1. ALTER TABLE .. ADD COLUMNoiiiiiieeeieeee et 168
3.4.1.4.2. ALTER TABLE .. ADD COLUMNSoiiiteieieee et 170
3.4.1.4.3. ALTER TABLE .. ADD COLUMN IF NOT EXISTS......ooiiiitieeeies ettt 172
3.4.1.4.4, ALTER TABLE .. ADD PRIMARY KEY ..ottt 174
3.4.1.4.5. ALTER TABLE .. ADD UNIQUEoiiiiiiitcieee ettt st 176
3.4.1.4.6. ALTER TABLE .. ADD FOREIGN KEY ..ottt 177
3.4.1.4.7. ALTER TABLE .. ADD CHECK

3.4.71.4.8. ALTER TABLE .. RENAMEi it bbb
3.4.1.4.9. ALTER TABLE .. COMMENT ..ottt

3.4.1.4.10. ALTER TABLE .. ALTER COLUMN .. SET DEFAULT
3.4.1.4.11. ALTER TABLE .. ALTER COLUMN .. SET NOT NULL

3.4.1.4.12. ALTER TABLE .. ALTER COLUMN .. DROP NOT NULL ..ottt 185
3.4.1.4.13. ALTER TABLE .. ALTER COLUMN . SET TYPE. ... 186
3.4.1.4.14. ALTER TABLE .. RENAME COLUMN L. ...t 188
3.4.1.4.15. ALTER TABLE .. RENAME CONSTRAINToitiiiii e 190
3.4.1.4.16. ALTER TABLE .. RENAME INDEXo 191
3.4.1.4.17. ALTER TABLE .. DROP COLUMN. ..ottt 192
3.4.1.4.18. ALTER TABLE .. DROP COLUMN RESTRICT ..ottt 193
3.4.1.4.19. ALTER TABLE .. DROP COLUMN CASCADE.coiiiiiii i 194

© 2009 - 2025 by Data Geekery™ GmbH. Page 5/826

The jOOQ User Manual

3.4.1.4.20. ALTER TABLE .. DROP COLUMNSeitiieitiiieie ettt 195
3.4.1.4.21. ALTER TABLE .. DROP COLUMN IF EXISTS.....ooiiiioieiiiieisteeee ettt 197
3.4.1.4.22. ALTER TABLE .. DROP CONSTRAINT
3.4.1.4.23. ALTER TABLE TF EXISTS .. oottt
BUAT.50 ALTER VIEW. oot 51411t
34157, ALTER VIEW .. COMMENT ..ottt
3.4.1.5.2. ALTER VIEW 1. RENAME ...ttt bbb
341530 ALTER VIEW TF EXISTS oottt ettt
3.4.2. TNE COMMENT STALEMENT. ..ttt bbb s bbbt
3.4.2.17. COMMENT ON COLUMNoiiieies ettt
3.4.2.2. COMMENT ON TABLE . ..ottt bbb bbb
3.4.2.3. COMMENT ON VIEW.....ooiiiiiiieeiet ettt ettt
3.4.3. THE CREATE STALEMENT ...ttt bbb
3431, CREATE INDEX ..ottt et sttt
314.3.2. CREATE SCHEMA ..ot
3.4.3.3. CREATE SEQUENCE
3.4.3.3.1. CREATE SEQUENCE IF NOT EXISTS ..ottt
3434, CREATE TABLE ...ttt
Bi.314. T, COIUMNS. ottt
34342, INUIDIITTY ...
Bi4.314.3. DEIAUITS ..o
B34 A, IABNEITIES ...ttt
B35, PIIMIANY KEY oo s
34,340, UNIQUE CONSTIAINES. 1ottt
34347, FOTQIGM KEYS...oiiiiitite 8
3.4.3.4.8. ChECK CONSIIAINTS ..ottt ettt
343149, FIOM @ SELECT .ot o b sttt
3.4.3.4.70. GlODal tEMPOIANY TADIES. ...
3.4.3.5. CREATE VIEW....coooviviviiiiins
3.4.3.5.1. CREATE OR REPLACE VIEW
3.4.3.5.2. WITH CHECK OPTION ..ottt 1453
3.4.3.5.3. WITH READ ONLY ..ottt sttt
344, THE DROP STAEEIMENT. ..ttt 21
B4 AT, DROP INDEX ..ottt
BUA AT TF EXISTS et
3442, DROP SCTHEMAoooeeeeeeee ettt ettt
BUA 42T TF EXISTS et
3.4.4.3. DROP SEQUENCEoiiiiet ettt sttt
BU 43T TF EXISTS oottt
B4 A4 DROP TABLE ...ttt
BUA A AT, CASCADE ..ot bbb
3.4.4.4.2. IF EXISTS.......
3.4.4.5. DROP VIEW

B AT TF EXISTS oot
3.4.5. The GRANT statement.......
3.4.6. The REVOKE statement
34,7, THE SET STATEIMENT. .ttt

B4 7.1, SET CATALOGttt
BUA.7.2. SET STHEMA ..o b b4 bbb
3.4.8. TNE TRUNCATE STALEMENT....coiiiiviieieeseeee ettt et
3.4.9. GeNErating DDL fTOM ODJECES ...

3.5. Catalog and SCNEMIA EXPIESSIONS. ..ottt

3.0, TADIE EXPIOSSIONS. ...
3.6.1. GENEIALEA TADIES ...ttt

© 2009 - 2025 by Data Geekery™ GmbH. Page 6/826

The jOOQ User Manual

31602, AlIASEA TADIES ... b
3.6.2.7. Allased ZENETALEA TADIES
3.6.2.2. Aliased table expressions
3.6.2.3. DEIIVEA COIUMIN TISES ..ottt
3.6.2.4. UNNAMEA AEIMVEA TADIES......viiviioiii bbb bbb
3.0.3. JOINEBA TADIES ...
3.6.3. 1. CROSS JOIN .ottt
3.0.3.2. INNER JOIN ..ottt
3.6.3.3. OUTER JOIN ..ottt
3.0.3.4. SEMI JOIN ..ottt
30.3.5. ANTI JOIN ...ttt
310.3.6. ON ClAUSE ..ot
310.3.7. ON KEY ClAUSE ..ot s
3L0.3.8. USING ClAUSE. ...ttt
3.6.3.9. NATURAL ClAUSE ..ottt s
3.6.3.10. LATERAL
30,311 APPLY oo

3.60.3. 72, PARTITION BY .ottt

3.60.4. TRE VALUES() TADIE CONSIIUCTON ...ttt ettt ettt ettt ettt ettt ettt ettt 287
30,5, DEIMVEA TADIES ...

3.6.6. TNE OraCle PIVOT ClAUSE.....iiveiiiiieiiieie et

3.6.7. Relational division

3.6.8. AITAY @NA CUIMSOT UNMNMESTING. .. vuiieiieriacistiseiseieiseeee ittt 8 s
3.6.9. TaDIE-VAIUEA TUNCIIONS. ...
3.6.T0. GENERATE_SERIES. ...ttt
30,17, THE DUAL T8DIE. oo
3.7 COIUMN EXPIESSIONS ..ottt
370 TABIE COIUMINS . ..
3.7.1.1. Generated table columns.........

3.7.1.2. Dereferenced table columns
3.7.1.3. NAMEA T8DIE COIUMMNS. ...t
3.7.2. AlIASEA COIUMMS ..ot
37,3, CAST X PIESSIONS ittt bbbt
3.7 4. DAtAlYPE CORITIONS. ... oeetitieteeete ettt ettt ettt s s 1 8228 E et bbbttt
375, COlBTIONS oo
376, ATTNMETIC EXPIESSIONS. ...ttt
3.7.7. SEING CONCATENATION ...ttt bbbt
3.7.8. €3S SENSIIVITY WITN STIINMES.....iiiiiiiii bbb
3.7.9. GENETAI TUNCHIONS. ...ttt
3.7.9.1. CHOOSE. ...t e
3.7.9.2. COALESCE ..ot
3.7.9.3. DECODE
3.7.9.4.
3.7.9.5.
3.7.9.6.
3.7.9.7.

37 T 0T A S R
3.7.10.2. ACOS et
371030 ASIN R Rt
371040 ATAN e
3.7 105, ATANZ et h Rt
3.7 1000. CEIL it
37007, COS et
© 2009 - 2025 by Data Geekery™ GmbH. Page 7/826

The jOOQ User Manual

371008 COSH ..ttt
B.7.10.9. COT et e
3.7.10.10. COTH....

B 7. 00T T, DEG e e
37 00T 2, Bt E et tne
B 00,03, EXPee e e
B.7.T0. T4 FLOOR et
3.7.10.15.
3.7 00,10, LEAST e R h ket
U7 0007, N e
3770, T8, LOG otk h kbbbt
B.7.T0.T9. NEG . oot
3.7.10.20.
3.7.10.21.
3.7.10.22.
3.7.10.23.
3.7.10.24.
3.7.10.25.
3.7.10.26.
3.7.10.27.
3.7.10.28.
3.7.10.29.
3.7.10.30.
3.7.10.31.
3.7.70.32. WIDTH_BUGCKET ...ttt ekttt 355
37170, BIIWISE FUNCHIONS. ..o ettt 356
37000 BIT_AND . ettt 356
B 7002, BIT_COUNT .ottt 357
3.7.11.3. BIT_NAND
BU7. 0T BIT_NOR oottt e
3.7 T 0.5, BIT_NOT ettt s+ h bbb
B 7000, BIT_OR oot
3.7.11.7. BIT_XNOR
BU7.TT.8. BIT_XOR e e
370109, SHL s h bbb

U7 01000 SHR e e
3702 SEIING TUNCLIONS. 1o 376
L7020 ASTL e e 376
3.7.12.2.
3.7.12.3.
3.7.12.4.
3.7.12.5.
3.7.12.6.
3.7.12.7.
3.7.12.8.
3.7.12.9.
370270, MID ettt 386
B 70200 OCTET_LENGTH. oottt 386
370272, POSITION etk s ekttt 387
B0 2.0 3. REPEAT . 389
370204 REPLACE . .ttt 390
3.7 0205, REVERSE ... 392
370200, RIGHT ettt st h bbbttt 392
BU7. 0207 RPAD e e e 394
© 2009 - 2025 by Data Geekery™ GmbH. Page 8/826

The jOOQ User Manual

370208, RTRIM oo
370209, SPACE ..o
3.7.12.20. SUBSTRING....
370227 TRANSLATE ...ttt
B.7.02.22. TRIM oo
370223, UPPER ...ttt
3,713, DALEUIME TUNCLIONS. ...ttt bbb bbbt 401
37030 CURRENT_DATE. ...ttt ettt sttt 402
3.7.13.2. CURRENT_LOCALDATE ...ttt ettt 403
3.7.13.3. CURRENT_LOCALDATETIME ..ottt 405
3.7.13.4, CURRENT_LOCALTIME ...ttt 406
3.7.13.5. CURRENT_OFFSETDATETIME ...ttt 408
3.7.13.6. CURRENT_OFFSETTIME ...ttt 410
37037 CURRENT_TIME oottt 412
3.7.13.8. CURRENT_TIMESTAMPooviiiiitetee ettt 413
3.7.13.9. DATE

3.7.13.10.
3.7.13.11.
3.7.13.12.
3.7.13.13.
3.7.13.14.
3.7.13.15.
3.7.13.16.
3.7.13.17.
3.7.13.18.
3.7.13.19.
3.7.13.20.
3.7.13.21.
3.7.13.22.
3.7.13.23.
3.7.13.24.
3.7.13.25.
3.7.13.26.
3.7.13.27.
3.7.13.28.
3.7.13.29.
3.7.03.30. TO_DATE ..ot 463
371337, TO_LOCALDATE. ...ttt 464
3.7.13.32. TO_LOCALDATETIME ..ottt 465
371333, TO_TIMESTAMP ..ottt 466
370334 TRUNCG bbb 467
3.7.13.35.

3.7 T4 ARRAY CONSEITUCTON .ottt ettt ettt a ettt ettt et et ettt e e
3.7.15. CONNECT BY functions
3.7.15.1. CONNECT_BY_ISCYCLE

3.7.15.2. CONNECT _BY _ISLEAF ...ttt
3.7.15.3. CONNECT _BY _ROOT ...ttt es 1828
3754 LEVEL i
37055, PRIOR .28
3.7.15.6. SYS_CONNECT _BY _PATH.....iiuititiiiteerieeie it ettt 477
3776, SYSTEM FUNCHIONS. ...t 478
37061, CURRENT _SCHEMA ...ttt 478
371620 CURRENT _USER ...ttt 480

© 2009 - 2025 by Data Geekery™ GmbH. Page 9/826

The jOOQ User Manual

3.7.17. Aggregate functions
3.7 07T GIOUPINE ettt
3.7.17.2. Distinctness
3707 3 FIEIING s
3707 OTABIING oo
3.7.17.5. 0Ordering WITHIN GROUP ..ottt 486
37170, KEEPDINE ..ttt bbbt
37077, ARRAY _AGG. oo
B7.17.80 AVGL s
3.7.17.9. BOOL_AND ...ttt
370770, BOOL_OR .t
370700 COLLECT ottt
B7.07.020 COUNT e
370703, CUMEL_DIST ot
370704 DENSE_RANK ...t
371715, EVERY .o,

3.7.17.16. GROUP_CONCAT
370707 LISTAGG. it

BU7 1708 IMAX s
370719, IMEDIAN. e
B7.07.20. IMIN oL
370727 IMODE o
3.7.17.22. PERCENT_RANK ...ttt
3.7.17.23. PERCENTILE_CONT ..ottt 508
3.7.07.24. PERCENTILE_DISC oo 509
3.7.17.25. PRODUCT ..ottt
B7.07.26. RANK ...
BU707.27. SUM. e
3.7.18. Window functions
37081, PARTITION BY .ottt
3.7.18.2. ORDER BY oo e
3.7.18.3. ROWS, RANGE, GROUPS (framM@ ClAUSE).....ev ittt 519
37084 EXCLUDE ...t 521
3.7 18,5, NULL TrBATMENT ...ttt bbbttt 522
3.7.18.6. FROM FIRST, FROM LAST ...ttt 524
3.7.18.7. NeSted agEregate fUNCHIONS. ... 524
3.7.18.8. WINAOW GEIEEATION.ottt 525
3.7.18.9. WINAOW OFdered @BEIEEALE.ouiiiiiiiiei s 525
371810, ROW_NUMBER ...ttt

37 18T T RANK e
3708120 DENSE_RANK ...t
3.7.18.13. PERCENT_RANK....
371814 CUMELDIST e
37 1815, INTILE e
3.7.18.16.
3.7.18.17.
370818, FIRST_VALUE. ...t
370819, LAST WALUE .t
370820 INTH_VALUE ...
3.7.79. USEr-0efiNEA fUNCHIONS. ...t 538
3.7.20. User-defined aggregate TUNCIIONS. . ..ottt 538
3.7.271. TRE CASE EXPIESSION. ...ttt 540
3.7.22. SEQUENCES ANA SEITAIS ..ot 540
3.7.23. SCAIAN SUDGUETIES ..o 541
© 2009 - 2025 by Data Geekery™ GmbH. Page 10/ 826

The jOOQ User Manual

3.7.24. TUPIES OF TOW VAlUE EXPIESSIONS. .. eiieieeieciaeiseietie et 542
3.8, CONAILIONAI EXPIESSIONS. ...t
3.8.1. Condition building........cccoo.....

3.8.2. TRUE and FALSE condition

3.8.3. BOOLEAN COMUMMNS. ...ttt
3.8.4. AND, OR, NOT DOOIEAN OPEIALOIS. ... ouieiiiiiiiiieeie it 545
3.8.5. BOOIEAN OPEIratOr PrECEAENCE.t 546
3.8.6. COMPATISON PIrEAICATE ...t 546
3.8.7. COMPAriSON PrediCate (AEEMEE >). it 547
3.8.8. Quantified COMPANISON PrOOICATE.ciiuiiiiiieie bbb 549
3.8.9. BETWEEN PrOOICATEot 550
3.8.10. BETWEEN PrediCate (AT > M)t 552
3.8 1T, DISTINCT PrOAICALE ..ottt 554
3.8.12. DISTINCT PrediCate (AREMEE >). et 556
3813, LIKE PrOAICATE. ..o
3.8.14. LIKE REGEX predicate

3815, INULL PrEAICATE ...
3.8.16. NULL PrediCate (AEEIEE >).t 563
3817 EXISTS PIOAICATE. oo 564
B8 T8. IN PIOAICALE ..o 565
3.8.19. IN PrediCatle (AEEMEE >).ttt 566
3.8.20. OVERLAPS PIrEAICATE ..ottt 568
3.8.21. QUETY BY EXAMPIE (QBE)... .. it 569
3.9, OPEIATON PrOCEABINCE ...ttt 570
370, SYNTNETIC SQL CLAUSES. ... 570
3T DYNAMUC SQLuiii et b 8RR 571
3.11.1. OptionNal CONAILIONAl EXPIESSIONS. ... 572
3120 PlAIN SOttt

3.12.1. Plain SQL API
3.12.2. Plain SQL templating language
BT 3 HIES e
3130 IMYSQL NNES it
B30T INAEX NNES s
313720 STRAIGHT JOIN. ottt
3.13.1.3. Oracle style NINES IN MYSQL....ii e
31312 OFACIE NINES et
313,38 SO SOIVOI NINES ittt ettt
BT 330l WWITH R
3133020 OPTION .t
TR R O L =T Y= OSSO PP
BT SQL PAISEE APL ..ottt ettt
3.14.2. SQL Parser CLI
3143, SO traANSIATO ..ttt
I B @ I = o T<T G C =T 1 0 0T SO OO ORTRPRPRP
3.15. Names and identifiers................

3.16. Bind values and parameters
316, 1. INAEXEA PAIAMETETS ...
3.16.2. NAMEA PATAMETEIS. ..ottt s s
3163, INIINEA PATAMIETETS. ...
3104 SOL M ECEION. .ttt
37 QUEIYPAITS bRt
BUT7.1. SQL TENAEBIING oottt
3.17.2. DECIATETION VS TEIEIENCE. ...t

31730 Pretty PIINTING SQL. o188ttt
© 2009 - 2025 by Data Geekery™ GmbH. Page 11 /826

The jOOQ User Manual

3174, VArTADIE DINTAING ..o 591
3.17.5. CUSTOM data TYPE DINAINES. ..o 591
3.17.6. Custom syntax elements
3177, Plain SQL QUETYPAITS. ...
3078, SOIIANZADIIITY e
3.17.9. Custom SQL transformMation WD VIS LISTEMEIttt 598
3.17.9.1. Example: Logging abbreviated DN VAIUES.........ccoiiii e 598
3.18. Zero-based VS ONE-DASEA APIS ..o 600
319, SQL DUIAING TN SCIA. .. 601
3.20. COMPIlE TIME VAIIAGTION ...t 603
2, SQL EXECULION ...ttt ettt ettt ettt ettt ettt ettt ettt ettt 606
4.1. Comparison between JOOQ @Nd JDBC. ... 607
4.2, QUETY VS, RESUITQUETY ..o 607
2.3 FEICIINEG .o 608
4.3.7. RECOTA VS. TADIERECOIT. ...t 610
4.3.2. Record1 to Record22.........

4.3.3. Arrays, Maps and Lists
4.3.4. RESUIQUETY @S TEEIADIE. ...
43,5, RECOTAMAPDET ..
2306, POJOS.... it
4.3.7. RECOTAMAPPEIPTOVIAET ...
.38, LAZY TOICNING oo
4.3.9. Lazy FEICNING WITN STr@AMIS. ... i
43710, MANY FEECNINE. ...
3T LATET TOECNING e e
4,312, RESUILSET FEICNINE. ...t
4.3.13. AULO dATA TYPE CONMVEISION ...ttt
43714, CUSTOM AL TYPE COMVETSION.....eiiiiieiiiiiie ettt
4.3.15. Data type lookups

4.4. Static statements vs. Prepared Statements
4.5. ReUSING @ QUETY'S Prepar@aSTAtEMENT. .. i

0. JDBC IS it

4.7. USING JDBC DALCN OPEIATIONS. ...

4.8, SEOUEINICE EXECUTION ...ttt ettt 88218 b b ettt

4.9. Stored pProCedures aNd TUNCLIONS.o
4,971, OFACIE PACKAZES. ...
4.9.2. Oracle MEMDET PIrOCEAUIES. ..ottt
4.10. Exporting to XML, CSV, JSON, HTML, TEXE, CRAITS. ...t 633
10T, EXPOITING XMLttt ettt
A.T0.2. EXPOTTING TSVttt 228ttt
4.710.3. EXPOITING JSON .ottt
4.10.4. Exporting HTML
10,5, EXPOITING TOXE. ..ttt st
4.710.6. EXPOITING CRATS. .o 635
4.11. Importing data...........

4.11.1. The Loader API
17020 TINIPOIT OPTIONS ittt 8 bbbttt

AT 2.0 TIOTEIINE s
4.771.2.2. DUPHICATE NANAING .o 639
A07.2.30 EITON MANAIINEG. .. 639
4773, IMPOTT AATA SOUITES. ...ttt 639
A TT.37 IMPOTTING SVttt sttt 639
4.717.3.2. IMPOTTING JSON... ottt 640
A.017.3.30 IMPOITING FECONAS. ...ttt 641
© 2009 - 2025 by Data Geekery™ GmbH. Page 12/ 826

The jOOQ User Manual

1734, IMNIPOITING GITAYS vttt s 8ttt
ATT.3.5 IMPOTTING XMLttt
4.11.4. Import listeners

4.11.5. Import result and error handling
4.12. CRUD WIth UpDAatabIERECOITS.
4027, SIMPIE CRUD .o
4.12.2. RECOTAS" INTEIMAI TIAES. ..ttt bbb
A0 2.3 IDENTITY VAIUES ..o
472,48, NaVIGATION METNOTAS. ..o
4.12.5. NON-UPAALADIE FECOTTS. ... o
4.72.6. OPUMISTIC TOCKING. ..ttt
A1 2.7. BAECN EXECULION ...t
4.12.8. CRUD SPI: RECOMALISTENE ...t
2130 DADS. s
4714, TranSACLON MANAEEMIENT. ...ttt bbbt s bbbt e et 8 bbbt
4.15. Exception handling
410, EXECULELISTRMEIS ...
417, DAtaDASE META TG ittt
A7, JDBC MNELA AT ittt
A07.2. XML MNEEA ABEQ itk
Ao T 1D 1 (G @]l a =T [0} o TE OO
419, MOCKING COMMECTION. ...ttt
4.20. MOCK FIl8 DBTADESE. ..ottt
4271, PATSING CONNMETLION. ..ttt ettt 8 et st
Z.22. DIBZNOSTICS. oottt
A.22.7. TOO MANY ROWS....coeii et st
4.22.2. TOO MANY COIUMINS ...ttt
4.22.3. DUPICATE STATEMENTS. ...ttt
4.22.4. Repeated statements
A.22.5. WASNUIL CAIIS ..o
4.23. LOZEING WILN LOGEEILISTEME ...
424, PerformanCe CONSIAEIATIONS.o. it
4.25. AIternative @XECUTION MOGEIS........viiiiiiiie e
4.25.1. Using JOOQ With Spring's JADCTEMPIATE. ... 670
4.25.2. USING JOOQ WITN JPA. ..ot 671
4.25.2.1. Using jOOQ WIth JPA NATIVE QUEIY ...ttt 672
4.25.2.2. USING JOOQ WITN JPA ENTITLIES. ...t 673
4.25.2.3. Using JOOQ WIth JPA ENTIEYRESUIL. ... 674
5. OO GENEIALION. ..ttt 677
5.1. Configuration and SEtUP Of the GENEIATON ..o 677
5.2. Advanced ZeNerator CONTIGUIATION. ittt 685
5.2.1. Logging
D 2 D e ettt
5.2, 3. GBINMIIATON .. ettt 688
5.2.4. DAADASE. ...ttt OSSOSO 689
5.2.4.1. Database NAME aNd PrOPEITIES.......coiiiiiiiiie et 690
5,242, REZEXFIAZS ... e 691
5.2.4.3. INCIUAES @NA EXCIUGES. ..o 692
5. 244, INCIUAE OIDJECT TYPES. ...t 695
5.2.4.5. Record Version and TIMESTAMP FIEIAS. ..o 697
5.2.4.6. SYNTNETIC IHONTITIES .ot 698
5.2.4.7. SYNTNETIC PIIMAIY KEYS....oiveiiiieiiiiiii a2 699
5.2.4.8. OVEITIAE PIIMAIY KEYS..... ittt 699
5.2.4.9. DAt @S TIMIESTAIMID. ..ttt ettt ettt 8 e h 8218 b s E bbbttt 700
© 2009 - 2025 by Data Geekery™ GmbH. Page 13 /826

The jOOQ User Manual

5.2.4.10. Ignore procedure return values (AEPrECAtE).... ..o 701
524717, UNSIGNEA TYPES. .ttt 702
5.2.4.12. Catalog and SChema MapPiNg.......ccceveeiiiiininiseese s e 703
5.2.4.13. Catalog and SCheMa VEISION PrOVIAEIS. ..ot 709
5.2.4.14. Custom ordering Of SENEIAtEA COUR.......iiiiiiiii s 712
5.2 415, FOTCRA TYPS. ..t 714
5.2.4.15.7. MaTCNING OF TOTCEA TYPES. ... 714
5.2.4.75.2. DAt TYPE TEWITTINZ. .. vttt bbbttt 718
5.2.4.15.3. QUANTIEA CONVEITEIS. ...ttt ettt ettt ettt 719
524154, INIINE CONMVEITEIS oottt 721
5. 24155, ENUIM COMVEITRIS. ...ttt 722
5.2.4.15.6. DAta tYPE DINAINGS. ...t 723
5.2.4.76. Table VaAIUBT TUNCUONS. ..ottt 726
ST T T 1< = <O PR TPP PRSP
5.2.5. T, ANNOTALIONS. ...t
5.2.5.2. Covariant overrides

5.2.5.2.1. OVEITIAING @S()-+urvrrvrtertereiiiieiieei ittt
5.2.5.2.2. OVEITIAING FENAME ...ttt 730
5.2.5.3. Default Catalog and SCREMIA ... 730
52,54 FIUBNT SETLOIS ... 730
5.2.5.5. FUIlY QUAITIEA TYPS. ...ttt 731
5.2.5.6. GlIODAI ATTEIACES ..ot 732
5.2.5.7. IMPHCIT JOIN PATNS ..o 733
5.2.5.8. JAVA TIME TYPES. oottt ettt E 8ttt 734
5.2.5.9. ZEr0 SCAlE DBCIMAI TYPES ...ttt 735
5.2.6. OULPUL TArZET CONTIGUIATION ..ottt 736
5.3, GENEIALEA OIJECE TYPES. .. it 737
5,301, GENEIATEA TADIES ...t
5.3.2. Generated records

5.3.3. GENEIALEA POJOS ... oottt
5.3.4. GENEIALEA INTEITACES. ... 742
5.3.5. GENEIATEA DADS ... 743
5.3.6. GENEIALEA SEQUEINCES. ...ttt 745
5.3.7. GENEIAtEA PIrOCEAUIES.oeeieeieieieii et 746
5.3.8. GENEIATEA UDTS ...t 747
5.3.9. Generated gloDal @rTEIATES. ..o 748
5.4. Class names, Method NAMES, IENTITIEIS. ... 749
5.4.7. CUSTOM ZENEIATON STIATEZIES. ...v.iiieieieeei ettt ettt 750
5.4.2. MATCNEE STTATEZIES .ottt 753
5421, MAECREIRUIB ... 755
5.4.2.2. MAECNING SCNBIMAS ...ttt 758
5.4.2.3. Matching tables

5.4.2.4, MATCNING TIEIAS ...
5.4.2.5. MAECRING FOUTINES ...ttt
5.4.2.6. Matching sequences...

5.4.2.7. MATCRING ENUMIS ...
5.4.2.8. MATCNET EXAMPIES. ... s8££

5.5, CUSTOM COOBR SETTIONS. ..eieiiiiiiii s

5.6. Mapping generated Catalogs and SCREIMAS........iiii e 771
5.7. AIErNAtIVE META JATA SOUITES. ...t 773
5.7.1. JPADatabase: Code generation frOM ENTILIES.o 773
5.7.2. XMLDatabase: Code generation from XIML fIlES ... 776
5.7.3. DDLDatabase: Code generation from SQL fIlES........oie e 779
5.8. AIterNative OULPUL TANGUAZES.oviiiiiiie s 782

© 2009 - 2025 by Data Geekery™ GmbH. Page 14 /826

The jOOQ User Manual

5.8.1. XMLGENErator: GENEIATING XML ..ottt
5.9, COAE ZENEIATION EXECUTION......oiiieeiieiii et
5.9.1. Running the code generator with Maven
5.9.2. RUNNiNg the code ENErator WITN ANT.. ..ot
5.9.3. Running the code generator WIth GIaGle. ... 787
5.9.4. Programmatic cONfiguration and @XECULION. ..o 789
5.10. System properties OVErnNiNg COUE BENEIATION. ...ttt 790
5.11. Code generation dePENAENCIES. ..ot
5.12. Code eNEration fOr Ar8 SCREMAS. s
5.13. Code generation and VErSION CONTIOL ..o
5.14. Features requiring SENEIALEA COU.... ...

6. COMINEG TTOM JPA ..o

6.7, SET DASEA TNINMKINEG. ...t

0.2, DALADASE FIISTu it

6.3, EQGET OF 1AZY 10GAING ...

6.4. First level cache and second level cache....
6.5 ATLTIDUTECONVEITENot
0.0, U SBI LY DS ettt R Rttt
6.7 IMIPICIE JOIN. ..o
7 RETEIEICE. .
7.1, SUPPOITEA RDBIMS.... .ot
7.2. COMMEICIAl ONIY FRATUIES ...t
7.3, EXPEIIMENTAN TRATUIES ..ot
T2 BUIIEIN GAEA DY PES e
7. A0, BLOBS GNA CLOBS. ...ttt e
7.4.2. BOOLEAN T8 LY.tttk
743, UNSIGNEA INTEGEI TYPES oottt
744, INTERVAL GALA DY PES it
7.4.5. CURSOR data types

7.4.6. ARRAY and TABLE data types
747, OracCle DATE TATA TP ittt

7.5. SOL t0 DSL MAPPING TUIBS. ...t

7.6, QUANTTY ASSUIANCE. ..ot

77 SBCUNTEY ettt b £ R R
770 SQL N RCTION. c1 it
7.7.2. DEDUE TOZZINE. ...
7.7 3. EXCEPUION MNESSAEE. .. tiirtiiiiseiet ettt f bbbt
7.7 A COMTACE 1ot R R

7.8. MIgrating 0 JOOQ 3.0 ittt 811
7.9, DON' A0 NS i 815
7.9.1. JOOQ: IMPIEMENTING TNE DSL TYPES ...ttt
7.9.2. jOOQ: Referencing the Step types....
7.9.3. SCNEMIA: INULL COIUMINS. ..ottt
7.9.4. SChema: UNNamMEd CONSIIAINTS. ...t
7.9.5. Schema: Unnecessary surrogate keys
7.9.6. SCNEMA: WIONE LA TYPES. ... oiiiieieiiriiie s
7.9.7. SQL: COUNT() INSLEAA OF EXISTS()...veuvreiiririietiesieeiti et
7.9.8. SOL: NAHT s
7.9.9. SQL: NATURAL JOIN OF JOIN USING ...ttt ettt
7.9.70. SQL: NOT IN PIrOAICALE . .. oo
7.9.17. SQL: ORDER BY [COIUMN INAEX]... oottt ettt ettt
7.9.12. SQL: Rely 0N IMPHCIT OFAEIING ...t
7.9.130 SQL: SELECT o
7.9.714, SQL: SELECT DISTINCT ..ottt ettt et

© 2009 - 2025 by Data Geekery™ GmbH. Page 15/ 826

The jOOQ User Manual

7.9.15. SQL: Unnecessary UNION instead Of UNION ALL......iiiiiiiceesse s 826
7.10. The most iMpPOrtant JOOQ TYPES......ciiiiiiieiieiicieie etk 826
7.11. Credits

© 2009 - 2025 by Data Geekery™ GmbH.

Page 16/ 826

The jOOQ User Manual 1. Copyright, License, and Trademarks

1. Copyright, License, and Trademarks

This section lists the various licenses that apply to different versions of jOOQ. Prior to version 3.2, JOOQ
was shipped for free under the terms of the Apache Software License 2.0. With jJOOQ 3.2,jO0Q became
dual-licensed: Apache Software License 2.0 (for use with Open Source databases) and commercial (for
use with commercial databases).

This manual itself (as well as the www.joog.org public website) is licensed to you under the terms of
the CC BY-SA 4.0 license.

Please contact legal@datageekery.com, should you have any questions regarding licensing.

License for JOOQ 3.2 and later

This work is dual-licensed
- under the Apache Software License 2.0 (the "ASL")
- under the jOOQ License and Maintenance Agreenent (the "jOOQ License")

You may choose which |icense applies to you:

- If you're using this work with Open Source databases, you may choose
ei ther ASL or jOOQ License.

- If you're using this work with at |east one conmercial database, you nust
choose j OOQ Li cense

For nore information, please visit https://wwmjooq.org/licenses

Apache Software License 2.0:

Li censed under the Apache License, Version 2.0 (the "License");
you may not use this file except in conpliance with the License.
You may obtain a copy of the License at

htt ps: // www. apache. org/ | i censes/ LI CENSE- 2. 0

Unl ess required by applicable |aw or agreed to in witing, software

di stributed under the License is distributed on an "AS | S" BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KIND, either express or inplied.
See the License for the specific |anguage governi ng perm ssions and
limtations under the License.

j OOQ License and Mai ntenance Agreenent:

Dat a Geekery grants the Custoner the non-exclusive, tinely limted and
non-transferable |icense to install and use the Software under the terms of
the jOOQ Li cense and Mai nt enance Agreenent .

This library is distributed with a LI M TED WARRANTY. See the jOOQ License
and Mai ntenance Agreement for nore details: https://ww.jooq.org/licensing

Historic license for jJOOQ 1.x, 2.x, 3.0, 3.1

Li censed under the Apache License, Version 2.0 (the "License");
you nmay not use this file except in conpliance with the License.
You may obtain a copy of the License at

https://ww. apache. org/ | i censes/ LI CENSE- 2. 0

Unl ess required by applicable |aw or agreed to in witing, software
distributed under the License is distributed on an "AS | S" BASIS,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KIND, either express or inplied.
See the License for the specific |anguage governing perni ssions and
limtations under the License.

© 2009 - 2025 by Data Geekery™ GmbH. Page 17 /826

https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.jooq.org/licensing
https://www.jooq.org
https://creativecommons.org/licenses/by-sa/4.0/
mailto:legal@datageekery.com

The jOOQ User Manual 1. Copyright, License, and Trademarks

Trademarks owned by Data Geekery™ GmbH

JOOA™ is a trademark by Data Geekery™ GmbH
jOOQ™ is a trademark by Data Geekery™ GmbH
- JOOR™ s a trademark by Data Geekery™ GmbH
jOOU™ is a trademark by Data Geekery™ GmbH
jOOX™ is a trademark by Data Geekery™ GmbH

Trademarks owned by database vendors with no affiliation to Data
Geekery™ GmbH

- Access® is a registered trademark of Microsoft® Inc.

- Adaptive Server® Enterprise is a registered trademark of Sybase®, Inc.
- CUBRID™ is a trademark of NHN® Corp.

- DB2® s a registered trademark of IBM® Corp.

- Derby is a trademark of the Apache™ Software Foundation

- H2is atrademark of the H2 Group

- HANA'is a trademark of SAP SE

- HSQLDBis a trademark of The hsgl Development Group

- Ingres is a trademark of Actian™ Corp.

- MariaDBis a trademark of Monty Program Ab

- MySQL® is a registered trademark of Oracle® Corp.

- Firebird® is a registered trademark of Firebird Foundation Inc.

- Oracle® database is a registered trademark of Oracle® Corp.

- PostgreSQL® is a registered trademark of The PostgreSQL Global Development Group
- Postgres Plus® is a registered trademark of EnterpriseDB® software

- SQL Anywhere® is a registered trademark of Sybase®, Inc.

- SQL Server® is a registered trademark of Microsoft® Inc.

- SQLite is a trademark of Hipp, Wyrick & Company, Inc.

Other trademarks by vendors with no affiliation to Data Geekery™ GmbH

- Java® is a registered trademark by Oracle® Corp. and/or its affiliates
- Liquibase is a trademark by Datical, Inc

Flyway is a trademark by Red Gate Software Ltd

- Scalais atrademark of EPFL

Other trademark remarks

Other names may be trademarks of their respective owners.

Throughout the manual, the above trademarks are referenced without a formal ® (R) or ™ (TM) symbol.
It is believed that referencing third-party trademarks in this manual or on the jJOOQ website constitutes
"fair use". Please contact us if you think that your trademark(s) are not properly attributed.

© 2009 - 2025 by Data Geekery™ GmbH. Page 18 /826

mailto:contact@datageekery.com

The jOOQ User Manual 1. Copyright, License, and Trademarks

Contributions

The following are authors and contributors of JOOQ or parts of jJOOQ in alphabetical order:

© 2009 - 2025 by Data Geekery™ GmbH. Page 19/826

The jOOQ User Manual

© 2009

Aaron Digulla
Andreas Franzén
Anuraag Agrawal
Arnaud Roger

Art O Cathain

Artur Dryomov

Ben Manes

Brent Douglas

Brett Meyer
Christian Stein
Christopher Deckers
Dennis Neufeld

Ed Schaller

Eric Peters

Ernest Mishkin
Espen Stromsnes
Eugeny Karpov
Fabrice Le Roy
Gonzalo Ortiz Jaureguizar
Gregory Hlavac
Henrik Sjostrand
lvan Dugic

Javier Durante
Johannes Buhler
Joseph B Phillips
Joseph Pachod
Knut Wannheden
Laurent Pireyn
Logan Hauspie

Luc Marchaud
Lukas Eder

Matti Tahvonen
Michael Doberenz
Michael Simons
Michat Kotodziejski
Miguel Gonzalez Sanchez
Mustafa Yucel
Nathaniel Fischer
Nicholas Chong W.B.
Octavia Togami
Oliver Flege

Per Lundberg

Peter Ertl

Richard Bradley
Robin Stocker
Roland Weisleder
Samy Deghou
Sander Plas

Sean Wellington
Sergey Epik

Sergey Zhuravlev
Stanislas Nanchen
Stephan Schroevers
Sugiharto Lim

Sven Jacobs
SZyMQDejaGhikEn ™ GrbH.
Terence Zhang
Thomas Darimont
Timothy Wilson

1. Copyright, License, and Trademarks

Page 20/ 826

The jOOQ User Manual 1. Copyright, License, and Trademarks

See the following website for details about contributing to jOOQ:
https://www.joog.org/legal/contributions

© 2009 - 2025 by Data Geekery™ GmbH. Page 21 /826

https://www.jooq.org/legal/contributions

The jOOQ User Manual 2. Getting started with jOOQ

2. Getting started with jJOOQ

These chapters contain a quick overview of how to get started with this manual and with jOOQ. While
the subsequent chapters contain a lot of reference information, this chapter here just wraps up the
essentials.

2.1. How to read this manual

This section helps you correctly interpret this manual in the context of jOOQ.

Code blocks

The following are code blocks:

-- A SQL code bl ock
SELECT 1 FROM DUAL

/1 A Java code bl ock
for (int i =0; i < 10; i++);

<!-- An XML code bl ock -->
<hel | o what ="wor | d"></ hel | 0>

A config file code bl ock
org.j ooq. property=val ue

These are useful to provide examples in code. Often, with jOOQ, it is even more useful to compare SQL
code with its corresponding Java/jJOOQ code. When this is done, the blocks are aligned side-by-side,
with SQL usually being on the left, and an equivalent JOOQ DSL query in Java usually being on the right:

- In SQL: /] Using jOOQ
SELECT 1 FROM DUAL create. sel ect One().fetch()

Code block contents

The contents of code blocks follow conventions, too. If nothing else is mentioned next to any given code
block, then the following can be assumed:

-- SQL assunptions

- If nothing else is specified, assune that the Oracle syntax is used
SELECT 1 FROM DUAL

© 2009 - 2025 by Data Geekery™ GmbH. Page 22 /826

The jOOQ User Manual 2.2. The sample database used in this manual

/1l Java assunptions
A

/'l \Whenever you see "standal one functions", assume they were static inported from org.jooq.inpl.DSL

/1 "DSL" is the entry point of the static query DSL

exists(); max(); min(); val(); inline(); // correspond to DSL.exists(); DSL.max(); DSL.min(); etc...

/1 \Whenever you see BOOK/ Book, AUTHOR/ Author and simlar entities, assune they were (static) inported fromthe generated schema
BOOK. TI TLE, AUTHOR. LAST_NAME // com exanpl e. gener at ed. Tabl es. BOOK. TI TLE, com exanpl e. gener at ed. Tabl es. AUTHOR. LAST_NAVE
FK_BOOK_AUTHOR /1 com exanpl e. gener at ed. Keys. FK_BOOK_AUTHOR

/'l Whenever you see "create" being used in Java code, assune that this is an instance of org.jooq. DSLCont ext.

/1l The reason why it is called "create" is the fact, that a jOOQ QueryPart is being created fromthe DSL object.

/Il "create" is thus the entry point of the non-static query DSL
DSLCont ext create = DSL.using(connection, SQLDi al ect.ORACLE);

Your naming may differ, of course. For instance, you could name the "create" instance "db", instead.

Execution

When you're coding PL/SQL, T-SQL or some other procedural SQL language, SQL statements are always
executed immediately at the semi-colon. This is not the case in jJOOQ, because as an internal DSL, jOOQ
can never be sure that your statement is complete until you call fetch() or execute(). The manual tries
to apply fetch() and execute() as thoroughly as possible. If not, it is implied:

SELECT 1 FROM DUAL create.sel ectOne().fetch();
UPDATE t SET v = 1 create.update(T).set(T.V, 1).execute();

Degree (arity)

jOOQ records (and many other APl elements) have a degree N between 1 and 22. The variable degree
of an APl element is denoted as [N], e.g. Row[N] or Record[N]. The term "degree" is preferred over arity,
as "degree" is the term used in the SQL standard, whereas "arity" is used more often in mathematics
and relational theory.

Settings

jOOQ allows to override runtime behaviour using org.joog.conf.Settings. If nothing is specified, the
default runtime settings are assumed.

Sample database

jOOQ query examples run against the sample database. See the manual's section about the sample
database used in this manual to learn more about the sample database.

2.2. The sample database used in this manual

For the examples in this manual, the same database will always be referred to. It essentially consists of
these entities created using the Oracle dialect

© 2009 - 2025 by Data Geekery™ GmbH. Page 23 /826

https://www.jooq.org/javadoc/3.11.x/org/jooq/conf/Settings.html

The jOOQ User Manual 2.3. Different use cases for jJOOQ

CREATE TABLE | anguage (

id NUVBER(7) NOT NULL PRI MARY KEY,
cd CHAR(2) NOT NULL,
descri ption VARCHAR2(50)

)i

CREATE TABLE aut hor (

id NUVBER(7) NOT NULL PRI MARY KEY,
first_nane VARCHAR2(50) ,
| ast _name VARCHAR2(50) NOT NULL,

date_of _birth DATE,

year _of _birth NUVBER(7),

di stingui shed NUMBER(1)
)

CREATE TABLE book (

id NUVBER(7) NOT NULL PRI MARY KEY,

aut hor _i d NUVBER(7) NOT NULL,

title VARCHAR2(400) NOT NULL,

publ i shed_in NUVBER(7) NOT NULL,

| anguage_i d NUVBER(7) NOT NULL,

CONSTRAI NT f k_book_aut hor FOREI GN KEY (aut hor _i d) REFERENCES aut hor (i d),

CONSTRAI NT f k_book_| anguage FOREI GN KEY (| anguage_i d) REFERENCES | anguage(i d)
)

CREATE TABLE book_store (
nane VARCHAR2(400) NOT NULL UNI QUE
)

CREATE TABLE book_t o_book_store (

nane VARCHAR2(400) NOT NULL,

book_i d | NTEGER NOT NULL,

st ock | NTEGER,

PRI MARY KEY(name, book_id),

CONSTRAI NT f k_b2bs_book_store FOREI GN KEY (name) REFERENCES book_store (name) ON DELETE CASCADE,
CONSTRAI NT f k_b2bs_book FOREI GN KEY (book_i d) REFERENCES book (i d) ON DELETE CASCADE

More entities, types (e.g. UDT's, ARRAY types, ENUM types, etc), stored procedures and packages are
introduced for specific examples

In addition to the above, you may assume the following sample data:

I NSERT | NTO | anguage (id, cd, description) VALUES (1, 'en', 'English);

I NSERT | NTO | anguage (id, cd, description) VALUES (2, 'de', 'Deutsch');

I NSERT | NTO | anguage (id, cd, description) VALUES (3, 'fr', 'Francais');
I NSERT | NTO | anguage (id, cd, description) VALUES (4, 'pt', 'Portugués');

I NSERT | NTO aut hor (id, first_nane, |ast_nane, date_of _birth , year_of _birth)
VALUES (1, '"George’ , 'Orwell' , DATE '1903-06-26', 1903)

I NSERT | NTO aut hor (id, first_nane, |ast_nane, date_of birth , year_of _birth)
VALUES (2, 'Paulo , 'Coel ho' , DATE '1947-08-24', 1947)

I NSERT | NTO book (id, author_id, title , published_in, |anguage_id)
VALUES (1,1 , '1984' , 1948 , 1 ;

I NSERT | NTO book (id, author_id, title , published_in, |anguage_id)
VALUES (2,1 , "Animal Farm , 1945 , 1 ;

I NSERT | NTO book (id, author_id, title , published_in, |anguage_id)
VALUES (3, 2 , 'O A quinista, 1988 , 4 ;

I NSERT | NTO book (id, author_id, title , published_in, |anguage_id)
VALUES (4, 2 , ' Brida , 1990 , 2 ;

I NSERT | NTO book_store VALUES (' Orell Fussli');
I NSERT | NTO book_store VALUES (' Ex Libris");
I NSERT | NTO book_store VALUES (' Buchhandl ung i m Vol kshaus');

I NSERT | NTO book_t o_book_store VALUES (' Orell Fussli' , 1, 10);
I NSERT | NTO book_t o_book_store VALUES (' Orell Fussli' , 2, 10);
I NSERT | NTO book_t o_book_store VALUES (' Orell Fussli' , 3, 10);
I NSERT | NTO book_t o_book_store VALUES (' Ex Libris' , 1, 1);
I NSERT | NTO book_t o_book_store VALUES (' Ex Libris' , 3, 2)
I NSERT | NTO book_t o_book_store VALUES (' Buchhandl ung i m Vol kshaus', 3, 1)

2.3. Different use cases for jJO0Q

jOOQ has originally been created as a library for complete abstraction of JDBC and all database
interaction. Various best practices that are frequently encountered in pre-existing software products
are applied to this library. This includes:

© 2009 - 2025 by Data Geekery™ GmbH. Page 24 /826

The jOOQ User Manual 2.3.1.jO0Q as a SQL builder without code generation

- Typesafe database object referencing through generated schema, table, column, record,
procedure, type, dao, pojo artefacts (see the chapter about code generation)

- Typesafe SQL construction / SQL building through a complete querying DSL APl modelling SQL
as a domain specific language in Java (see the chapter about the query DSL API)

- Convenient query execution through an improved API for result fetching (see the chapters about
the various types of data fetching)

- SQL dialect abstraction and SQL clause emulation to improve cross-database compatibility and
to enable missing features in simpler databases (see the chapter about SQL dialects)

- SQL logging and debugging using jOOQ as an integral part of your development process (see the
chapters about logging)

Effectively, JOOQ was originally designed to replace any other database abstraction framework short of
the ones handling connection pooling (and more sophisticated transaction management)

Use JOOQ the way you prefer

... but open source is community-driven. And the community has shown various ways of using jOOQ
that diverge from its original intent. Some use cases encountered are:

- Using Hibernate for 70% of the queries (i.e. CRUD) and jOOQ for the remaining 30% where SQL
is really needed

- Using jJOOQ for SQL building and JDBC for SQL execution

- Using jJOOQ for SQL building and Spring Data for SQL execution

- Using JOOQ without the source code generator to build the basis of a framework for dynamic
SQL execution.

The following sections explain about various use cases for using jOOQ in your application.

2.3.1.)00Q as a SQL builder without code
generation

We strongly recommend to use jOOQ with its code generator to get the most out of jOOQ)!

However, if you have a dynamic schema, you don't have to use the code generator. This is the most
simple of all use cases, allowing for construction of valid SQL for any database. In this use case, you will
not use JOOQ's code generator and maybe not even jOOQ's query execution facilities. Instead, you'll use
I00Q's guery DSL API to wrap strings, literals and other user-defined objects into an object-oriented,
type-safe AST modelling your SQL statements. An example is given here:

/] Fetch a SQL string froma jOOQ Query in order to nmanually execute it with another tool.
/'l For sinplicity reasons, we're using the APl to construct case-insensitive object references, here.
Query query = create.select(field("BOOK TITLE"), field("AUTHOR FI RST_NAME"), fi el d("AUTHOR LAST_NAME"))

.fron(tabl e("BOXK"))
.join(table("AUTHOR"))
.on(field("BOOK AUTHOR | D").eq(fiel d("AUTHOR I D")))
.where(fiel d("BOOK. PUBLI SHED | N'). eq(1948));
String sql = query.get SQL();
Li st <Obj ect > bi ndVal ues = query. get Bi ndVal ues();

The SQL string built with the jOOQ query DSL can then be executed using JDBC directly, using
Spring's JdbcTemplate, using Apache DbUtils and many other tools (note that since jOOQ uses

© 2009 - 2025 by Data Geekery™ GmbH. Page 25/ 826

The jOOQ User Manual 2.3.2.jO0Q as a SQL builder with code generation

lava.sgl.PreparedStatement by default, this will generate a bind variable for "1948". Read more about
bind variables here).

You can also avoid getting the SQL string and bind values separately:

String sql = query.get SQL(Paranype. | NLI NED) ;

If you wish to use jOOQ only as a SQL builder, the following sections of the manual will be of interest
to you:

- SQL building: This section contains a lot of information about creating SQL statements using the
jOOQ API

- Plain SQL: This section contains information useful in particular to those that want to supply
table expressions, column expressions, etc. as plain SQL to jOOQ), rather than through
generated artefacts

- Bind values: This section explains how bind values are managed and/or inlined in jOOQ.

2.3.2.100Q as a SQL builder with code generation

In addition to using jOOQ as a standalone SQL builder, you can also use jOOQ's code generation
features in order to compile your SQL statements using a Java compiler against an actual database
schema. This adds a lot of power and expressiveness to just simply constructing SQL using the query
DSL and custom strings and literals, as you can be sure that all database artefacts actually exist in the
database, and that their type is correct. We strongly recommend using this approach. An example is
given here:

/] Fetch a SQL string froma jOOQ Query in order to nmanually execute it with another tool.
Query query = create. sel ect (BOOK. TI TLE, AUTHOR. FI RST_NAME, AUTHOR. LAST_NANE)

. f rom(BOOK)

. j oi n(AUTHOR)

. on(BOOK. AUTHOR_| D. eq(AUTHOR. | D))
. wher e(BOOK. PUBLI SHED | N. eq(1948)) ;

String sql = query.get SQL();
Li st <Obj ect > bi ndVal ues = query. get Bi ndVal ues();

The SQL string built with the jOOQ query DSL can then be executed using JDBC directly, using
Spring's JdbcTemplate, using Apache DbUtils and many other tools (note that since jOOQ uses
lava.sgl.PreparedStatement by default, this will generate a bind variable for "1948". Read more about
bind variables here).

You can also avoid getting the SQL string and bind values separately:

String sql = query.get SQL(Paranype. | NLI NED) ;

If you wish to use jOOQ only as a SQL builder with code generation, the following sections of the manual
will be of interest to you:

- SQOL building: This section contains a lot of information about creating SQL statements using the
jOOQ API

- Code generation: This section contains the necessary information to run jOOQ's code generator
against your developer database

- Bind values: This section explains how bind values are managed and/or inlined in jOOQ.

© 2009 - 2025 by Data Geekery™ GmbH. Page 26 /826

https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/PreparedStatement.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/PreparedStatement.html

The jOOQ User Manual 2.3.3.jO0Q as a SQL executor

2.3.3.J00Q as a SQL executor

Instead of any tool mentioned in the previous chapters, you can also use jOOQ directly to execute your
jOOQ-generated SQL statements. This will add a lot of convenience on top of the previously discussed
API for typesafe SQL construction, when you can re-use the information from generated classes to fetch
records and custom data types. An example is given here:

/1l Typesafely execute the SQL statement directly with j OOQ
Resul t <Record3<String, String, String>> result =
create. sel ect (BOOK. TI TLE, AUTHOR FI RST_NAME, AUTHOR. LAST_NAME)
. f r om(BOOK)
. j 0i n(AUTHOR)
. on(BOOK. AUTHOR | D. eq(AUTHOR. | D))
. wher e(BOOK. PUBLI SHED_I N. eq(1948))
.fetch();

By having jOOQ execute your SQL, the jOOQ query DSL becomes truly embedded SQL.

jOOQ doesn't stop here, though! You can execute any SQL with jOOQ. In other words, you can use any
other SQL building tool and run the SQL statements with jOOQ. An example is given here:

/1l Use your favourite tool to construct SQL strings:
String sql = "SELECT title, first_nane, |ast_name FROM book JO N aut hor ON book.author_id = author.id " +
"WHERE book. publ i shed_in = 1984";

I/ Fetch results using jO0Q
Resul t <Record> result = create.fetch(sql);

/Il O execute that SQL with JDBC, fetching the ResultSet wth jOOQ

Resul t Set rs = connection. createStatenent().executeQuery(sql);
Resul t <Record> result = create.fetch(rs);

If you wish to use jOOQ as a SQL executor with (or without) code generation, the following sections of
the manual will be of interest to you:

- SQL building: This section contains a lot of information about creating SQL statements using the
jOOQ API

- Code generation: This section contains the necessary information to run jOOQ's code generator
against your developer database

- SQL execution: This section contains a lot of information about executing SQL statements using
the jOOQ API

- Fetching: This section contains some useful information about the various ways of fetching data
with jOOQ

2.3.4.)00Q for CRUD

Apart from jOOQ's fluent API for query construction, JOOQ can also help you execute everyday CRUD
operations. An example is given here:

© 2009 - 2025 by Data Geekery™ GmbH. Page 27 /826

The jOOQ User Manual 2.3.5.jO0Q for PROs

// Fetch an author
Aut hor Record aut hor = create.fetchOne(AUTHOR, AUTHOR ID.eq(1));

/Il Create a new author, if it doesn't exist yet
if (author == null) {

aut hor = create. newRecor d(AUTHOR) ;

aut hor.setld(1);

aut hor . set Fi r st Nane(" Dan") ;

aut hor . set Last Name(" Brown") ;

}

/1l Mark the author as a "distinguished" author and store it
aut hor . set Di sti ngui shed(1);

/] Executes an update on existing authors, or insert on new ones
aut hor. store();

If you wish to use all of JOOQ's features, the following sections of the manual will be of interest to you
(including all sub-sections):

- SQL building: This section contains a lot of information about creating SQL statements using the
jOOQ API

- Code generation: This section contains the necessary information to run jOOQ's code generator
against your developer database

- SQL execution: This section contains a lot of information about executing SQL statements using
the jOOQ API

2.3.5.]00Q for PROs

jOOQ isn't just a library that helps you build and execute SQL against your generated, compilable
schema. jOOQ ships with a lot of tools. Here are some of the most important tools shipped with jOOQ:

- JOOQ's Execute Listeners: jOOQ allows you to hook your custom execute listeners into jOOQ's
SQL statement execution lifecycle in order to centrally coordinate any arbitrary operation
performed on SQL being executed. Use this for logging, identity generation, SQL tracing,
performance measurements, etc.

- Logging: jOOQ has a standard DEBUG logger built-in, for logging and tracing all your executed
SQL statements and fetched result sets

- Stored Procedures: jOOQ supports stored procedures and functions of your favourite database.
All routines and user-defined types are generated and can be included in jOOQ's SQL building
API as function references.

- Batch execution: Batch execution is important when executing a big load of SQL statements.
jOOQ simplifies these operations compared to JDBC

- Exporting and Importing: jOOQ ships with an API to easily export/import data in various formats

If you're a power user of your favourite, feature-rich database, jOOQ will help you access all of your
database's vendor-specific features, such as OLAP features, stored procedures, user-defined types,
vendor-specific SQL, functions, etc. Examples are given throughout this manual.

2.4. Downloading jO0OQ

jOOQ is distributed over 3 main channels:

© 2009 - 2025 by Data Geekery™ GmbH. Page 28 /826

The jOOQ User Manual 2.4, Downloading jOOQ

- The website as downloadable ZIP files: https://www.joog.org/download/versions
- The repository for jJOOQ's commercial editions only: https://repo.joog.org
- Maven Central for jOOQ's open source edition only: https://repol.maven.org/maven2/org/jooq

The ZIP file

If you choose to download jOOQ over the website, you will be able to download a ZIP file with the
following layout:

- maven-deploy.bat: A Windows batch script to deploy artifacts to a maven repository

- maven-deploy.sh: A bash script to deploy artifacts to a maven repository

- maven-install.bat: A Windows batch script to install artifacts to the local maven repository
- maven-install.sh: A bash script to install artifacts to the local maven repository

The website hosts the latest versions of the JOOQ Open Source Edition as well as all the historic versions
of the commercial jJOOQ editions including snapshot builds of all distributions that are available to
paying customers only.

The commercial artifact repository

The commercial artifact repository hosts all the historic versions of the commercial jOOQ editions
including snapshot builds of all distributions that are available to paying customers only.

Below is information regarding how to include these dependencies in Maven / Gradle:
Maven

settings.xm|

<server>
<i d>j ooq- pro</i d>
<user name>[your |icensee email]</username>
<passwor d>[your |icense key] </ password>

</ server>

© 2009 - 2025 by Data Geekery™ GmbH. Page 29/ 826

https://www.jooq.org/download/versions
https://repo.jooq.org
https://repo1.maven.org/maven2/org/jooq

The jOOQ User Manual 2.4, Downloading jOOQ

pom.xml

<repositories>
<reposi tory>
<id>central </id>
<url >https://repol. maven. or g/ maven2/ </ url >
</ repository>
<!-- Oher repositories ... -->

<reposi tory>
<i d>j oog- pro</i d>
<url >https://repo.jooq. org/repo</url >
</ repository>
</repositories>
<pl ugi nReposi tori es>
<pl ugi nReposi t ory>
<id>central </id>
<url >https://repol. maven. or g/ maven2/ </ url >
</ pl ugi nReposi t ory>
<!-- Oher repositories ... -->

<pl ugi nReposi t ory>
<i d>j oog- pro</i d>
<url >https://repo.jooq.org/repo</url >
</ pl ugi nReposi t ory>
</ pl ugi nReposi tories>

Gradle (Kotlin)

/1 The j OOQ codegen-gradl e plugin has been introduced in version 3.19 only.
Gradle (Groovy)

Dependencies

Depending on the edition you're using, please declare the following dependencies in Maven or Gradle:
Maven

<dependency>
<l-- Use org.jooq for the Open Source Edition

org.j 0og. pro for comrercial editions with Java 11 support,
org.joog.pro-java-8 for comercial editions with Java 8 support,
org.joog.pro-java-6 for comercial editions with Java 6 support,
org.jooq.trial for the free trial edition with Java 11 support,
org.jooqg.trial-java-8 for the free trial edition with Java 8 support,
org.jooqg.trial-java-6 for the free trial edition with Java 6 support

Note: Only the Open Source Edition is hosted on Maven Central .
Install the others locally using the provided scripts, or access themfromhere: https://repo.jooq.org
See the JDK version support natrix here: https://ww.]jooq. org/ downl oad/ support-matrix-jdk -->

<gr oupl d>or g. j ooq</ gr oupl d>
<artifactld>jooq</artifactld>

<versi on>3. 11. 12</ ver si on>
</ dependency>

Gradle (Kotlin)

dependenci es {

/1l Use org.jooq for the Open Source Edition

Il org.jooq. pro for commercial editions with Java 17 support,

Il org.jooq. pro-java-8 for commercial editions with Java 8 support,

Il org.joog. pro-java-6 for commercial editions with Java 6 support,

Il org.joog.trial for the free trial edition with Java 17 support,

Il org.jooq.trial-java-8 for the free trial edition with Java 8 support,

Il org.joog.trial-java-6 for the free trial edition with Java 6 support

Il

// Note: Only the Open Source Edition is hosted on Maven Central .

Il Install the others locally using the provided scripts, or access themfrom here: https://repo.jooq.org
Il See the JDK version support matrix here: https://wwwjoog. org/ downl oad/ support-matrix-j dk

i npl enent ati on("org.jooq:jooq:3.11.12")

Gradle (Groovy)

© 2009 - 2025 by Data Geekery™ GmbH. Page 30 /826

The jOOQ User Manual 2.5. Tutorials

2.5. Tutorials

Don't have time to read the full manual? Here are a couple of tutorials that will get you into the most
essential parts of JOOQ as quick as possible.

2.5.1.]J00Q In 7 easy steps

This manual section is intended for new users, to help them get a running application with jJOOQ, quickly.

2.5.1.1. Step 1: Preparation

If you haven't already downloaded it, download jOOQ:
https://www.joog.org/download

Alternatively, you can create a Maven dependency to download jOOQ artefacts:

Open Source Edition

<dependency>
<gr oupl d>or g. j ooq</ gr oupl d>
<artifactld>jooqg</artifactld>
<versi on>3. 11. 12</ ver si on>

</ dependency>

<!-- These may not be required, unless you use the GenerationTool manually for code generation -->

<dependency>
<gr oupl d>or g. j oog</ gr oupl d>
<artifact!ld>j oog-neta</artifactld>
<versi on>3. 11. 12</ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. j ooq</ gr oupl d>
<artifact!d>j oog-codegen</artifactld>
<versi on>3. 11. 12</ ver si on>

</ dependency>

Commercial Editions (Java 8+)

<!-- Note: These aren't hosted on Maven Central. Inport them manually from your distribution -->
<dependency>

<gr oupl d>or g. j 0oq. pr o</ gr oup! d>

<artifactld>joog</artifactld>

<version>3. 11. 12</ ver si on>
</ dependency>

<!-- These nmay not be required, unless you use the GenerationTool manually for code generation -->

<dependency>
<gr oupl d>or g. j 0oq. pr o</ gr oupl d>
<artifact!d>j oog-neta</artifactld>
<version>3. 11. 12</ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. j 0oq. pr o</ gr oupl d>
<artifact!d>j oog-codegen</artifactld>
<version>3. 11. 12</ ver si on>

</ dependency>

© 2009 - 2025 by Data Geekery™ GmbH. Page 31 /826

https://www.jooq.org/download

The jOOQ User Manual 2.5.1.2. Step 2: Your database

Commercial Editions (Java 6+)

<l-- Note: These aren't hosted on Maven Central. Inport them manually fromyour distribution -->
<dependency>

<gr oupl d>or g. j 0oq. pr o-j ava- 6</ gr oupl d>

<artifactld>jooqg</artifactld>

<versi on>3. 11. 12</ ver si on>
</ dependency>

<!-- These may not be required, unless you use the GenerationTool manually for code generation -->

<dependency>
<gr oupl d>or g. j 0oq. pr o-j ava- 6</ gr oupl d>
<artifactld>j oog-neta</artifactld>
<versi on>3. 11. 12</ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. j 0oq. pr o-j ava- 6</ gr oupl d>
<artifact!d>j oog-codegen</artifactld>
<versi on>3. 11. 12</ ver si on>

</ dependency>

Commercial Editions (Free Trial)

<!-- Note: These aren't hosted on Maven Central. Inport them manually from your distribution -->
<dependency>

<groupl d>org. j ooq. tri al </ groupl d>

<artifactld>joog</artifactld>

<version>3. 11. 12</ ver si on>
</ dependency>

<!-- These nmay not be required, unless you use the GenerationTool manually for code generation -->

<dependency>
<groupl d>org. j ooq. trial </ groupl d>
<artifact!d>j oog-neta</artifactld>
<version>3. 11. 12</ ver si on>

</ dependency>

<dependency>
<groupl d>org. j ooq. trial </ groupl d>
<artifact!d>j oog-codegen</artifactld>
<version>3. 11. 12</ ver si on>

</ dependency>

Note that only the jJOOQ Open Source Edition is available from Maven Central. If you're using the jOOQ
Professional Edition or the jOOQ Enterprise Edition, you will have to manually install jOOQ in your local
Nexus, or in your local Maven cache. For more information, please refer to the licensing pages.

Please refer to the manual's section about Code generation configuration to learn how to use jOOQ's
code generator with Maven.

For this example, we'll be using MySQL. If you haven't already downloaded MySQL Connector/J,
download it here:
https://dev.mysgl.com/downloads/connector/j/

If you don't have a MySQL instance up and running yet, get it from https://www.mysgl.com or https://
hub.docker.com/ /mysgl now!

2.5.1.2. Step 2: Your database

We're going to create a database called "library" and a corresponding "author" table. Connect to MySQL
via your command line client and type the following:

© 2009 - 2025 by Data Geekery™ GmbH. Page 32 /826

https://www.jooq.org/licensing
https://dev.mysql.com/downloads/connector/j/
https://www.mysql.com/
https://hub.docker.com/_/mysql
https://hub.docker.com/_/mysql

The jOOQ User Manual 2.5.1.3. Step 3: Code generation

CREATE DATABASE "library";

USE “library’;

CREATE TABLE "aut hor™ (

“id int NOT NULL,

“first_name’ varchar(255) DEFAULT NULL,
“last _nane’ varchar (255) DEFAULT NULL,
PRI MARY KEY (“id")

)

2.5.1.3. Step 3: Code generation

In this step, we're going to use jOOQ's command line tools to generate classes that map to the Author
table we just created. More detailed information about how to set up the jOOQ code generator can
be found here:

IO0Q manual pages about setting up the code generator

The easiest way to generate a schema is to copy the jOOQ jar files (there should be 3) and the MySQL
Connector jar file to a temporary directory. Then, create a library.xml that looks like this:

<?xm version="1.0" encodi ng="UTF-8" standal one="yes"?>
<confi guration>
<!-- Configure the database connection here -->
<j dbc>
<driver>com nysql .cj.jdbc.Driver</driver>
<ur | >j dbc: nysql : / /| ocal host: 3306/ | i brary</url >
<user >r oot </ user >
<passwor d></ passwor d>
</ j dbc>

<gener at or >
<!-- The default code generator. You can override this one, to generate your own code style.
Supported generators:
- org.jooq.codegen. JavaGener at or
- org.jooq.codegen. Scal aGener at or
Defaults to org.jooq.codegen. JavaGenerator -->
<nane>or g. j 0oq. codegen. JavaGener at or </ nane>

<dat abase>
<!-- The database type. The format here is:
org.jooq. net a. [dat abase] . [dat abase] Dat abase -->
<nane>or g. j 0oq. net a. nysql . \ySQLDat abase</ nane>

<!-- The database schena (or in the absence of schena support, in your RDBMS this
can be the owner, user, database nane) to be generated -->
<i nput Schema>| i br ary</ i nput Schema>

<!-- Al elenents that are generated from your schena
(A Java regul ar expression. Use the pipe to separate several expressions)
Watch out for case-sensitivity. Depending on your database, this mght be inportant! -->

<i ncl udes>. *</i ncl udes>

<!-- Al elenents that are excluded from your schema
(A Java regul ar expression. Use the pipe to separate several expressions).
Excl udes match before includes, i.e. excludes have a higher priority -->

<excl udes></ excl udes>
</ dat abase>

<target >
<!-- The destination package of your generated classes (within the destination directory) -->
<packageName>t est . gener at ed</ packageNane>

<!-- The destination directory of your generated classes. Using Maven directory |ayout here -->
<di rect ory>C: / wor kspace/ MySQLTest / src/ nai n/ j ava</ di rect ory>
</target>
</ gener at or >
</ configuration>

Replace the username (<username/> or <user/>) with whatever user has the appropriate privileges to
query the database meta data. You'll also want to look at the other values and replace as necessary.
Here are the two interesting properties:

<packageName/> - set this to the parent package you want to create for the generated
classes. Setting the value to testgenerated will cause the test.generated.tables. Author and
test.generated.tables.records.AuthorRecord classes to be created

© 2009 - 2025 by Data Geekery™ GmbH. Page 33 /826

The jOOQ User Manual 2.5.1.3. Step 3: Code generation

<directory/> - the directory to output the generated classes to.

Once you have the JAR files and library.xml in your temp directory, type this on a Windows machine:

java -classpath joog-3.11.12.jar;”"
joog-neta-3.11.12.jar; "

j 0og- codegen-3.11.12.jar; "
jaxb-api-2.3.1.jar;"

nysql -connector-java.jar;. *

org.j ooqg. codegen. GenerationTool |ibrary.xm

.. or type this on a UNIX/ Linux / Mac system (colons instead of semi-colons):

java -classpath joog-3.11.12.jar:\
joog-neta-3.11.12.jar:\

j oog- codegen-3.11.12.jar:\
jaxb-api-2.3.1.jar:\

nysql -connector-java.jar:. \

org. j ooq. codegen. Gener ati onTool |ibrary. xni

)

- jOOQ will try loading the library.xml from your classpath. Thisis also why thereisatrailing period (.)
on the classpath. If the file cannot be found on the classpath, jOOQ will look on the file system from the
current working directory.

- Replace the filenames with your actual filenames. In this example, jOOQ 3.11.12 is being used.

- If you're using a linux style shell on Windows, but a Windows JDK/JRE, you still need to
use semi-colons in your classpath! (;) In git-bash, you might have to quote your classpath
("joog-3.11.12.jar;joog-meta-3.11.12 jar;...")

If everything has worked, you should see this in your console output:

© 2009 - 2025 by Data Geekery™ GmbH. Page 34 /826

The jOOQ User Manual

Nov 1, 2011 7:25:06
INFG Initialising
Nov 1, 2011 7:25:07
I NFO Dat abase para
Nov 1, 2011 7:25:07
INFO ----imee- -
Nov 1, 2011 7:25:07
I NFO di al ect

Nov 1, 2011 7:25:07
I NFO schena

Nov 1, 2011 7:25:07
I NFO target dir
Nov 1, 2011 7:25:07
I NFO target pack
Nov 1, 2011 7:25:07
INFO ----imee- -
Nov 1, 2011 7:25:07
I NFO. Enptying

Nov 1, 2011 7:25:07
INFO. Generating cl
Nov 1, 2011 7:25:07
INFO Cenerating sc
Nov 1, 2011 7:25:07

2.5.1.4. Step 4: Connect to your database

PM org. j oog. i npl . JoogLogger i nfo
properties : /library.xni

PM org. j oog. i npl . JoogLogger i nfo
meters

PM org. j oog. i npl . JoogLogger i nfo

PM org. j ooq. i npl . JoogLogger i nfo
o MYSQL

PM org. j oog. i npl . JoogLogger i nfo
library
PM org. j oog. i npl . JoogLogger i nfo
C: / wor kspace/ MySQLTest / src
PM org. j oog. i npl . JoogLogger i nfo
age . test.generated
PM org. j oog. i npl . JoogLogger i nfo
PM org.j ooq. i npl . JoogLogger i nfo
C: / wor kspace/ M\ySQLTest / src/ t est/ gener at ed
PM org. j oog. i npl . JoogLogger i nfo

asses in : C/workspace/ MySQLTest/ src/ test/ generat ed
PM org. j oog. i npl . JoogLogger i nfo
hema : Library.java

PM org. j oog. i npl . JoogLogger i nfo

INFO. Schema gener at ed : Total: 122.18ms

Nov 1, 2011 7:25:07
I NFO Sequences fet
Nov 1, 2011 7:25:07
I NFO Tabl es fetche
Nov 1, 2011 7:25:07

PM org. j oog. i npl . JoogLogger i nfo

ched : 0 (0 included, 0 excluded)
PM org. j ooq. i npl . JoogLogger i nfo

d : 5 (5 included, 0 excluded)
PM org. j oog. i npl . JoogLogger i nfo

I NFO Cenerating tables : C/workspace/ MySQLTest/ src/ test/ generated/tabl es

Nov 1, 2011 7:25:07
I NFO ARRAYs fetche
Nov 1, 2011 7:25:07
INFO Enuns fetched
Nov 1, 2011 7:25:07
I NFO UDTs fetched

Nov 1, 2011 7:25:07

PM org. j ooq. i npl . JoogLogger i nfo
d : 0 (0 included, 0 excluded)

PM org. j oog. i npl . JoogLogger i nfo
: 0 (0 included, 0 excluded)

PM org. j oog. i npl . JoogLogger i nfo
: 0 (0 included, 0 excluded)

PM org. j oog. i npl . JoogLogger i nfo

INFO Generating table : Author.java

Nov 1, 2011 7:25:07

PM org. j oog. i npl . JoogLogger i nfo

I NFO. Tabl es generat ed : Total: 680.464ns, +558.284ns

Nov 1, 2011 7:25:07
I NFO Generating Ke
Nov 1, 2011 7:25:08
I NFO Keys generat e
Nov 1, 2011 7:25:08
INFO Cenerating re
Nov 1, 2011 7:25:08
INFO Cenerating re
Nov 1, 2011 7:25:08
I NFO Tabl e records
Nov 1, 2011 7:25:08
INFO Routines fetc
Nov 1, 2011 7:25:08
I NFO Packages fetc
Nov 1, 2011 7:25:08

PM org. j ooq. i npl . JoogLogger i nfo
ys : C/workspace/ MySQLTest/ src/ test/ generated/tabl es
PM org. j oog. i npl . JoogLogger i nfo
d : Total: 718.621ns, +38.157ns
PM org. j ooq. i npl . JoogLogger i nfo
cords : C/workspace/ MySQLTest/ src/ test/ generated/tabl es/records
PM org. j oog. i npl . JoogLogger i nfo
cord : Aut hor Record. j ava
PM org. j ooq. i npl . JoogLogger i nfo
generated : Total: 782.545ms, +63.924ns
PM org. j oog. i npl . JoogLogger i nfo
hed : 0 (0 included, 0 excluded)
PM org. j oog. i npl . JoogLogger i nfo
hed : 0 (0 included, 0 excluded)
PM org. j oog. i npl . JoogLogger i nfo

I NFO

GENERATI ON FI NI SHED!

Total : 791.688ms, +9.143nms

2.5.1.4. Step 4: Connect to your database

Let's just write a vanilla main class in the project containing the generated classes:

/'l For
i mport
i mport

i mport

conveni ence, always static inport your generated tables and jOOQ functions to decrease verbosity:
static test.generated. Tabl es. *;
static org.jooq.inpl.DSL.*;

java.sql.*;

public class Min {
public static void main(String[] args) {
String userName = "root";

String password =

String url = "jdbc:nysql://1ocal host:3306/Iibrary";

/1 Connection is the only JDBC resource that we need

Il PreparedStatenment and ResultSet are handled by jOOQ internally

try (Connection conn = DriverManager. get Connection(url, userName, password)) {
1.

}

Il For the sake of this tutorial, let's keep exception handling sinple

catch (Exception e) {

e.printStackTrace();

}

© 2009 - 2025 by Data Geekery™ GmbH.

Page 35/ 826

The jOOQ User Manual 2.5.1.5. Step 5: Querying

This is pretty standard code for establishing a MySQL connection.

2.5.1.5. Step 5: Querying

Let's add a simple query constructed with jOOQ's query DSL:

DSLCont ext create = DSL.using(conn, SQLDi al ect. MYSQL) ;
Resul t <Record> result = create.sel ect().fron AUTHOR).fetch();

First get an instance of DSLContext so we can write a simple SELECT query. We pass an instance of
the MySQL connection to DSL. Note that the DSLContext doesn't close the connection. We'll have to
do that ourselves.

We then use jOOQ's query DSL to return an instance of Result. We'll be using this result in the next step.

2.5.1.6. Step 6: Iterating

After the line where we retrieve the results, let's iterate over the results and print out the data:

for (Record r : result) {
Integer id = r.getVal ue(AUTHOR | D);
String firstNane = r.get Val ue(AUTHOR Fl RST_NAME) ;
String | ast Name = r.get Val ue(AUTHOR. LAST_NAME) ;

Systemout.printIn("ID: " +id + " first nane: " + firstName + " last nane: " + |astNane);

The full program should now look like this:

© 2009 - 2025 by Data Geekery™ GmbH. Page 36/ 826

The jOOQ User Manual 2.5.1.7. Step 7: Explore!

package test;

/'l For conveni ence, always static inmport your generated tables and
// jOOQ functions to decrease verbosity:

inmport static test.generated. Tables. *;

import static org.jooq.inpl.DSL.*;

import java.sql.*;

import org.jooq.*;
import org.jooq.inpl.*;

public class Main {

J**
* (@aram ar gs
*/
public static void main(String[] args) {
String userName = "root";
String password = "";
String url = "jdbc:nysql://local host:3306/1ibrary";

// Connection is the only JDBC resource that we need

/'l PreparedStatenent and ResultSet are handled by jOOQ internally

try (Connection conn = DriverManager. get Connection(url, userName, password)) {
DSLCont ext create = DSL.using(conn, SQLDi al ect.MYSQL);
Resul t <Record> result = create.select().fron{ AUTHOR).fetch();

for (Record r : result) {
Integer id = r.getVal ue(AUTHOR | D);
String firstName = r.getVal ue(AUTHOR FI RST_NAME) ;
String | astNane = r. get Val ue(AUTHOR. LAST_NAME) ;

Systemout.printIn("ID: " +id + " first nane: " + firstName + " last nanme: " + |astNane);
}
}

/'l For the sake of this tutorial, let's keep exception handling sinple

catch (Exception e) {
e.printStackTrace();
}

}
}

2.5.1.7. Step 7: Explore!

jOOQ has grown to be a comprehensive SQL library. For more information, please consider the
documentation:
https://www.joog.org/learn

... explore the Javadoc:
https://www.jooqg.org/javadoc/latest/

... or join the news group:
https://groups.google.com/forum/#!forum/joog-user

This tutorial is the courtesy of Ikai Lan. See the original source here:
https://ikaisays.com/2011/11/01/getting-started-with-joog-a-tutorial/

2.5.2. Using jJOOQ with Flyway

When
performing database migrations, we at Data Geekery recommend using jOOQ with Flyway - Database
Migrations Made Easy. In this chapter, we're going to look into a simple way to get started with the two
frameworks.

© 2009 - 2025 by Data Geekery™ GmbH. Page 37 /826

https://www.jooq.org/learn
https://www.jooq.org/javadoc/latest/
https://groups.google.com/forum/#!forum/jooq-user
https://ikaisays.com/2011/11/01/getting-started-with-jooq-a-tutorial/
https://flywaydb.org/

The jOOQ User Manual 2.5.2. Using jOOQ with Flyway

Philosophy

There are a variety of ways how jOOQ and Flyway could interact with each other in various development
setups. In this tutorial we're going to show just one variant of such framework team play - a variant that
we find particularly compelling for most use cases.

The general philosophy behind the following approach can be summarised as this:

- 1. Database increment
- 2. Database migration
- 3. Code re-generation
- 4. Development

The four steps above can be repeated time and again, every time you need to modify something in your
database. More concretely, let's consider:

- 1. Database increment - You need a new column in your database, so you write the necessary
DDL in a Flyway script

- 2. Database migration - This Flyway script is now part of your deliverable, which you can share
with all developers who can migrate their databases with it, the next time they check out your
change

- 3. Code re-generation - Once the database is migrated, you regenerate all JOOQ artefacts (see
code generation), locally

- 4. Development - You continue developing your business logic, writing code against the updated,
generated database schema

Maven Project Configuration - Properties

The following properties are defined in our pom.xml, to be able to reuse them between plugin
configurations:

<properties>
<db. url >j dbc: h2: ~/ f| yway-t est </ db. ur| >
<db. user name>sa</ db. user name>

</ properties>

0. Maven Project Configuration - Dependencies

While jOOQ and Flyway could be used in standalone migration scripts, in this tutorial, we'll be using
Maven for the standard project setup.

These are the dependencies that we're using in our Maven configuration:

© 2009 - 2025 by Data Geekery™ GmbH. Page 38 /826

The jOOQ User Manual 2.5.2. Using jJOOQ with Flyway

<l-- We'll add the latest version of jOOQ and our JDBC driver - in this case H2 -->
<dependency>
<!-- Use org.jooq for the Open Source Edition
org.joog. pro for commercial editions

org.jooq.pro-java-8 for conmercial editions with Java 8 support
org.jooq.pro-java-6 for conmercial editions with Java 6 support
org.joog.trial for the free trial edition

Note: Only the Open Source Edition is hosted on Maven Central
Install the others locally using the provided scripts, or access themfrom here: https://repo.jooq.org -->
<gr oupl d>or g. j oog</ gr oupl d>
<artifactld>jooqg</artifactld>
<versi on>3. 11. 12</ ver si on>
</ dependency>
<dependency>
<gr oupl d>com h2dat abase</ gr oupl d>
<artifactld>h2</artifactld>
<versi on>1. 4. 197</ ver si on>
</ dependency>

<!-- For inproved | ogging, we'll be using |log4j via slf4j to see what's going on during mgration and code generation -->
<dependency>

<gr oupl d>or g. apache. | oggi ng. | og4j </ gr oupl d>

<artifactld>l og4j-slf4j-inpl</artifactld>

<versi on>2. 11. 0</ ver si on>
</ dependency>

<!-- To ensure our code is working, we're using JUnit -->
<dependency>
<groupl d>j uni t </ gr oupl d>
<artifactld>junit</artifactld>
<versi on>4. 11</ versi on>
<scope>t est </ scope>
</ dependency>

0. Maven Project Configuration - Plugins

After the dependencies, let's simply add the Flyway and jOOQ Maven plugins like so. The Flyway plugin:

<pl ugi n>
<groupl d>or g. f | ywaydb</ gr oupl! d>
<artifact!d>flyway-maven-pl ugi n</artifact!d>
<ver si on>3. 0</ ver si on>

<!-- Note that we're executing the Flyway plugin in the "generate-sources" phase -->
<executions>
<execution>
<phase>gener at e- sour ces</ phase>
<goal s>
<goal >ni gr at e</ goal >
</ goal s>
</ executi on>
</ executi ons>

<!-- Note that we need to prefix the db/mgration path with filesystem to prevent Flyway
from|looking for our migration scripts only on the classpath -->

<confi guration>
<url>${db. url}</url>
<user >${ db. user nane} </ user >
<l ocati ons>

<l ocation>fil esystem src/ nai n/ resources/db/ m gration</|ocation>

</l ocations>

</ configuration>

</ pl ugi n>

The above Flyway Maven plugin configuration will read and execute all database migration scripts
from src/main/resources/db/migration prior to compiling Java source code. While the official Flyway
documentation may suggest that migrations be done in the compile phase, the jOOQ code generator
relies on such migrations having been done prior to code generation.

After the Flyway plugin, we'll add the jJOOQ Maven Plugin. For more details, please refer to the manual's
section about the code generation configuration.

© 2009 - 2025 by Data Geekery™ GmbH. Page 39 /826

The jOOQ User Manual 2.5.2. Using jJOOQ with Flyway

<pl ugi n>
<!-- Use org.jooq for the Open Source Edition
org.joog. pro for commercial editions,
org.jooq.pro-java-8 for conmercial editions with Java 8 support,
org.jooq.pro-java-6 for conmercial editions with Java 6 support,
org.joog.trial for the free trial edition

Note: Only the Open Source Edition is hosted on Maven Central .
Install the others locally using the provided scripts, or access themfrom here: https://repo.jooqg.org -->
<gr oupl d>or g. j ooq</ gr oupl d>
<artifact!|d>j oog-codegen-maven</artifact|d>
<versi on>${ or g. j 0oq. versi on} </ ver si on>

<l-- The jOOQ code generation plugin is also executed in the generate-sources phase, prior to conpilation -->
<executions>
<execution>
<phase>gener at e- sour ces</ phase>
<goal s>
<goal >gener at e</ goal >
</ goal s>
</ executi on>
</ executi ons>

<l-- This is a minimal working configuration. See the manual's section about the code generator for nore details -->
<confi guration>
<j dbc>

<url>${db.url}</url>
<user >${ db. user nane} </ user >
</ j dbc>
<gener at or >
<dat abase>
<i ncl udes>. *</i ncl udes>
<i nput Schema>FLYWAY_TEST</ i nput Schena>
</ dat abase>
<t arget >
<packageNanme>or g. j ooq. exanpl e. f | yway. db. h2</ packageName>
<di rect ory>t ar get/ gener at ed- sour ces/ j oog- h2</ di rect ory>
</target>
</ gener at or >
</ configuration>
</ pl ugi n>

This configuration will now read the FLYWAY_TEST schema and reverse-engineer it into the target/
generated-sources/joog-h2 directory, and within that, into the org.joog.example.flyway.db.h2 package.

1. Database increments

Now, when we start developing our database. For that, we'll create database increment scripts, which we
put into the src/main/resources/db/migration directory, as previously configured for the Flyway plugin.
We'll add these files:

- V1__initialise_database.sq|l
- V2__create_author_table.sql
- V3__create_book_table_and_records.sql

These three scripts model our schema versions 1-3 (note the capital V!). Here are the scripts' contents

- V1__initialise_database. sql
DROP SCHEMA flyway_test |F EXI STS;

CREATE SCHEMA f | yway_test;

-- V2__create_author_table.sql
CREATE SEQUENCE flyway_test.s_author_id START WTH 1;

CREATE TABLE fl yway_test. aut hor (
id INT NOT NULL,
first_name VARCHAR(50),
| ast _name VARCHAR(50) NOT NULL,
date_of _birth DATE,
year _of _birth | NT,
address VARCHAR(50),

CONSTRAI NT pk_aut hor PRI MARY KEY (I D)

© 2009 - 2025 by Data Geekery™ GmbH. Page 40/ 826

The jOOQ User Manual

-- V3__create_book_tabl e_and_records. sql
CREATE TABLE flyway_test. book (

id INT NOT NULL,

author _id I NT NOT NULL,

title VARCHAR(400) NOT NULL,

CONSTRAI NT pk_book PRI MARY KEY (id),
CONSTRAI NT f k_book_aut hor _i d FOREI GN KEY (

| NSERT
| NSERT

I NTO fl yway_test.
I NTO fl yway_test.

aut hor VALUES (next
aut hor VALUES (next

| NSERT
| NSERT
| NSERT
| NSERT

I NTO fl yway_test.
INTO fl yway_test.
I NTO fl yway_test.
I NTO fl yway_test.

book VALUES (1,
book VALUES (2,
book VALUES (3,
book VALUES (4,

PP E

2. Database migration an

aut hor _i d) REFERENCES fl| yway_test. aut hor (i d)

value for flyway_test.s_author_id,
value for flyway_test.s_author_id,

‘Orwell',
' Coel ho' ,

' Ceorge',
' Paul o',

11984");
"Aninmal Farm);
'O Alquinista');
"Brida');

d 3. Code regeneration

2.5.2. Using jJOOQ with Flyway

' 1903- 06- 25",
' 1947-08- 24",

1903,
1947,

nul 1) ;
nul 1) ;

The above three scripts are picked up by Flyway and executed in the order of the versions. This can

be seen very simply by executing:

nmvn clean install

And then observing the log output from Flyway...

[INFQ ---
[INFO
[INFO
[INFO
[INFO

fl yway- maven-plugin:3.0: mgrate (

Creating Metadata table:
Current version of schema "PUBLIC":

default) @joog-flyway-exanple ---

Dat abase: jdbc: h2: ~/flyway-test (H2 1.4)

Validated 3 migrations (execution tine 00:00.004s)
"PUBLI C'. "schenma_ver si on"

<< Enpty Schena >>

[INFQ
[INFQ
[INFQ

M grating schema "PUBLIC' to version 1
M grating schema "PUBLIC' to version 2
M grating schema "PUBLIC' to version 3

[INFQ

Successfully applied 3 nmigrations to

..and from jOOQ on the console:

schema "PUBLI C' (execution tine 00:00.073s).

[INFQ --- joog-codegen-naven: 3.11.12: generate (default) @joog-flyway-exanple ---
[INFQ --- joog-codegen-naven: 3.11.12:generate (default) @joog-flyway-exanple ---
[INFQ Using this configuration:

[INFO Generating schemata : Total: 1

[INFQ Cenerating schema : FlywayTest.java

3

[....]

[I NFOl GENERATI ON FI NI SHED! : Total: 337.576ns, +4.299ns

4. Development

Note that all of the previous steps are executed automatically, every time someone adds new migration
scripts to the Maven module. For instance, a team member might have committed a new migration
script, you check it out, rebuild and get the latest jJOOQ-generated sources for your own development

or integration-test database.

Now, that these steps are done, you can proceed writing your database queries. Imagine the following

test case

© 2009 - 2025 by Data Geekery™ GmbH.

Page 41 /826

The jOOQ User Manual 2.5.2. Using jJOOQ with Flyway

import org.jooq.Result;
import org.jooq.inpl.DSL;
import org.junit.Test;

i mport java.sql.DriverManager;

inmport static java.util.Arrays.asList;
import static org.jooq.exanple.flyway.db. h2. Tables.*;
inmport static org.junit.Assert.assertEquals;

public class AfterM grationTest {

@est
public void testQueryingAfterMgration() throws Exception {
try (Connection ¢ = DriverManager. get Connection("jdbc: h2: ~/flyway-test", "sa", "")) {
Resul t<?> result =
DSL. usi ng(c)
.sel ect (
AUTHOR. FI RST_NAME,
AUTHOR. LAST_NAME,
BOCXK. | D,
BOOK. TI TLE

)

. fron{ AUTHOR)

. j 0i n(BOOK)

. on(AUTHOR. | D. eq(BOOK. AUTHOR I D))
. order By(BOOK. I D. asc())

.fetch();

assert Equal s(4, result.size());
assert Equal s(asList (1, 2, 3, 4), result.getVal ues(BOXK. ID));

Reiterate

The power of this approach becomes clear once you start performing database modifications this way.
Let's assume that the French guy on our team prefers to have things his way:

- V4__le_french. sql
ALTER TABLE fl yway_t est.book ALTER COLUW title RENAME TO le_titre;

They check it in, you check out the new database migration script, run

nvn clean install

And then observing the log output:

[INFQ --- flyway-nmaven-plugin:3.0:migrate (default) @joog-flyway-exanple ---

[INFQ --- flyway-maven-plugin:3.0:nmigrate (default) @joog-flyway-exanple ---

[INFQ Database: jdbc:h2:~/flyway-test (H2 1.4)

[INFQ Validated 4 migrations (execution time 00:00.005s)

[INFQ Current version of schema "PUBLIC': 3

[INFO Mgrating schena "PUBLIC' to version 4

[INFOQ Successfully applied 1 migration to schema "PUBLIC' (execution time 00:00.016s).

So far so good, but later on:

[ERROR] COWPI LATI ON ERRCR :

[R e e e
[ERROR] C:\...\jOOQflyway-exanple\src\test\javalAfterMgrationTest.java:[24,19] error: cannot find symbol
[INFO 1 error

When we go back to our Java integration test, we can immediately see that the TITLE column is still
being referenced, but it no longer exists:

© 2009 - 2025 by Data Geekery™ GmbH. Page 42 /826

The jOOQ User Manual 2.5.3. Using jOOQ with jbang

public class AfterM grationTest {

@est
public void testQueryingAfterMgration() throws Exception {
try (Connection ¢ = DriverManager. get Connection("jdbc: h2: ~/flyway-test”, "sa", "")) {
Resul t<?> result =
DSL. usi ng(c)
.sel ect(
AUTHOR. FI RST_NAME,
AUTHOR. LAST_NAME,
BOCK. | D,
BOOK. TI TLE
Il AANAN This columm no | onger exists. We'll have to rename it to LE TITRE
)
. from(AUTHOR)
. j 0i n(BOOK)
. on(AUTHOR. | D. eq(BOOK. AUTHOR_I D))
. order By(BOOK. I D. asc())
.fetch();
assert Equal s(4, result.size());
assert Equal s(asList(1, 2, 3, 4), result.getValues(BOXK. ID));
}
}
}
Automation

The above steps can be automated in your build using another third party called testcontainers. Please
look at this article here for examples on how to do that: https://blog.joog.org/using-testcontainers-to-
generate-joog-code/

Conclusion

This tutorial shows very easily how you can build a rock-solid development process using Flyway and
jOOQ to prevent SQL-related errors very early in your development lifecycle - immediately at compile
time, rather than in production!

Please, visit the Flyway website for more information about Flyway.

2.5.3. Using jJO0OQ with jbang

ibang allows for quickly working with all sorts of Java libraries without the hassle of setting up
environments, dependencies, etc. This catalog allows for using jOOQ's code generator right away on
an existing database.

For more information on jbang, see:

- Installation
- Usage
An example

In a shell, type

git clone https://github. conmjOOQ j bang- exanpl e
cd j bang- exanpl e
j bang Exanpl e. j ava

© 2009 - 2025 by Data Geekery™ GmbH. Page 43 /826

https://www.testcontainers.org
https://blog.jooq.org/using-testcontainers-to-generate-jooq-code/
https://blog.jooq.org/using-testcontainers-to-generate-jooq-code/
https://flywaydb.org/
https://www.jbang.dev
https://www.jbang.dev/documentation/guide/latest/installation.html
https://www.jbang.dev/documentation/guide/latest/usage.html

The jOOQ User Manual 2.6.j00Q and Java 8

In order to re-generate the example code, e.g. when your schema changes, just type:
j bang codegen@ ooq db. xm

If you prefer working with a pre-existing database, just edit the db.xml file and point it to your database.
Add the JDBC driver dependency like this:

jbang --deps org. postgresql: postgresql : RELEASE codegen@ ooq db. xm

To override the jOOQ version from the default RELEASE to a specific version, use

j bang - Dj 0oq. ver si on=<ver si on> codegen@ ooq db. xni

2.6.]00Q and Java 8

Java 8 has introduced a great set of enhancements, among which lambda expressions and the new
java.util.stream.Stream. These new constructs align very well with jJOOQ's fluent APl as can be seen in
the following examples:

jO0Q and lambda expressions

jOOQ's RecordMapper APl is fully Java-8-ready, which basically means that it is a SAM (Single Abstract
Method) type, which can be instanciated using a lambda expression. Consider this example:

try (Connection ¢ = get Connection()) {
String sql = "select schema_nane, is_default " +
"frominformtion_schena.schemata " +
"order by schema_nane";

DSL. usi ng(c)
.fetch(sql)

// We can use | anbda expressions to map j OOQ Records
.map(rs -> new Schema(

rs. get Val ue(" SCHEMA_NAME", String.cl ass),

rs. getVal ue("l S_DEFAULT", bool ean. cl ass)
))

/1 ... and then profit fromthe new Col | ection nethods
.forEach(Systemout::println);

The above example shows how jOOQ's Result.map() method can receive a lambda expression that
implements RecordMapper to map from jOOQ Records to your custom types.

jO0Q and the Streams API

jOOQ's Result type extends java.util.List, which opens up access to a variety of new Java features
in Java 8. The following example shows how easy it is to transform a jOOQ Result containing
INFORMATION_SCHEMA meta data to produce DDL statements:

© 2009 - 2025 by Data Geekery™ GmbH. Page 44 /826

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/stream/Stream.html
https://www.jooq.org/javadoc/3.11.x/org/jooq/Result.html#map()
https://www.jooq.org/javadoc/3.11.x/org/jooq/Record.html
https://www.jooq.org/javadoc/3.11.x/org/jooq/Result.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/List.html

The jOOQ User Manual 2.7.j00Q and Scala

DSL. usi ng(c)
.sel ect(
COLUWNS. TABLE_NAME,
COLUWNS. COLUVN_NAME,
COLUMNS. TYPE_NANVE

)

. f r om(COLUWNS)

. order By(
COLUWNS. TABLE_CATALOG,
COLUWNS. TABLE_SCHENA,
COLUWNS. TABLE_NAME,
COLUWNS. ORDI NAL_PCsI TI ON

)
.fetch() // jOOQ ends here
.stream() // JDK 8 Streans start here
. col | ect (groupi ngBy(
r -> r.getVal ue(COLUWS. TABLE_NAME) ,
Li nkedHashMap: : new,
mappi ng(
r -> new Col umm(
r. get Val ue(COLUWMNS. COLUWN_NAME) ,
r. get Val ue(COLUWNS. TYPE_NAME)
),
toList()
)
))
. for Each(
(table, colums) -> {
/1 Just emt a CREATE TABLE statenent
System out. println(
"CREATE TABLE " + table + " (");
// Map each "Colum" type into a String
/1 containing the colum specification,
// and join themusing coma and
/1l new ine. Done!
System out. println(
col umms. strean)
.map(col ->" " + col.nanme +
" + col.type)
.collect(Coll ectors.joining(",\n"))

)3

Systemout.printin(");");

2.7.J00Q and Scala

As any other library, JOOQ can be easily used in Scala, taking advantage of the many Scala language
features such as for example:

- Optional "." to dereference methods from expressions

- Optional "(" and ")" to delimit method argument lists

- Optional ";" at the end of a Scala statement

- Type inference using "var" and "val" keywords

- Lambda expressions and for-comprehension syntax for record iteration and data type
conversion

But jOOQ also leverages other useful Scala features, such as

- implicit defs for operator overloading
- Scala Macros (soon to come)

All of the above heavily improve jOOQ's querying DSL API experience for Scala developers.

A short example jJOOQ application in Scala might look like this:

© 2009 - 2025 by Data Geekery™ GmbH. Page 45/ 826

The jOOQ User Manual 2.8.j00Q and Groovy

import collection.JavaConversions. _ // Inport inplicit defs for iteration over org.jooq.Result
Il
inport java.sql.DriverManager Il
Il
import org.jooq._ Il
inport org.jooq.inpl._ Il
inport org.jooq.inpl.DSL. _ Il
i mport org.jooq.exanpl es. scal a. h2. Tabl es. _ Il
inport org.jooq.scal aext ensi ons. Conversi ons. _ /1 Inport inplicit defs for overloaded j OOQ SQL operators
Il
obj ect Test { Il
def main(args: Array[String]): Unit = { Il
val c¢ = DriverManager. get Connection("jdbc: h2: ~/test", "sa", ""); // Standard JDBC connection
val e = DSL.using(c, SQDialect.H2); Il
val x = AUTHOR as "x" /1l SQL-esque table aliasing
Il
for (r <- e Il lteration over Result. "r" is an org.jooq. Record3
sel ect (Il
BOOK. | D * BOOK. AUTHOR | D, /1l Using the overloaded "*" operator
BOOK. I D + BOOK. AUTHOR ID * 3 + 4, /1l Using the overloaded "+" operator
BOOK TITLE || " abc" || " xy" /'l Using the overloaded "||" operator
) Il
from BOOK /1 No need to use parentheses or "." here
leftQuterJoin (Il
select (x.1D, x.YEAR OF BI RTH) /I Dereference fields fromaliased table
from x Il
limt 1 Il
asTabl e x. get Nane() Il
) Il
on BOOK. AUTHOR I D === x.ID /1l Using the overloaded "===" oper at or
where (BOXK. ID <> 2) /'l Using the ol erl oaded "<>" operator
or (BOOK. TITLE in ("O Al quinista", "Brida")) /1 Neat IN predicate expression
fetch Il
) | 1
println(r) Il
Il
} Il

For more details about jOOQ's Scala integration, please refer to the manual's section about SQL building
with Scala.

2.8.]00Q and Groovy

As any other library, JOOQ can be easily used in Groovy, taking advantage of the many Groovy language
features such as for example:

- Optional ";" at the end of a Groovy statement
- Type inference for local variables

A short example jOOQ application in Groovy might look like this:

Note that while Groovy supports some means of operator overloading, we think that these means
should be avoided in ajOOQ integration. For instance, a + b in Groovy maps to a formal a.plus(b) method
invocation, and jOOQ provides the required synonyms in its API to help you write such expressions.
Nonetheless, Groovy only offers little typesafety, and as such, operator overloading can lead to many
runtime issues.

Another caveat of Groovy operator overloading is the fact that operators such as == or >= map to
a.equals(b), a.compareTo(b) == 0, a.compareTo(b) >= 0 respectively. This behaviour does not make sense
in a fluent APl such as jOOQ.

© 2009 - 2025 by Data Geekery™ GmbH. Page 46 /826

https://groovy-lang.org/operators.html#Operator-Overloading

The jOOQ User Manual 2.9.j00Q and Kotlin

2.9.100Q and Kotlin

As any other library, JOOQ can be easily used in Kotlin, taking advantage of the many Kotlin language
features such as for example:

- Optional ";" at the end of a Kotlin statement
- Type inference for local variables

A short example jOOQ application in Kotlin might look like this:

Note that Kotlin supports some means of operator overloading. For instance, a + b in Kotlin maps to
a formal a.plus(b) method invocation, and jOOQ provides the required synonyms in its API to help you
write such expressions.

One particularly nice language feature is the fact that [square brackets] allow for accessing any object's
contents via get() and set() methods. Instead of using the above value(), value2(), and value3() methods,
we could also iterate as such:

A caveat of Kotlin operator overloading is the fact that operators such as == or >= map to a.equals(b),
a.compareTo(b) == 0, a.compareTo(b) >= 0 respectively. This behaviour does not make sense in a fluent
APl such as jOOQ.

2.10.j00Q and NoSQL

jOOQ users often get excited about jOOQ's intuitive APl and would then wish for NoSQL support.

There are a variety of NoSQL databases that implement some sort of proprietary query language. Some
of these query languages even look like SQL. Examples are JCR-SQL2, CQL (Cassandra Query Language),
Cypher (Neo4j's Query Language), and many more.

Mapping the jOOQ API onto these alternative query languages would be a very poor fit and a leaky
abstraction. We believe in the power and expressivity of the SQL standard and its various dialects.
Databases that extend this standard too much, or implement it not thoroughly enough are often not
suitable targets for jOOQ. It would be better to build a new, dedicated API for just that one particular
query language. E.g. for Cypher, there's Cypher-DSL, which is a much better fit.

jOOQ is about SQL, and about SQL alone.

2.11.j00Q and JPA

Just because you're using JOOQ doesn't mean you have to use it for everything!

When introducing jOOQ into an existing application that uses JPA, the common question is always:
"Should we replace JPA by jJOOQ?" and "How do we proceed doing that?"

Beware that jOOQ is not a replacement for JPA. Think of jOOQ as a complement. JPA (and ORMs in
general) try to solve the object graph persistence problem. In short, this problem is about

© 2009 - 2025 by Data Geekery™ GmbH. Page 47 / 826

https://kotlinlang.org/docs/reference/operator-overloading.html
https://www.h2database.com/jcr/grammar.html
https://cassandra.apache.org/doc/cql/CQL.html
https://neo4j.com/docs/cypher-manual/current/
https://github.com/neo4j/cypher-dsl

The jOOQ User Manual 2.12. Build your own

- Loading an entity graph into client memory from a database
- Manipulating that graph in the client
Storing the modification back to the database

As the above graph gets more complex, a lot of tricky questions arise like:

- What's the optimal order of SQL DML operations for loading and storing entities?

- How can we batch the commands more efficiently?

- How can we keep the transaction footprint as low as possible without compromising on ACID?
- How can we implement optimistic locking?

JO0Q only has some of the answers.

While jOOQ does offer updatable records that help running simple CRUD, a batch AP, optimistic locking
capabilities, jJOOQ mainly focuses on executing actual SQL statements.

SQL is the preferred language of database interaction, when any of the following are given:

- You run reports and analytics on large data sets directly in the database
You import / export data using ETL
- You run complex business logic as SQL queries

Whenever SQL is a good fit, JOOQ is a good fit. Whenever you're operating and persisting the object
graph, JPA is a good fit.

And sometimes, it's best to combine both

2.12. Build your own

In order to build jOOQ (Open Source Edition) yourself, please download the sources from https://
github.com/[00Q/[00Q and use Maven to build jOOQ, preferably in Eclipse. The jOOQ Open Source
Edition requires Java 8+ to compile and run. The commercial jJOOQ Editions require Java 8+ or Java 6+
to compile and run, depending on the distribution.

Some useful hints to build JOOQ yourself:

© 2009 - 2025 by Data Geekery™ GmbH. Page 48 / 826

https://github.com/jOOQ/jOOQ
https://github.com/jOOQ/jOOQ

The jOOQ User Manual 2.13.jO0Q and backwards-compatibility

- Get the latest version of Git or EGit

- Get the latest version of Maven or M2E

- Check out the jOOQ sources from https://github.com/[00Q/j0O0Q

- Optionally, import Maven artefacts into an Eclipse workspace using the following command (see
the maven-eclipse-plugin documentation for details):

* mvn eclipse:eclipse
- Build the joog-parent artefact by using any of these commands:

* mvn clean package

create .jar files in ${project.build.directory}
* mvn clean install

install the jar files in your local repository (e.g. ~/.m?2)
* mvn clean {goal} -Dmaven.test.skip=true

don't run unit tests when building artefacts

2.13.J00Q and backwards-compatibility

Semantic versioning

jOOQ's understanding of backwards compatibility is inspired by the rules of semantic versioning
according to https://semver.org. Those rules impose a versioning scheme [X].[Y].[Z] that can be
summarised as follows:

- If a patch release includes bugfixes, performance improvements and API-irrelevant new features,
[Z] is incremented by one.

- Ifaminor release includes backwards-compatible, API-relevant new features, [Y] is incremented
by one and [Z] is reset to zero.

- Ifamajor release includes backwards-incompatible, API-relevant new features, [X] is
incremented by one and [Y], [Z] are reset to zero.

jO0Q's understanding of backwards-compatibility

Backwards-compatibility is important to jOOQ. You've chosen jOOQ as a strategic SQL engine and you
don't want your SQL to break.

However, there are some elements of API evolution that would be considered backwards-incompatible
in other APIs, but not in jJOOQ. As discussed later on in the section about JOOQ's query DSL API, much
of JOOQ's APl is indeed an internal domain-specific language implemented mostly using Java interfaces.
Adding language elements to these interfaces means any of these actions:

© 2009 - 2025 by Data Geekery™ GmbH. Page 49/ 826

https://git-scm.com
https://www.eclipse.org/egit
https://maven.apache.org
https://eclipse.org/m2e
https://github.com/jOOQ/jOOQ
https://maven.apache.org/plugins/maven-eclipse-plugin/
https://semver.org

The jOOQ User Manual 2.13.jO0Q and backwards-compatibility

- Adding methods to the interface
- Overloading methods for convenience
- Changing the type hierarchy of interfaces (including raw type or binary compatibility implications)

It becomes obvious that it would be impossible to add new language elements (e.g. new SQL functions,
new SELECT clauses) to the API without breaking any client code that actually implements those
interfaces. Hence, the following rules should be observed:

- jOOQ's DSL interfaces should not be implemented by client code! Extend only those extension
points that are explicitly documented as "extendable" (e.g. custom QueryParts).

- Generated code implements such interfaces and extends internal classes, and as such is
recommended to be re-generated with a matching code generator version every time the
runtime library is upgraded.

- Binary compatibility can be expected from patch releases, but not from minor releases as it is
not practical to maintain binary compatibility in an internal DSL.

- Source compatibility can be expected from patch and minor releases, the exception being raw
type compatibility (see #11879), and rare exceptions where APl design is clearly lacking.

- Behavioural compatibility can be expected from patch and minor releases.

- AnyjOOQ SPI XYZ that is meant to be implemented ships with a DefaultXYZ or AbstractXYZ,
which can be used safely as a default implementation.

jO0Q-codegen and JO0OQ-meta

While a reasonable amount of care is spent to maintain these two modules under the rules of semantic
versioning, it may well be that minor releases introduce backwards-incompatible changes. This will be
announced in the respective release notes and should be the exception.

© 2009 - 2025 by Data Geekery™ GmbH. Page 50/ 826

https://github.com/jOOQ/jOOQ/issues/11879

The jOOQ User Manual 3.SQL building

3. SQL building

SQL is a declarative language that is hard to integrate into procedural, object-oriented, functional or
any other type of programming languages. jJOOQ's philosophy is to give SQL the credit it deserves and
integrate SQL itself as an "internal domain specific language" directly into Java.

With this philosophy in mind, SQL building is the main feature of jOOQ. All other features (such as SOL
execution and code generation) are mere convenience built on top of JOOQ's SQL building capabilities.

This section explains all about the various syntax elements involved with jOOQ's SQL building
capabilities. For a complete overview of all syntax elements, please refer to the manual's sections about
SQL to DSL mapping rules.

3.1. The query DSL type

jOOQ exposes a lot of interfaces and hides most implementation facts from client code. The reasons
for this are:

- Interface-driven design. This allows for modelling queries in a fluent APl most efficiently

- Reduction of complexity for client code.

- APl guarantee. You only depend on the exposed interfaces, not concrete (potentially dialect-
specific) implementations.

The org.joog.impl.DSL class is the main class from where you will create all JOOQ objects. It serves as a
static factory for table expressions, column expressions (or "fields"), conditional expressions and many

other QueryParts.

The static query DSL API

With jOOQ 2.0, static factory methods have been introduced in order to make client code look more
like SQL. Ideally, when working with jOOQ), you will simply static import all methods from the DSL class:

import static org.jooq.inpl.DSL.*;

Note, that when working with Eclipse, you could also add the DSL to your favourites. This will allow to
access functions even more fluently:

concat (trim(FI RST_NAME), trin{LAST_NAME));

/1 ... which is in fact the same as:
DSL. concat (DSL. tri m(FI RST_NAME), DSL.tri nm(LAST_NAME));

© 2009 - 2025 by Data Geekery™ GmbH. Page 51/ 826

https://en.wikipedia.org/wiki/Domain_Specific_Language
https://www.jooq.org/javadoc/3.11.x/org/jooq/impl/DSL.html

The jOOQ User Manual 3.2. The DSLContext API

3.2. The DSLContext API

DSLContext references a org.joog.Configuration, an object that configures jOOQ's behaviour when
executing queries (see SQL execution for more details). Unlike the static DSL, the DSLContext allow for
creating SQL statements that are already "configured" and ready for execution.

Fluent creation of a DSLContext object

The DSLContext object can be created fluently from the DSL type:

/Il Create it froma pre-existing configuration
DSLCont ext create = DSL.using(configuration);

I/l Create it from ad-hoc argunents
DSLCont ext create = DSL.using(connection, dialect);

If you do not have a reference to a pre-existing Configuration object (e.g. created from
org.joog.impl.DefaultConfiguration), the various overloaded DSL.using() methods will create one for
you.

Contents of a Configuration object

A Configuration can be supplied with these objects:

- org.jooq.SQLDialect : The dialect of your database. This may be any of the currently supported
database types (see SQL Dialect for more details)

- orgjoog.conf.Settings : An optional runtime configuration (see Custom Settings for more details)

- orgjoogq.ExecutelistenerProvider : An optional reference to a provider class that can provide
execute listeners to jJOOQ (see Executelisteners for more details)

- org.joog.RecordListenerProvider : An optional reference to a provider class that can provide
record listeners to jJOOQ (see CRUD SPI: RecordListener for more details)

- org.joog.RecordMapperProvider : An optional reference to a provider class that can provide
record mappers to jOOQ (see RecordMapperProvider for more details)

- Any of these:

* java.sgl.Connection : An optional JDBC Connection that will be re-used for the whole
lifecycle of your Configuration (see Connection vs. DataSource for more details). For
simplicity, this is the use-case referenced from this manual, most of the time.

* java.sgl.DataSource : An optional JDBC DataSource that will be re-used for the whole
lifecycle of your Configuration. If you prefer using DataSources over Connections, jOOQ
will internally fetch new Connections from your DataSource, conveniently closing them
again after query execution. This is particularly useful in Java EE or Spring contexts (see
Connection vs. DataSource for more details)

* org.joog.ConnectionProvider : A custom abstraction that is used by jOOQ to "acquire"
and "release" connections. jJOOQ will internally "acquire" new Connections from your
ConnectionProvider, conveniently "releasing" them again after query execution. (see
Connection vs. DataSource for more details)

© 2009 - 2025 by Data Geekery™ GmbH. Page 52 /826

https://www.jooq.org/javadoc/3.11.x/org/jooq/Configuration.html
https://www.jooq.org/javadoc/3.11.x/org/jooq/impl/DefaultConfiguration.html
https://www.jooq.org/javadoc/3.11.x/org/jooq/SQLDialect.html
https://www.jooq.org/javadoc/3.11.x/org/jooq/conf/Settings.html
https://www.jooq.org/javadoc/3.11.x/org/jooq/ExecuteListenerProvider.html
https://www.jooq.org/javadoc/3.11.x/org/jooq/RecordListenerProvider.html
https://www.jooq.org/javadoc/3.11.x/org/jooq/RecordMapperProvider.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Connection.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/DataSource.html
https://www.jooq.org/javadoc/3.11.x/org/jooq/ConnectionProvider.html

The jOOQ User Manual 3.2.1.SQL Dialect

Usage of DSLContext

Wrapping a Configuration object, a DSLContext can construct statements, for later execution. An
example is given here:

/1l The DSLContext is "configured" with a Connection and a SQLDi al ect
DSLCont ext create = DSL.using(connection, dialect);

/1l This select statement contains an internal reference to the DSLContext's Configuration:
Sel ect <?> sel ect = create. sel ectOne();

/1 Using the internally referenced Configuration, the select statenment can now be executed:
Resul t<?> result = select.fetch();

Note that you do not need to keep a reference to a DSLContext. You may as well inline your local variable,
and fluently execute a SQL statement as such:

I/ Execute a statenent froma single execution chain:
Resul t<?> result =
DSL. usi ng(connection, dialect)

.select()

. f r om(BOOK)

. wher e(BOOK. TI TLE. | i ke(" Ani nal %))

.fetch();

3.2.1. SQL Dialect

While jOOQ tries to represent the SQL standard as much as possible, many features are vendor-specific
to a given database and to its "SQL dialect". JOOQ models this using the org.jooq.SQLDialect enum type.

The SQL dialect is one of the main attributes of a Configuration. Queries created from DSLContexts will
assume dialect-specific behaviour when rendering SOL and binding bind values.

Some parts of the JOOQ API are officially supported only by a given subset of the supported SQL dialects.
For instance, the Oracle CONNECT BY clause, which is supported by the Oracle and CUBRID databases,
is annotated with a org.joog.Support annotation, as such:

[xx
* Add an Oracl e-specific <code>CONNECT BY</code> clause to the query
i

@upport ({ SQLDi al ect. CUBRI D, SQLDi al ect. ORACLE })

Sel ect Connect ByCondi ti onSt ep<R> connect By(Condi ti on condition);

jOOQ API methods which are not annotated with the org.joog.Support annotation, or which are
annotated with the Support annotation, but without any SQL dialects can be safely used in all SQL
dialects. An example for this is the SELECT statement factory method:

/**
* Create a new DSL sel ect statenent.
*/
@uppor t
Sel ect Sel ect St ep<R> sel ect (Fiel d<?>... fields);

jO0Q's SQL clause emulation capabilities

The aforementioned Support annotation does not only designate, which databases natively support a
feature. It also indicates that a feature is emulated by jOOQ for some databases lacking this feature. An

© 2009 - 2025 by Data Geekery™ GmbH. Page 53 /826

https://www.jooq.org/javadoc/3.11.x/org/jooq/SQLDialect.html
https://www.jooq.org/javadoc/3.11.x/org/jooq/Support.html
https://www.jooq.org/javadoc/3.11.x/org/jooq/Support.html

The jOOQ User Manual 3.2.2. SQL Dialect Family

example of this is the DISTINCT predicate, a predicate syntax defined by SQL:1999 and implemented
only by H2, HSQLDB, and Postgres:

A IS DI STINCT FROM B

Nevertheless, the IS DISTINCT FROM predicate is supported by jOOQ in all dialects, as its semantics can
be expressed with an equivalent CASE expression. For more details, see the manual's section about
the DISTINCT predicate.

jO0Q and the Oracle SQL dialect

Oracle SQL is much more expressive than many other SQL dialects. It features many unique keywords,
clauses and functions that are out of scope for the SQL standard. Some examples for this are

- The CONNECT BY clause, for hierarchical queries

- The PIVOT keyword for creating PIVOT tables

- Packages, object-oriented user-defined types, member procedures as described in the section
about stored procedures and functions

- Advanced analytical functions as described in the section about window functions

jOOQ has a historic affinity to Oracle's SQL extensions. If something is supported in Oracle SQL, it has
a high probability of making it into the jJOOQ AP

3.2.2. SQL Dialect Family

In jOOQ 3.1, the notion of a SQLDialect.family() was introduced, in order to group several similar SQOL
dialects into a common family. An example for this is SQL Server, which is supported by jOOQ in various
versions:

- SQL Server: The "version-less" SQL Server version. This always maps to the latest supported
version of SQL Server

- SQL Server 2012: The SQL Server version 2012

- SQL Server 2008: The SQL Server version 2008

In the above list, SQLSERVER is both a dialect and a family of three dialects. This distinction is used
internally by jOOQ to distinguish whether to use the OFFSET .. FETCH clause (SQL Server 2012), or
whether to emulate it using ROW_NUMBER() OVER() (SQL Server 2008).

3.2.3. Connection vs. DataSource

Interact with JDBC Connections

While you can use jOOQ for SQL building only, you can also run queries against a JDBC
java.sgl.Connection. Internally, JOOQ creates java.sgl.Statement or java.sql.PreparedStatement objects
from such a Connection, in order to execute statements. The normal operation mode is to provide a

© 2009 - 2025 by Data Geekery™ GmbH. Page 54 /826

https://www.jooq.org/javadoc/3.11.x/org/jooq/SQLDialect.html#SQLSERVER
https://www.jooq.org/javadoc/3.11.x/org/jooq/SQLDialect.html#SQLSERVER2012
https://www.jooq.org/javadoc/3.11.x/org/jooq/SQLDialect.html#SQLSERVER2008
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Connection.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Statement.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/PreparedStatement.html

The jOOQ User Manual 3.2.4. Custom data

Configuration with a JDBC Connection, whose lifecycle you will control yourself. This means that jOOQ
will not actively close connections, rollback or commit transactions.

Note, in this case, JOOQ will internally use a org.joog.impl.DefaultConnectionProvider, which you can
reference directly if you prefer that. The DefaultConnectionProvider exposes various transaction-
control methods, such as commit(), rollback(), etc.

Interact with JDBC DataSources

If you're in a Java EE or Spring context, however, you may wish to use a javax.sgl.DataSource instead.
Connections obtained from such a DataSource will be closed after query execution by jOOQ. The
semantics of such a close operation should be the returning of the connection into a connection pool,
not the actual closing of the underlying connection. Typically, this makes sense in an environment using
distributed JTA transactions.

Note, in this case, JOOQ will internally use a org.joog.impl.DataSourceConnectionProvider, which you
can reference directly if you prefer that.

Inject custom behaviour

If your specific environment works differently from any of the above approaches, you can inject your own
custom implementation of a ConnectionProvider into jJOOQ. This is the API contract you have to fulfil:

public interface ConnectionProvider {

// Provide jOOQ with a connection
Connection acquire() throws DataAccessException;

I/ Get a connection back fromjOOQ
voi d rel ease(Connection connection) throws DataAccessExcepti on;

3.2.4. Custom data

In advanced use cases of integrating your application with jJOOQ, you may want to put custom data into
your Configuration, which you can then access from your...

- Custom Executelisteners
- Custom QueryParts

Here is an example of how to use the custom data APIl. Let's assume that you have written an
Executelistener, that prevents INSERT statements, when a given flag is set to true:

public class NolnsertlListener extends Defaul t ExecuteListener {

@verride
public void start(ExecuteContext ctx) {

/Il This listener is active only, when your customflag is set to true
if (Bool ean. TRUE. equal s(ctx. configuration().data("com exanpl e. ny-nanespace. no-inserts"))) {

/Il If active, fail this execution, if an INSERT statenment is being executed
if (ctx.query() instanceof Insert) {
t hrow new Dat aAccessException("“No | NSERT statenents al |l owed");
}
}
}

© 2009 - 2025 by Data Geekery™ GmbH. Page 55/ 826

https://www.jooq.org/javadoc/3.11.x/org/jooq/impl/DefaultConnectionProvider.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/javax/sql/DataSource.html
https://www.jooq.org/javadoc/3.11.x/org/jooq/impl/DataSourceConnectionProvider.html

The jOOQ User Manual 3.2.5. Custom Executelisteners

See the manual's section about Executelisteners to learn more about how to implement an

Executelistener.

Now, the above listener can be added to your Configuration, but you will also need to pass the flag to

the Configuration, in order for the listener to work:

/1l Create your Configuration
Configuration configuration = new Defaul t Configuration().set(connection).set(dialect);

/1 Set a new execute listener provider onto the configuration:
configuration. set (new Def aul t Execut eLi st ener Provi der (new Nol nsertListener()));

// Use any String literal to identify your custom data
configuration. data("com exanpl e. ny- nanmespace. no-i nserts", true);
/1 Try to execute an | NSERT statenent
try {
DSL. usi ng(configuration)

.insertlnto(AUTHOR, AUTHOR | D, AUTHOR LAST_NAME)

.values(1l, "Owell")

. execute();

/1 You shouldn't get here
Assert.fail();
}

/1 Your NolnsertListener should be throwi ng this exception here:
catch (DataAccessException expected) {

Assert.assert Equal s("No | NSERT statenents all owed", expected. get Message());
}

Using the data() methods, you can store and retrieve custom data in your Configurations.

3.2.5. Custom ExecutelListeners

Executelisteners are a useful tool to...

- implement custom logging
- apply triggers written in Java
- collect query execution statistics

Executelisteners are hooked into your Configuration by returning them
org.jooqg.ExecutelistenerProvider:

/1 Create your Configuration
Configuration configuration = new Defaul t Configuration().set(connection).set(dialect);

/1 Hook your |istener providers into the configuration:

configuration. set(
new Def aul t Execut eLi st ener Provi der (new MyFirstListener()),
new Def aul t Execut eLi st ener Provi der (new Per f or mancelLoggi ngLi stener()),
new Def aul t Execut eLi st ener Provi der (new Nol nsertLi stener())

from an

See the manual's section about Executelisteners to see examples of such listener implementations.

3.2.6. Custom Settings

The jOOQ Configuration allows for some optional configuration elements to be used by advanced users.
The org.joog.conf.Settings class is a JAXB-annotated type, that can be provided to a Configuration in

several ways:

© 2009 - 2025 by Data Geekery™ GmbH.

Page 56/ 826

https://www.jooq.org/javadoc/3.11.x/org/jooq/ExecuteListenerProvider.html
https://www.jooq.org/javadoc/3.11.x/org/jooq/conf/Settings.html

The jOOQ User Manual 3.2.6.1. Auto-attach Records

- In the DSLContext constructor (DSL.using()). This will override default settings below

- inthe orgjoog.impl.DefaultConfiguration constructor. This will override default settings below
- From a location specified by a JVM parameter: -Dorg.jooqg.settings

- From the classpath at /joog-settings.xml

- From the settings defaults, as specified in https://www.jooq.org/xsd/joog-runtime-3.11.2.xsd

The most specific settings for a given context will apply.

If you wish to configure your settings through XML, but explicitly load them for a given Configuration,
you can do so as well, using JAXB:

Settings settings = JAXB.unnarshal (new File("/path/to/settings.xm"), Settings.class);

Example

For example, if you want to indicate to jOOQ, that it should inline all bind variables, and execute static
java.sgl.Statement instead of binding its variables to java.sgl.PreparedStatement, you can do so by
creating the following DSLContext:

Settings settings = new Settings();
settings. set St at enent Type(St at ement Type. STATI C_STATENMENT) ;
DSLCont ext create = DSL.using(connection, dialect, settings);

More details

Please refer to the jJOOQ runtime configuration XSD for more details:
https://www.joog.org/xsd/joog-runtime-3.11.2.xsd

3.2.6.1. Auto-attach Records

By default, all records fetched through jOOQ are "attached" to the configuration that created them. This
allows for features like updatable records as can be seen here:

Aut hor Record aut hor =

DSL. usi ng(configuration) // This configuration will be attached to any record produced by the bel ow query.
. sel ect Fr on{ AUTHOR)
. wher e(AUTHOR. I D. eq(1))
.fetchOne();

aut hor . set Last Name("Smi th");
aut hor.store(); // This store call operates on the "attached" configuration.

In some cases (e.g. when serialising records), it may be desirable not to attach the Configuration that
Created a record to the record. This can be achieved with the attachRecords setting:

Example configuration

Settings settings = new Settings()
.withAttachRecords(false); // Defaults to true

© 2009 - 2025 by Data Geekery™ GmbH. Page 57 /826

https://www.jooq.org/javadoc/3.11.x/org/jooq/impl/DefaultConfiguration.html
https://www.jooq.org/xsd/jooq-runtime-3.11.2.xsd
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Statement.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/PreparedStatement.html
https://www.jooq.org/xsd/jooq-runtime-3.11.2.xsd

The jOOQ User Manual 3.2.6.2. Backslash Escaping

3.2.6.2. Backslash Escaping

Some databases (mainly MySQL and MariaDB) unfortunately chose to go an alternative, non-SQL-
standard route when escaping string literals. Here's an example of how to escape a string containing
apostrophes in different dialects:

SELECT 'I'"msure this is OK AS val -- Standard SQL escaping of apostrophe by doubling it.
SELECT "I\'mcertain this causes trouble' AS val -- Vendor-specific escaping of apostrophe by using a backsl ash.

As most databases don't support backslash escaping (and MySQL also allows for turning it off!), jJOOQ
by default also doesn't support it when inlining bind variables. However, this can lead to SQL injection
vulnerabilities and syntax errors when not dealing with it carefully!

This feature is turned on by default and for historic reasons for MySQL and MariaDB.

- DEFAULT (the - surprise! - default): Turns the feature ON for MySQL and MariaDB and OFF for all
other dialects

- ON: Turn the feature on.

- OFF: Turn the feature off.

Example configuration

Settings settings = new Settings()
. wi t hBacksl ashEscapi ng(Backsl ashEscapi ng. OFF); // Default to DEFAULT

3.2.6.3. Execute Logging

The executeLogging setting turns off the default loggin implemented through
org.joog.tools.LoggerListener

Example configuration

Settings settings = new Settings()
.wi t hExecut eLoggi ng(false); // Defaults to true

3.2.6.4. Fetch Warnings

Apart from JDBC exceptions, there is also the possibility to handle java.sgl.SQLWarning, which are made
available to jOOQ users through the java.sgl.Executelistener SPI and the log. Users who do not wish
to get these notifications (e.g. for performance reasons), may turn off fetching of warnings through the
fetchWarnings setting:

Example configuration

© 2009 - 2025 by Data Geekery™ GmbH. Page 58 /826

https://www.jooq.org/javadoc/3.11.x/org/jooq/tools/LoggerListener.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/SQLWarning.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/ExecuteListener.html

The jOOQ User Manual 3.2.6.5. Identifier style

Settings settings = new Settings()
.wi t hFet chWarni ngs(false); // Defaults to true

3.2.6.5. Identifier style

By default, jJOOQ will always generate quoted names for all identifiers (even if this manual omits this
for readability). For instance:

SELECT "TABLE"." COLUMN' FROM "TABLE' -- SQ. standard style
SELECT "TABLE . COLUMW FROM ‘TABLE -- M/SQ style
SELECT [TABLE].[COLUMN| FROM [TABLE] -- SQL Server style

Quoting has the following effect on identifiers in most (but not all) databases:

- It allows for using reserved names as object names, e.g. a table called "FROM" is usually possible
only when quoted.

- It allows for using special characters in object names, e.g. a column called "FIRST NAME" can be
achieved only with quoting.

- It turns what are mostly case-insensitive identifiers into case-sensitive ones, e.g. "name" and
"NAME" are different identifiers, whereas name and NAME are not. Please consider your
database manual to learn what the proper default case and default case sensitivity is.

The renderNameStyle setting allows for overriding the name of all identifiers in JOOQ to a consistent
style. Possible options are:

- QUOTED (the default): This will generate all names in their proper case with quotes around
them.

- AS_IS: This will generate all names in their proper case without quotes.

- LOWER: This will transform all names to lower case.

- UPPER: This will transform all names to upper case.

Example configuration

Settings settings = new Settings()
.wi t hRender NaneSt yl e(Render NaneStyl e. AS |1S); // Defaults to QUOTED

3.2.6.6. IN-list Padding

Databases that feature a cursor cache / statement cache (e.g. Oracle, SQL Server, DB2, etc.) are highly
optimised for prepared statement re-use. When a client sends a prepared statement to the server, the
server will go to the cache and look up whether there already exists a previously calculated execution
plan for the statement (i.e. the SQL string). This is called a "soft-parse" (in Oracle). If not, the execution
plan is calculated on the fly. This is called a "hard-parse" (in Oracle).

Preventing hard-parses is extremely important in high throughput OLTP systems where queries are
usually not very complex but are run millions of times in a short amount of time. Using bind variables,

© 2009 - 2025 by Data Geekery™ GmbH. Page 59/ 826

The jOOQ User Manual 3.2.6.7.)DBC Flags

this is usually not a problem, with the exception of the IN predicate, which generates different SQL
strings even when using bind variables:

-- Al of these are different SQL statenents:
SELECT * FROM AUTHOR WHERE I D IN (?)
SELECT * FROM AUTHOR WHERE ID IN (?, ?
SELECT * FROM AUTHOR WHERE ID IN (?, 2, ?
SELECT * FROM AUTHOR WHERE ID IN (?, 2, 2,
? ?

?
SELECT * FROM AUTHOR WHERE ID IN (?, ?, ?)

This problem may not be obvious to Java / jJOOQ developers, as they are always produced from the
same jOOQ statement:

/1 Al of these are the sane jOOQ statenent
DSL. usi ng(confi gurati on)
.select()
. f r om(AUTHOR)
. wher e(AUTHOR. I D.i n(col | ection))
.fetch();

Depending on the possible sizes of the collection, it may be worth exploring using arrays or temporary
tables as a workaround, or to reuse the original query that produced the set of IDs in the first place
(through a semi-join). But sometimes, this is not possible. In this case, users can opt in to a third
workaround: enabling the inListPadding setting. If enabled, jOOQ will "pad" the IN list to a length that is
a power of two (configurable with Settings.inListPadBase). So, the original queries would look like this
instead:

- Original -- Padded
SELECT * FROM AUTHOR WHERE ID IN (?) SELECT * FROM AUTHOR WHERE ID IN (?)
SELECT * FROM AUTHOR WHERE ID IN (?, ?) SELECT * FROM AUTHOR WHERE ID IN (?, ?)
SELECT * FROM AUTHOR WHERE ID IN (?, ?, ?) SELECT * FROM AUTHOR WHERE ID IN (?, ?, 2, ?)
SELECT * FROM AUTHOR WHERE ID IN (?, 2, ?, ?) SELECT * FROM AUTHOR WHERE ID IN (?, ?, ?, ?)
SELECT * FROM AUTHOR WHERE ID IN (?, 2, ?, ?, ?) SELECT * FROM AUTHOR WHERE ID IN (?, ?, 2, ?, 2, ?, 2, ?)
SELECT * FROM AUTHOR WHERE ID IN (?, 2, 2, ?2, 2, ?) SELECT * FROM AUTHOR WHERE ID IN (?, ?, 2, ?, 2, ?, 2, ?)

This technique will drastically reduce the number of possible SQL strings without impairing too much
the usual cases where the IN list is small. When padding, the last bind variable will simply be repeated
many times.

Usually, there is a better way - use this as a last resort!

Example configuration

Settings settings = new Settings()
.withlnListPadding(true) // Default to false
.withlnLi st PadBase(4); I/ Default to 2

3.2.6.7. JDBC Flags

JDBC statements feature a couple of flags that influence the execution of such a statement. Each of
these flags can be configured through jOOQ's org.joog.Query and org.joog.ResultQuery on a statement-
per-statement basis, but there's also the possibility to centrally specify a value for these flags. These
are the three flags:

© 2009 - 2025 by Data Geekery™ GmbH. Page 60 /826

https://www.jooq.org/javadoc/3.11.x/org/jooq/Query.html
https://www.jooq.org/javadoc/3.11.x/org/jooq/ResultQuery.html

The jOOQ User Manual 3.2.6.8. Keyword style

- queryTimeout: The JDBC statement timeout in seconds. Corresponds to Query.queryTimeout()
or Statement.setQueryTimeout()

- maxRows: The maximum number of rows returned by the JDBC statement. Corresponds to
ResultQuery.maxRows() or Statement.setMaxRows()

- fetchSize: The number of rows to be buffered by the JDBC ResultSet. Corresponds to
ResultQuery.fetchSize() or Statement.setFetchSize()

All of these flags are JDBC-only features with no direct effect on jOOQ. JOOQ only passes them through
to the underlying statement.

Example configuration

Settings settings = new Settings()
.wi t hQuer yTi meout (5)
. wi t hQuer yPool abl e(DEFAULT)
. Wi t hMaxRows (1000)
.wi t hFet chSi ze(20) ;

3.2.6.8. Keyword style

In all SQL dialects, keywords are case insensitive, and this is also the default in jOOQ, which mostly
generates lower-case keywords. Users may wish to adapt this and they have these options for the
renderKeywordCase setting:

- AS_IS (the default): Generate keywords as they are defined in the codebase (mostly lower case).
- LOWER: Generate keywords in lower case.

- UPPER: Generate keywords in upper case.

- PASCAL: Generate keywords in pascal case.

Example configuration

Settings settings = new Settings()
.wi t hRender Keywor dSt yl e(Render Keywor dSt yl e. UPPER); // Defaults to AS IS

3.2.6.9. Map JPA Annotations

The org.joog.impl.DefaultRecordMapper supports basic JPA mapping (mostly @Table and @Column
annotations). Looking up these annotations costs a slight extra overhead (mostly taken care of through
reflection caching). It can be turned off using the mapJPAAnnotations setting:

Example configuration

Settings settings = new Settings()
.wi t hMapJPAAnnot ations(false); // Defaults to true

© 2009 - 2025 by Data Geekery™ GmbH. Page 61 /826

https://www.jooq.org/javadoc/3.11.x/org/jooq/Query.html#queryTimeout(int)
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Statement.html#setQueryTimeout(int)
https://www.jooq.org/javadoc/3.11.x/org/jooq/ResultQuery.html#maxRows(int)
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Statement.html#setMaxRows(int)
https://www.jooq.org/javadoc/3.11.x/org/jooq/ResultQuery.html#fetchSize(int)
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Statement.html#setFetchSize(int)
https://www.jooq.org/javadoc/3.11.x/org/jooq/impl/DefaultRecordMapper.html

The jOOQ User Manual 3.2.6.10. Object qualification

3.2.6.10. Object qualification

By default, jOOQ fully qualifies all objects with their catalog and schema names, if such qualification is
made available by the code generator.

For instance, the following SQL statement containing full qualification may be produced by jOOQ code
with seemingly no qualification:

- Full qualification on colums and tables DSL. usi ng(confi gurati on)
SELECT cat al og. schena. t abl e. col um . sel ect (TABLE. COLUWN) // Columm only qualified with table
FROM cat al og. schena. t abl e . fron(TABLE) /1 No qualification on table

While the jOOQ code is also implicitly fully qualified (see implied imports), it may not be desireable to
use fully qualified object names in SQL. The renderCatalog and renderSchema settings are used for this.

Example configuration

new Settings()
.wi t hRender Catal og(false) // Defaults to true
.wi t hRender Schema(fal se); // Defaults to true

More sophisticated multitenancy approaches are available through the render mapping feature.

3.2.6.11. Optimistic Locking

There are two settings governing the behaviour of the jJOOQ optimistic locking feature:

- updateRecordVersion: Whether UpdatableRecord instances should modify the record version
prior to storing the record. This feature is independent of, but related to optimistic locking.

- updateRecordTimestamp: Whether UpdatableRecord instances should modify the record
timestamp prior to storing the record. This feature is independent of, but related to optimistic
locking.

- executeWithOptimisticLocking: This allows for turning off the feature entirely.

- executeWithOptimisticLockingExcludeUnversioned: This allows for turning off the feature for
updatable records who are not explicitly versioned.

Example configuration

Settings settings = new Settings()

. wi t hUpdat eRecor dVer si on(true) /1 Defaults to true
.wi t hUpdat eRecor dTi nest anp(true) /|l Defaults to true
.wi t hExecut eW t hOpti mi sti cLocki ng(true) Il Defaults to fal se

.wi t hExecut eW t hOpti mi sti cLocki ngExcl udeUnver si oned(fal se); // Defaults to false

For more details, please refer to the manual's section about the optimistic locking feature.

© 2009 - 2025 by Data Geekery™ GmbH. Page 62 /826

https://www.jooq.org/javadoc/3.11.x/org/jooq/UpdatableRecord.html
https://www.jooq.org/javadoc/3.11.x/org/jooq/UpdatableRecord.html

The jOOQ User Manual 3.2.6.12. Parameter types

3.2.6.12. Parameter types

Bind values or bind parameters come in different flavours in different SQL databases. JDBC standardises
on their syntax by allowing only ? (question mark) characters as placeholders for bind variables. Thus,
jOOQ, by default, generates ? placeholders for JDBC consumptions. Users who wish to use jOOQ with
a different backend than JDBC can specify that all JOOQ bind values, including indexed parameters and
named parameters generate alternative strings, other than 7.

These are the current options:

- INDEXED (the default): Generates indexed parameter placeholders using ?.

- NAMED: Generates named parameter placeholders, such as :param for parameters that are
named explicitly or :1 for unnamed, indexed parameters.

- NAMED_OR_INLINED: Generates named parameter placeholders for parameters that are named
explicitly and inlines all unnamed parameters.

- INLINED: Inlines all parameters.

An example:
- | NDEXED ParanxString> x = val ("x");
SELECT FI RST_NAME || ? FROM AUTHOR WHERE ID = ? Paranxl nteger> i = paran("x", 42);
- NAMED
SELECT FI RST_NAME || :1 FROM AUTHOR WHERE ID = : x DSL. usi ng(confi gurati on)
- NAMED_OR | NLI NED . sel ect (FI RST_NAME. concat (X))
SELECT FI RST_NAME || 'x' FROM AUTHOR WHERE I D = :x . f ron{ AUTHOR)
- | NLI NED .where(lD.eq(i))
SELECT FIRST_NAME || 'x' FROM AUTHOR WHERE I D = 42 .fetch();

Example configuration

Settings settings = new Settings()
. Wi t hPar anifype(Par anifype. NAMED) ; // Defaults to | NDEXED

The following setting statementType may override this setting.

3.2.6.13. Reflection caching

All operations of the DefaultRecordMapper are cached in the Configuration by default for improved
mapping and reflection speed. Users who prefer to override this cache, or work with their own custom
record mapper provider may wish to turn off the out-of-the-box caching feature.

Example configuration

Settings settings = new Settings()
.withRefl ectionCaching(false); // Defaults to true

© 2009 - 2025 by Data Geekery™ GmbH. Page 63 /826

The jOOQ User Manual 3.2.6.14. Return all columns on store

3.2.6.14. Return all columns on store

When using the updatable records feature, JOOQ always fetches the generated identity value, if such
a value is available.

The identity value is not the only value that is generated by default. Specifically, there may be triggers
that are used for auditing or other reasons, which generate LAST_UPDATE or LAST_UPDATE_BY values
in a record. Users who wish to also automatically fetch these values after all store(), insert(), or update()
calls may do so by specifying the returnAllOnUpdatableRecord setting. This setting depends on the
availability of INSERT .. RETURNING, UPDATE .. RETURNING, and DELETE .. RETURNING statements,
which are not available from all databases, in case of which a refresh() call may be issued, creating a
separate round trip to the server.

Example configuration

Settings settings = new Settings()
.wi t hRet ur nAl | OnUpdat abl eRecord(true); // Defaults to false

3.2.6.15. Runtime schema and table mapping

Most SQL object types are qualified with a org.joog.Catalog and org.joog.Schema. In multi-tenant
application, users may want to map these identifier namespaces to something other than the default.

Mapping your DEV schema to a productive environment

You may wish to design your database in a way that you have several instances of your schema. This
is useful when you want to cleanly separate data belonging to several customers / organisation units /
branches / users and put each of those entities' data in a separate database or schema.

In our AUTHOR example this would mean that you provide a book reference database to several
companies, such as My Book World and Books R Us. In that case, you'll probably have a schema setup
like this:

- DEV: Your development schema. This will be the schema that you base code generation upon,
with jJOOQ

- MY_BOOK_WORLD: The schema instance for My Book World

- BOOKS_R_US: The schema instance for Books R Us

Mapping DEV to MY_BOOK_WORLD with jOOQ

When a user from My Book World logs in, you want them to access the MY_BOOK_WORLD schema
using classes generated from DEV. This can be achieved with the org.joog.conf.RenderMapping class,
that you can equip your Configuration's settings with. Take the following example:

Example configuration

© 2009 - 2025 by Data Geekery™ GmbH. Page 64 /826

https://www.jooq.org/javadoc/3.11.x/org/jooq/Catalog.html
https://www.jooq.org/javadoc/3.11.x/org/jooq/Schema.html
https://www.jooq.org/javadoc/3.11.x/org/jooq/conf/RenderMapping.html

The jOOQ User Manual 3.2.6.15. Runtime schema and table mapping

Settings settings = new Settings()
. wi t hRender Mappi ng(new Render Mappi ng()
.wi t hSchemat a(
new MappedSchena() . wi t hl nput (" DEV")
. Wi t hQut put (" MY_BOOK_WORLD") ,
new MappedSchema(). withl nput ("LOG")
. wi t hQut put (" MY_BOOK_WORLD_LOG')));

XML configuration

<settings xm ns="http://ww.jooq.org/xsd/jooqg-runtine-3.11.2. xsd">
<r ender Mappi ng>
<schemat a>
<schema>
<i nput >DEV</ i nput >
<out put >MY_BOOK_WORLD</ out put >
</ schena>
<schema>
<i nput >LOG</ i nput >
<out put >MY_BOOK_WORLD_LOG</ out put >
</ schena>
</ schemat a>
</ render Mappi ng>
</ settings>

The query executed with a Configuration equipped with the above mapping will in fact produce this
SQL statement:

SELECT * DSL. usi ng(connection, dialect, settings)
FROM MY_BOOK_WORLD. AUTHOR . sel ect Fr on{ DEV. AUTHOR)

This works because AUTHOR was generated from the DEV schema, which is mapped to the
MY_BOOK_WORLD schema by the above settings.

Mapping of tables

Not only schemata can be mapped, but also tables. If you are not the owner of the database
your application connects to, you might need to install your schema with some sort of prefix to
every table. In our examples, this might mean that you will have to map DEV.AUTHOR to something
MY_BOOK_WORLD.MY_APP__AUTHOR, where MY_APP__is a prefix applied to all of your tables. This can
be achieved by creating the following mapping:

Example configuration

Settings settings = new Settings()
. wi t hRender Mappi ng(new Render Mappi ng()
.wi t hSchemat a(
new MappedSchema() . wi t hl nput (" DEV")
.wi t hTabl es(
new MappedTabl e(). wi t hl nput (" AUTHOR")
. Wi t hQut put (" MY_APP__AUTHOR'))));

XML configuration

<settings xm ns="http://ww.jooq.org/xsd/joog-runtine-3.11.2. xsd">
<r ender Mappi ng>
<schemat a>
<schema>
<i nput >DEV</ i nput >
<t abl es>
<t abl e>
<i nput >AUTHOR</ i nput >
<out put >MY_APP__ AUTHOR</ out put >
</t abl e>
</tabl es>
</ schena>
</ schemat a>
</ render Mappi ng>
</ settings>

© 2009 - 2025 by Data Geekery™ GmbH. Page 65/ 826

The jOOQ User Manual 3.2.6.15. Runtime schema and table mapping

The query executed with a Configuration equipped with the above mapping will in fact produce this
SQL statement:

SELECT * FROM DEV. M\Y_APP__ AUTHOR

Table mapping and schema mapping can be applied independently, by specifying several
MappedSchema entries in the above configuration. jJOOQ will process them in order of appearance and
map at first match. Note that you can always omit a MappedSchema's output value, in case of which,
only the table mapping is applied.

Using regular expressions

All of the above examples were using 1:1 constant name mappings where the input and output schema
or table names are fixed by the configuration. With jOOQ 3.8, regular expression can be used as well
for mapping, for example:

Example configuration

Settings settings = new Settings()
. wi t hRender Mappi ng(new Render Mappi ng()
.wi t hSchemat a(
new MappedSchema() . wi t hl nput Expressi on(Pattern. conpile("DEV_(.*)"))
. W t hQut put (" PROD_$1")
.wi t hTabl es(
new MappedTabl e().w t hl nput Expressi on(Pattern. conpile("DEV_(.*)"))
. W t hQut put ("PRCD_$1"))));

XML configuration

<settings xm ns="http://ww. jooq. org/xsd/jooq-runtinme-3.11. 2. xsd">
<r ender Mappi ng>
<schemat a>
<schema>
<i nput Expr essi on>DEV_(. *) </ i nput Expr essi on>
<out put >PROD_$1</ out put >
<t abl es>
<t abl e>
<i nput Expr essi on>DEV_(. *) </ i nput Expr essi on>
<out put >PROD_$1</ out put >
</tabl e>
</t abl es>
</ schema>
</ schenat a>
</ render Mappi ng>
</ settings>

The only difference to the constant version is that the input field is replaced by the inputExpression field
of type java.util.regex.Pattern, in case of which the meaning of the output field is a pattern replacement,
not a constant replacement.

Hard-wiring mappings at code-generation time

Note that the manual's section about code generation schema mapping explains how you can hard-
wire your catalog, schema and table mappings at code generation time.

Limitations

Mapped objects need to be known to the JOOQ org.joog.RenderContext, which means that for example
plain SOL templates and their contents cannot be mapped. See also features requiring code generation
for more details.

© 2009 - 2025 by Data Geekery™ GmbH. Page 66/ 826

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Pattern.html
https://www.jooq.org/javadoc/3.11.x/org/jooq/RenderContext.html

The jOOQ User Manual 3.2.6.16. Scalar subqueries for stored functions

3.2.6.16. Scalar subqgueries for stored functions

This setting is useful mostly for the Oracle database, which implements a feature called scalar subguery
caching, which is a good tool to avoid the expensive PL/SQL-to-SQL context switch when predicates
make use of stored function calls.

With this setting in place, all stored function calls embedded in SQL statements will be wrapped in a
scalar subquery:

SELECT DSL. usi ng(confi guration)
(SELECT ny_package. f or mat (LANGUAGE | D) FROM dual) . sel ect (MyPackage. f or mat (BOOK. LANGUAGE_| D))
FROM BOOK . from(BOOK)

If our table contains thousands of books, but only a dozen of LANGUAGE_ID values, then with scalar
subquery caching, we can avoid most of the function calls and cache the result per LANGUAGE_ID.

Example configuration

Settings settings = new Settings()
.wi t hRender Scal ar Subquer i esFor St or edFuncti ons(true);

3.2.06.17. Statement Type

JDBC knows two types of statements:

- java.sgl.PreparedStatement: This allows for sending bind variables to the server. jJOOQ uses
prepared statements by default.

- java.sgl.Statement: Also "static statement”. These do not support bind variables and may be
useful for one-shot commands like DDL statements.

The statementType setting allows for overriding the default of using prepared statements internally.
There are two possible options for this setting:

- PREPARED_STATEMENT (the default): Use prepared statements.
- STATIC_STATEMENT: Use static statements. This enforces the paramType == INLINED. See
parameter types

Example configuration

Settings settings = new Settings()
.wi t hSt at enent Type(St at enent Type. STATI C_STATEMENT); // Defaults to PREPARED STATEMENT

© 2009 - 2025 by Data Geekery™ GmbH. Page 67 /826

https://blog.jooq.org/oracle-scalar-subquery-caching/
https://blog.jooq.org/oracle-scalar-subquery-caching/
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/PreparedStatement.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Statement.html

The jOOQ User Manual 3.2.6.18. Updatable Primary Keys

3.2.6.18. Updatable Primary Keys

In most database design guidelines, primary key values are expected to never change - an assumption
that is essential to a normalised database.

As always, there are exceptions to these rules, and users may wish to allow for updatable primary
key values in the updatable records feature (note: any value can always be updated through ordinary
update statements). An example:

Aut hor Record aut hor =

DSL. usi ng(configuration) // This configuration will be attached to any record produced by the bel ow query.
. sel ect Fr on{ AUTHOR)
. wher e(AUTHOR. | D. eq(1))
.fetchOne();

aut hor . set1d(2);
aut hor.store(); // The behaviour of this store call is governed by the updatabl ePrimaryKeys fl ag

The above store call depends on the value of the updatablePrimaryKeys flag:

- false (the default): Since immutability of primary keys is assumed, the store call will create a new
record (a copy) with the new primary key value.

- true: Since mutablity of primary keys is allowed, the store call will change the primary key value
from 1 to 2.

Example configuration

Settings settings = new Settings()
. Wi t hUpdat abl ePri maryKeys(true); // Defaults to fal se

3.2.7. Thread safety

org.joog.Configuration, and by consequence org.joog.DSLContext, make no thread safety guarantees,
but by carefully observing a few rules, they can be shared in a thread safe way. We encourage sharing
Configuration instances, because they contain caches for work not worth repeating, such as reflection
field and method lookups for org.joog.impl.DefaultRecordMapper. If you're using Spring or CDI for
dependency injection, you will want to be able to inject a DSLContext instance everywhere you use it.

The following needs to be considered when attempting to share Configuration and DSLContext among
threads:

© 2009 - 2025 by Data Geekery™ GmbH. Page 68 /826

https://www.jooq.org/javadoc/3.11.x/org/jooq/Configuration.html
https://www.jooq.org/javadoc/3.11.x/org/jooq/DSLContext.html
https://www.jooq.org/javadoc/3.11.x/org/jooq/impl/DefaultRecordMapper.html

The jOOQ User Manual 3.3. SQL Statements (DML)

- Configuration is mutable for historic reasons. Calls to various Configuration.set() methods must
be avoided after initialisation, should a Configuration (and by consequence DSLContext) instance
be shared among threads. If you wish to modify some elements of a Configuration for single use,
use the Configuration.derive() methods instead, which create a copy.

- Configuration components, such as org.joog.conf.Settings are mutable as well. The same rules
for modification apply here.

- Configuration allows for supplying user-defined SPI implementations (see above for examples).
All of these must be thread safe as well, for their wrapping Configuration to be thread safe. If you
are using a org.joog.impl.DataSourceConnectionProvider, for instance, you must make sure that
your javax.sgl.DataSource is thread safe as well. This is usually the case when you use a third
party connection pool.

As can be seen above, Configuration was designed to work in a thread safe way, despite it not making
any such guarantee.

3.3. SQL Statements (DML)

jOOQ currently supports 5 types of SQL statements. All of these statements are constructed from a
DSLContext instance with an optional JDBC Connection or DataSource. If supplied with a Connection or
DataSource, they can be executed. Depending on the query type, executed queries can return results.

3.3.1.j00Q's DSL and model AP

jOOQ ships with its own DSL (or Domain Specific Language) that emulates SQL in Java. This means,
that you can write SQL statements almost as if Java natively supported it, just like NET's C# does with
LINQ to SQL.

Here is an example to illustrate what that means:

-- Select all books by authors born after 1920, Resul t <Record> result =
- naned "Paul 0" from a catal ogue: create.select()
SELECT * .fronm AUTHOR as("a"))
FROM aut hor a .join(BOXK. as("b")).on(a.ID.eq(bh. AUTHOR I D))
JO N book b ON a.id = b.author_id . wher e(a. YEAR_OF_BI RTH. gt (1920)
WHERE a.year_of _birth > 1920 .and(a. FI RST_NAME. eq(" Paul 0")))
AND a. first_name = ' Paul o' .orderBy(b. TI TLE)
ORDER BY b.title .fetch();

We'll see how the aliasing works later in the section about aliased tables

jO0Q as an internal domain specific language in Java (a.k.a. the DSL API)

Many other frameworks have similar APIs with similar feature sets. Yet, what makes jOOQ special is its
informal BNF notation modelling a unified SQL dialect suitable for many vendor-specific dialects, and
implementing that BNF notation as a hierarchy of interfaces in Java. This concept is extremely powerful,
when using JOOQ with IDE syntax auto completion. Not only can you code much faster, your SQL code
will be compile-checked to a certain extent. An example of a DSL query equivalent to the previous one
is given here:

© 2009 - 2025 by Data Geekery™ GmbH. Page 69/ 826

https://www.jooq.org/javadoc/3.11.x/org/jooq/conf/Settings.html
https://www.jooq.org/javadoc/3.11.x/org/jooq/impl/DataSourceConnectionProvider.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/javax/sql/DataSource.html
https://en.wikipedia.org/wiki/Domain-specific_language
https://msdn.microsoft.com/en-us/library/bb425822.aspx
https://blog.jooq.org/the-java-fluent-api-designer-crash-course/
https://blog.jooq.org/why-you-should-use-jooq-with-code-generation/

The jOOQ User Manual 3.3.1.jO0Q's DSL and model API

DSLCont ext create = DSL.using(connection, dialect);

Resul t<?> result = create. sel ect()
. from(AUTHOR)
.j 0i n(BOXK) . on(BOOK. AUTHOR | D. eq(AUTHOR. | D))
.fetch();

Unlike other, simpler frameworks that use "fluent APIs" or "method chaining", jOOQ's BNF-based
interface hierarchy will not allow bad query syntax. The following will not compile, for instance:

DSLCont ext create = DSL.using(connection, dialect);
Resul t<?> result = create. sel ect()
.j 0i n(BOOK) . on(BOOK. AUTHOR | D. eq(AUTHOR. | D))
/[l A~AMAN Mjoin" is not possible here
. f r om(AUTHOR)
.fetch();

Resul t<?> result = create. sel ect()
. f r om(AUTHOR)
. j oi n(BOOK)
.fetch();
/[AMAAA ton" is missing here

Resul t<?> result = create. sel ect (rowNunmber ())
11/ ANANAANAN Moyer ()" is missing here
. f r om(AUTHOR)
.fetch();

Resul t<?> result = create. sel ect()
. f r om(AUTHOR)

. wher e(AUTHOR. | D. i n(sel ect (BOOK. TI TLE) . f r on{ BOOK)))

// ANANANANANNANANNNNAN

// AUTHOR ID is of type Field<Integer> but subselect returns Recordl<String>
.fetch();

Resul t<?> result = create. sel ect()

. f r om(AUTHOR)
. wher e(AUTHOR. | D. i n(sel ect (BOOK. AUTHOR | D, BOOK. | D). f r om(BOOK)))

// ANANANAANNANANANNNANANANNANANANNN

// AUTHOR ID is of degree 1 but subselect returns Record2<lnteger, |nteger>
.fetch();

History of SQL building and incremental query building (a.k.a. the model
API)

Historically, jJOOQ started out as an object-oriented SQL builder library like any other. This meant that
all gueries and their syntactic components were modeled as so-called QueryParts, which delegate SQL
rendering and variable binding to child components. This part of the APl will be referred to as the
model API (or non-DSL API), which is still maintained and used internally by jOOQ for incremental query
building. An example of incremental query building is given here:

DSLCont ext create = DSL. using(connection, dialect);
Sel ect Quer y<Record> query = create. sel ect Query();
query. addFr on{ AUTHOR) ;
/1 Join books only under certain circunstances
if (join) {

query. addJoi n(BOOK, BOOK. AUTHOR | D. eq(AUTHOR. I D)) ;
}

Resul t<?> result = query.fetch();

This query is equivalent to the one shown before using the DSL syntax. In fact, internally, the DSL AP
constructs precisely this SelectQuery object. Note, that you can always access the SelectQuery object
to switch between DSL and model APIs:

DSLCont ext create = DSL.using(connection, dialect);
Sel ect Fi nal St ep<?> sel ect = create. sel ect().fron(AUTHOR);

/1 Add the JON clause on the internal QueryChject representation

Sel ect Query<?> query = sel ect.get Query();
query. addJoi n(BOOK, BOOK. AUTHOR | D. eq(AUTHOR. I D)) ;

© 2009 - 2025 by Data Geekery™ GmbH. Page 70/ 826

https://en.wikipedia.org/wiki/Fluent_interface
https://en.wikipedia.org/wiki/Method_chaining

The jOOQ User Manual 3.3.2. The WITH clause

Mutability

Note, that for historic reasons, the DSL APl mixes mutable and immutable behaviour with respect to
the internal representation of the QueryPart being constructed. While creating conditional expressions,
column expressions (such as functions) assumes immutable behaviour, creating SOL statements does
not. In other words, the following can be said:

/1 Conditional expressions (inmutable)

L e
Condition a = BOOK. TI TLE. eq("1984");
Condition b = BOOK. TI TLE. eq(" Ani mal Farni');

/1 The follow ng can be said

a = a.or(b); // or() does not nodify a

a.or(b) !'= a.or(b); // or() always creates new objects
I/ Statements (nutable)

R L

Sel ect Fronft ep<?> s1 = select();

Sel ect Joi nSt ep<?> s2 = s1. from BOXK);

Sel ect Joi nSt ep<?> s3 = sl. fronm AUTHOR) ;

/1 The follow ng can be said

sl == s2; // The internal object is always the sane
s2 == s3; // The internal object is always the sane

On the other hand, beware that you can always extract and modify bind values from any QueryPart.

3.3.2. The WITH clause

The SQL:1999 standard specifies the WITH clause to be an optional clause for the SELECT statement, in
order to specify common table expressions (also: CTE). Many other databases (such as PostgreSQL, SQL
Server) also allow for using common table expressions also in other DML clauses, such as the INSERT
statement, UPDATE statement, DELETE statement, or MERGE statement.

When using common table expressions with jOOQ, there are essentially two approaches:

- Declaring and assigning common table expressions explicitly to names
- Inlining common table expressions into a SELECT statement

Explicit common table expressions

The following example makes use of names to construct common table expressions, which can then
be supplied to a WITH clause or a FROM clause of a SELECT statement:

- Pseudo-SQL for a common tabl e expression specification /'l Code for creating a ConmpbnTabl eExpression instance
"t1v ("f1, "f2") AS (SELECT 1, 'a') name("t1").fields("f1", "f2").as(select(val (1), val("a")));

The above expression can be assigned to a variable in Java and then be used to create a full SELECT
statement:

© 2009 - 2025 by Data Geekery™ GmbH. Page 71 /826

The jOOQ User Manual 3.3.3. The WITH RECURSIVE clause

CommonTabl eExpr essi on<Recor d2<I nteger, String>> tl1 =
name("t1").fields("f1", "f2").as(select(val (1), val("a")));

CommonTabl eExpr essi on<Recor d2<I nteger, String>> t2 =
name("t2").fields("f3", "f4").as(select(val(2), val("b")));

Resul t<?> result2 =
create.w th(t1)

WTH "t1" ("f1", "f2") AS (SELECT 1, 'a'), Wi th(t2)
"t2" ("f3", "f4") AS (SELECT 2, 'b") .sel ect (

SELECT tl.field("f1").add(t2.field("f3")).as("add"),
"t1v."f1" o+ "t2"."f3" AS "add", tl.field("f2").concat(t2.field("f4")).as("concat"))
"t1"."f2" || "t2"."f4" AS "concat" from(tl, t2)

FROM "t 1", "t2" .fetch();

Note that the org.joog.CommonTableExpression type extends the commonly used org.joog.Table type,
and can thus be used wherever a table can be used.

Inlined common table expressions

If you're just operating on plain SQL, you may not need to keep intermediate references to such
common table expressions. An example of such usage would be this:

create.with("a").as(sel ect (

WTH "a" AS (SELECT val (1).as("x"),
1 AS "x", val ("a"). as("y")
“at AS "y")
.select()
SELECT .fron(tabl e(name("a")))

FROM " a" .fetch();

3.3.3. The WITH RECURSIVE clause

The various SQL dialects do not agree on the use of RECURSIVE when writing recursive common
table expressions. When using jOOQ, always use the DSLContext.withRecursive() or DSL.withRecursive()
methods, and jOOQ will render the RECURSIVE keyword, if needed.

Assuming a table like this:

CREATE TABLE directory (
id I NT NOT NULL,
parent _id | NT,

- In PostgreSQ., use TEXT instead, to work around https://github.conm jOOQ jOOQ i ssues/ 12067
| abel VARCHAR(50) ,

CONSTRAI NT pk_directory PRI MARY KEY (id),
CONSTRAI NT fk_directory FOREIGN KEY (parent_id) REFERENCES directory (id)
)

I NSERT INTO directory VALUES (1, null, "'C");

I NSERT I NTO directory VALUES (2 1, 'eclipse');

I NSERT I NTO directory VALUES (3 2, 'configuration');

I NSERT I NTO directory VALUES (4, 2, 'dropins');

I NSERT I NTO directory VALUES (5, 2, 'features');

I NSERT I NTO directory VALUES (7 2, 'plugins');

I NSERT I NTO directory VALUES (8 2, 'readne');

I NSERT I NTO directory VALUES (9, 8, 'readne_eclipse.htm');
I NSERT | NTO directory VALUES (10, 2, 'src');

I NSERT | NTO directory VALUES (11, 2, 'eclipse.exe');

Using WITH RECURSIVE, you can now query the structure of this directory as follows:

© 2009 - 2025 by Data Geekery™ GmbH. Page 72 /826

https://www.jooq.org/javadoc/3.11.x/org/jooq/CommonTableExpression.html
https://www.jooq.org/javadoc/3.11.x/org/jooq/Table.html
https://www.jooq.org/javadoc/3.11.x/org/jooq/DSLContext.html#withRecursive(org.jooq.CommonTableExpression...)
https://www.jooq.org/javadoc/3.11.x/org/jooq/impl/DSL.html#withRecursive(org.jooq.CommonTableExpression...)

The jOOQ User Manual

W TH RECURSI VE t (

id,
name,
pat h
AS (
SELECT
DI RECTORY. | D,
DI RECTORY. LABEL,
DI RECTORY. LABEL
FROM
DI RECTORY
VWHERE
DI RECTORY. PARENT_I D | S NULL
UNI ON ALL
SELECT
DI RECTORY. | D,
DI RECTORY. LABEL,
t.path
|\
|| DI RECTORY. LABEL
FROM
t
JON
DI RECTORY
ON t.id = DI RECTORY. PARENT | D

)
SELECT *
FROM

t;

The output would look like this:

+ +
| id | name | path
B e B T L
|1 | C | C
| 2 | eclipse | C\eclipse
| 3 | configuration | C:\eclipse\configuration
| 4 | dropins | C:\eclipse\dropins
| 11 | eclipse.exe | C\eclipse\eclipse.exe
| 5 | features | C\eclipse\features
| 7 | plugins | C:\eclipse\plugins
| 8 | readne | C\eclipse\readme
| 9 | readne_eclipse.htnl | C\eclipse\readne\readne_eclipse. htni
| 10 | src | C\eclipse\src
B e B T L +
Caveats

3.3.4. The SELECT statement

CommonTabl eExpressi on<?> cte = nanme("t").fiel ds(
tid,
"name",
" pat h"
). as(
sel ect (
DI RECTCRY. | D,
DI RECTORY. LABEL,
DI RECTORY. LABEL)
. fron(DI RECTCRY)
. wher e(DI RECTORY. PARENT _I D. i sNul | ())
.uni onAl'l (
sel ect (
DI RECTCRY. | D,
DI RECTORY. LABEL,
field(name("t",
.concat ("\\")
. concat (DI RECTORY. LABEL))
.fron(tabl e(name("t")))
.j oi n(DI RECTORY)
.on(field(name("t", "id"), |NTEGER)
. eq(DI RECTORY. PARENT_I D)))

"path"), VARCHAR)

)i

System out. println(
create.w t hRecursive(cte)
.sel ectFron{cte)
.fetch()

The SQL language expresses the recursion syntactically, meaning the table t in the above example is
being referenced from within the declaration of t. This isn't possible in a language like Java. Hence, we
must use the identifier AP| to construct identifier references for tables and columns. This technique
usually appears a bit more verbose than ordinary jOOQ API usage that is based on generated code
for your schema.

3.3.4. The SELECT statement

When you don't just perform CRUD (i.e. SELECT * FROM your_table WHERE ID = ?), you're usually
generating new record types using custom projections. With jOOQ, this is as intuitive, as if using SQL
directly. A more or less complete example of the "standard" SQL syntax, plus some extensions, is
provided by a query like this:

© 2009 - 2025 by Data Geekery™ GmbH.

Page 73 /826

The jOOQ User Manual 3.3.4.1. SELECT clause

SELECT from a complex table expression

- get all authors' first and |ast nanes, and the nunber /1 And with jOOQ ..
- of books they've witten in Gernan, if they have witten

- nore than five books in German in the |ast three years

- (from 2011), and sort those authors by |ast nanes

- limting results to the second and third row, | ocking DSLCont ext create = DSL.using(connection, dialect);
- the rows for a subsequent update... whew
create. sel ect (AUTHOR FI RST_NAME, AUTHOR. LAST_NAME, count())
SELECT AUTHOR. FI RST_NAME, AUTHOR LAST_NAME, COUNT(*) . f ron{ AUTHOR)
FROM AUTHOR . j 0i n(BOOK) . on(BOOK. AUTHOR | D. eq(AUTHOR. | D))
JO N BOOK ON AUTHOR. | D = BOOK. AUTHOR_I D . wher e(BOOK. LANGUAGE. eq(" DE"))
WHERE BOOK. LANGUAGE = ' DE' . and(BOOK. PUBLI SHED. gt (" 2008- 01-01"))
AND BOOK. PUBLI SHED > ' 2008- 01- 01' . gr oupBy(AUTHOR. FI RST_NAME, AUTHOR. LAST_NAVE)
GROUP BY AUTHOR. FI RST_NAME, AUTHOR. LAST_NAME . havi ng(count (). gt (5))
HAVI NG COUNT(*) > 5 . order By(AUTHOR. LAST_NAME. asc(). nul | sFirst())
ORDER BY AUTHOR. LAST_NAME ASC NULLS FI RST dimt(2)
LIMT 2 .of fset(1)
OFFSET 1 . forUpdat e()
FOR UPDATE .fetch();

Details about the various clauses of this query will be provided in subsequent sections.

SELECT from single tables

A very similar, but limited APl is available, if you want to select from single tables in order to retrieve
TableRecords or even UpdatableRecords. The decision, which type of select to create is already made
at the very first step, when you create the SELECT statement with the DSL or DSLContext types:

public <R extends Record> Sel ect Wier eSt ep<R> sel ect Fr on(Tabl e<R> t abl e) ;

As you can see, there is no way to further restrict/project the selected fields. This just selects all known
TableFields in the supplied Table, and it also binds <R extends Record> to your Table's associated
Record. An example of such a Query would then be:

BookRecord book = create. sel ect Fr om(BOOK)
. wher e(BOOK. LANGUAGE. eq(" DE"))
. or der By(BOOK. Tl TLE)
.fetchAny();

The "reduced" SELECT APl is limited in the way that it skips DSL access to any of these clauses:

- SELECT clause
- OIN operator

In most parts of this manual, it is assumed that you do not use the "reduced" SELECT API. For more
information about the simple SELECT API, see the manual's section about fetching strongly or weakly

typed records.

3.3.4.1. SELECT clause

The SELECT clause lets you project your own record types, referencing table fields, functions, arithmetic
expressions, etc. The DSL type provides several methods for expressing a SELECT clause:

© 2009 - 2025 by Data Geekery™ GmbH. Page 74 /826

The jOOQ User Manual 3.3.4.1.1. Projection type safety

- The SELECT cl ause /1 Provide a varargs Fields list to the SELECT cl ause:
SELECT BOOK. | D, BOX. TI TLE Sel ect <?> s1 = create. sel ect (BOOK. | D, BOXK. TITLE);
SELECT BOOK. | D, TRI M BOOK. Tl TLE) Sel ect<?> s2 = create. sel ect (BOOK. I D, trinm{BOOK. TITLE));

The following sections illustrate various features and subclauses of the SELECT clause.

3.3.4.1.7. Projection type safety

Since jOOQ 3.0, records and row value expressions up to degree 22 are now generically typesafe. This is
reflected by an overloaded SELECT (and SELECT DISTINCT) APl in both DSL and DSLContext. An extract
from the DSL type:

/1 Non-typesafe sel ect nethods:
public static SelectSel ect St ep<Record> sel ect (Col | ecti on<? extends Sel ectFi el d<?>> fields);
public static SelectSel ect Step<Record> sel ect (Sel ectField<?>... fields);

/1 Typesafe sel ect methods:
public static <T1> Sel ect Sel ect St ep<Recor d1<T1>> sel ect (Sel ect Fi el d<T1> fiel dl);

public static <T1, T2> Sel ect Sel ect St ep<Recor d2<T1, T2>> sel ect (Sel ect Fi el d<T1> fiel dl, SelectField<T2> field2);
...

The type that is being projected is the org.joog.SelectField, see also the next section about SelectField.
Since the generic R type is bound to some Record[N], the associated T type information can be used in
various other contexts, e.g. the IN predicate. Such a SELECT statement can be assigned typesafely:

Sel ect <Record2<Integer, String>> sl = create. sel ect(BOXK.|D, BOXK. TITLE);
Sel ect <Record2<Integer, String>> s2 = create.select(BOOK.ID, trin(BOOX TITLE));

/1 Alternatively, just use var to infer the type:
var s3 = create.select(BOOK. ID, trin(BOOXK. TITLE));

For more information about typesafe record types with degree up to 22, see the manual's section about
Record1 to Record22.

3.3.4.1.2. SelectField

The orgjoog.SelectField type is used by any projection of the SELECT clause and the INSERT ..
RETURNING clause. It has numerous subtypes, which are allowed as projections in jJOOQ:

- More subtypes are available from future jOOQ versions.

3.3.4.1.3. SELECT *

jOOQ supports the asterisk operator in projections both as a qualified asterisk (through Table.asterisk())
and as an unqualified asterisk (through DSL.asterisk()). It is also possible to omit the projection entirely,
in case of which an asterisk may appear in generated SQL, if not all column names are known to jOOQ.

Whenever jOOQ generates an asterisk (explicitly, or because jOOQ doesn't know the exact projection),
the column order, and the column set are defined by the database server, not jJOOQ. If you're using

© 2009 - 2025 by Data Geekery™ GmbH. Page 75/ 826

https://www.jooq.org/javadoc/3.11.x/org/jooq/SelectField.html
https://www.jooq.org/javadoc/3.11.x/org/jooq/SelectField.html
https://www.jooq.org/javadoc/3.11.x/org/jooq/Table.html#asterisk()
https://www.jooq.org/javadoc/3.11.x/org/jooq/impl/DSL.html#asterisk()

The jOOQ User Manual 3.3.4.1.4. SELECT DISTINCT

generated code, this may lead to problems as there might be a different column order than expected,
as well as too many or too few columns might be projected.

/1l Explicitly selects all colums available fromBOXK - No asterisk
create.select().fron(BOX).fetch();

/1l Explicitly selects all colums available from BOXK and AUTHOR - No asterisk
create.sel ect().fron(BOOXK, AUTHOR).fetch();
create. sel ect (). from BOXK). crossJoi n(AUTHOR) . fetch();

I/ Renders a SELECT * statement, as colums are unknown to jOOQ - Inplicit unqualified asterisk
create.select().fron(tabl e(name("BOOK"))).fetch();

/'l Renders a SELECT * statement - Explicit unqualified asterisk
create. sel ect(asterisk()).from BOX).fetch();

/1 Renders a SELECT BOOK.* statement - Explicit qualified asterisk

create. sel ect (BOOK. asterisk()).from BOX).fetch();
create. sel ect (BOOK. asterisk(), AUTHOR asterisk()).fron(BOXK, AUTHOR).fetch();

With all of the above syntaxes, the row type (as discussed below) is unknown to jOOQ and to the Java
compiler.

(1) Unlike the Nesting tables syntax, the asterisk is expanded by the SQL engine (or by jOOQ, if
necessary) by flattening the table's fields into the surrounding projection. It does not nest tables.

It is worth mentioning that in many cases, using an asterisk is a sign of an inefficient query because if
not all columns are needed, too much data is transferred between client and server, plus some joins
that could be eliminated otherwise, cannot. For more information check out this section.

3.3.4.1.4. SELECT DISTINCT

The DISTINCT keyword can be included in the method name, when constructing a SELECT clause, to
remove duplicate tuples from the projection.

SELECT DI STINCT BOOK. TI TLE FROM BOOK create. sel ect Di stinct (BOOK. TI TLE) . f r om{ BOOK) . f et ch() ;

Dialect support
This example using jOOQ:

sel ect Di sti nct (BOOK. TI TLE) . f r om(BOOK)

Translates to the following dialect specific expressions:

All dialects

SELECT DI STI NCT BOX. Tl TLE
FROM BOOK

(1) Generated with JOOQ 3.21. Support in older jOOQ versions may differ. Translate your own SQL
on our website

© 2009 - 2025 by Data Geekery™ GmbH. Page 76 / 826

https://www.jooq.org/translate
https://www.jooq.org/translate

The jOOQ User Manual 3.3.4.1.5. SELECT DISTINCT ON

3.3.4.1.5. SELECT DISTINCT ON

A useful, though perhaps a bit esoteric PostgreSQL specific extension to SELECT DISTINCT is the ON
clause. Using this clause, PostgreSQL users can specify a distinctness criteria, but then produce other
columns per distinct group from one of the group's tuples. This is normally not possible in SQL, but
with ON, the first tuple in the group according to the ORDER BY clause can be accessed nonetheless.
An example:

SELECT DI STINCT ON (BOCK. LANGUAGE_I D) Sel ect <?> sel ect1 = create. sel ect (BOOK. LANGUAGE_| D, BOOK. Tl TLE)
BOOK. LANGUAGE_| D, BOOK. TI TLE . di sti nct On(BOOK. LANGUAGE_| D)

FROM BOCK . f r on{ BOCK)

ORDER BY BOOK. LANGUAGE_| D, BOOK. TI TLE . or der By(BOOK. LANGUAGE_I D, BOCK. TI TLE). f et ch() ;

For syntactic reasons, the order of keywords had to be inversed as the PostgreSQL syntax cannot
be easily reproduced in jOOQ's internal DSL. Quite likely, you might find jOOQ's syntax a bit more
intuitive, though, as it more clearly separates the SELECT parts and the DISTINCT ON parts. Arguably,
the DISTINCT ON clause should be positioned after ORDER BY, where it logically belongs.

Dialect support
This example using jOOQ:

sel ect (BOOK. LANGUAGE | D, BOCK. TI TLE) . di sti nct On(BOOK. LANGUAGE I D) . f r om(BOOK) . or der By(BOOK. LANGUAGE_| D, BOOK. Tl TLE)

Translates to the following dialect specific expressions:

Aurora Postgres, ClickHouse, CockroachDB, DuckDB, H2, Postgres, YugabyteDB

SELECT DI STINCT ON (BOOK. LANGUAGE | D) BOOK. LANGUAGE_| D, BOOXK. TI TLE
FROM BOOK
ORDER BY BOOK. LANGUAGE | D, BOOK. TI TLE

BigQuery, DB2, Databricks, Exasol, Firebird, Hana, Informix, MariaDB, MemSQL, MySQL,
Oracle, Redshift, SQLDataWarehouse, SQLServer, SQLite, Snowflake, Sybase, Teradata,
Trino, Vertica

SELECT t.LANGUAGE ID, t.TITLE
FROM (
SELECT
BOOK. LANGUAGE_|I D,
BOOK. TI TLE,
row_nunber () OVER (
PARTI TI ON BY BOOK. LANGUAGE | D
ORDER BY BOOK. LANGUAGE_| D, BOOK. Tl TLE
) rn
FROM BOOK
) t
WHERE rn = 1
ORDER BY LANGUAGE_ | D, TITLE

© 2009 - 2025 by Data Geekery™ GmbH. Page 77 /826

https://blog.jooq.org/a-beginners-guide-to-the-true-order-of-sql-operations/

The jOOQ User Manual 3.3.4.1.6. Convenience methods

ASE, Access, Aurora MySQL, Derby, HSQLDB

/* UNSUPPORTED */

(1) Generated with JOOQ 3.21. Support in older jOOQ versions may differ. Translate your own SQL
on our website

3.3.4.1.6. Convenience methods

Some commonly used projections can be easily created using convenience methods:

- Sinple SELECTs /'l Sel ect conmmonly used val ues
SELECT COUNT(*) Resul t<?> resul t1 create. sel ect Count ().fetch();
SELECT 0 -- Not a bind variable Resul t <?> resul t2 create. sel ect Zero().fetch();
SELECT 1 -- Not a bind variable Resul t <?> resul t3 create.sel ectOne().fetch();

Which are short forms for creating Column expressions from the org.joog.impl.DSL API

-- Sinple SELECTs /1 Sel ect commonly used val ues

SELECT COUNT(*) Resul t<?> resultl = create.select(count()).fetch();
SELECT 0 -- Not a bind variable Resul t<?> result2 = create.select(inline(0)).fetch();
SELECT ? -- A bind variable Resul t<?> resul t3 = create.select(val (1)).fetch();

3.3.4.2. FROM clause

The SQL FROM clause allows for specifying any number of table expressions to select data from. The
following are examples of how to form normal FROM clauses:

SELECT 1 FROM BOOK create. sel ect One().fron(BOXK).fetch();
SELECT 1 FROM BOOK, AUTHOR create.sel ect One().fron(BOOK, AUTHOR).fetch();
SELECT 1 FROM BOOK "b", AUTHOR "a" create.sel ectOne().fron(BOOXK as("b"), AUTHOR as("a")).fetch();

Read more about aliasing in the manual's section about aliased tables.

More advanced table expressions

Apart from simple tables, you can pass any arbitrary table expression to the jOOQ FROM clause. This
may include unnested cursors in Oracle:

SELECT * create. sel ect ()
FROM TABLE(.fron(tabl e(
DBVMS_XPLAN. DI SPLAY_CURSOR(nul |, null, *ALLSTATS') DbnsXpl an. di spl ayCursor (null, null, "ALLSTATS")

):).fetch();

Note, in order to access the DbomsXplan package, you can use the code generator to generate Oracle's
SYS schema.

© 2009 - 2025 by Data Geekery™ GmbH. Page 78 / 826

https://www.jooq.org/translate
https://www.jooq.org/translate
https://www.jooq.org/javadoc/3.11.x/org/jooq/impl/DSL.html

The jOOQ User Manual 3.3.4.2.1. JOIN operator

Selecting FROM DUAL with jJO0Q

In many SQL dialects, FROM is a mandatory clause, in some it isn't. JOOQ allows you to omit the FROM
clause, returning just one record. An example:

SELECT 1 FROM DUAL DSL. usi ng(SQLDi al ect. ORACLE) . sel ect One().fetch();
SELECT 1 DSL. usi ng(SQLDi al ect . POSTGRES) . sel ect One().fetch();

Read more about dual or dummy tables in the manual's section about the DUAL table. The following
are examples of how to form normal FROM clauses:

3.3.4.2.1. JOIN operator

jOOQ supports many different types of standard and non-standard SQL JOIN operations. All of these
JOIN methods can be called on org.joog.Table types the (more info in joined tables section), or directly
after the FROM clause for convenience. The following example joins AUTHOR and BOOK

DSLCont ext create = DSL.using(connection, dialect);

// Call "join" directly on the AUTHOR tabl e
Resul t<?> result = create. sel ect()
. from(AUTHOR. j oi n(BOOK)
. on(BOOK. AUTHOR | D. eq(AUTHOR. | D)))
.fetch();

// Call "join" on the type returned by "front
Resul t<?> result = create. sel ect()

. f r om(AUTHOR)

. j oi n(BOOK)

. on(BOOK. AUTHOR | D. eq(AUTHOR. | D))
.fetch();

The two syntaxes will produce the same SQL statement. However, calling "join" on org.jooq.Table objects
allows for more powerful, nested JOIN expressions (if you can handle the parentheses):

SELECT * /'l Nest joins and provide JON conditions only at the end
FROM AUTHOR create. sel ect ()
LEFT OUTER JOI N (. f r on{ AUTHOR
BOOK JO N BOOK_TO_BOOK_STORE .l eft Qut er Joi n(BOOK
ON BOOK_TO_BOOK_STORE. BOOK_I D = BOOK. | D .j oi n(BOOK_TO_BOOK_STORE)
) . on(BOOK_TO_BOOK_STORE. BOOK_| D. eq(BOXK. 1 D)))
ON BOOK. AUTHOR | D = AUTHOR. | D . on(BOOK. AUTHOR | D. eq(AUTHOR. 1 D)))
.fetch();

- See the section about conditional expressions to learn more about the many ways to create
org.joog.Condition objects in jOOQ.

- See the section about table expressions to learn about the various ways of referencing
org.joog.Table objects in jOOQ

For more information about the different types of join, please refer to the joined tables section.

3.3.4.2.2. Implicit path JOIN

In SQL, a lot of explicit JOIN clauses are written simply to retrieve a parent table's column from a given
child table. For example, we'll write:

© 2009 - 2025 by Data Geekery™ GmbH. Page 79 /826

https://www.jooq.org/javadoc/3.11.x/org/jooq/Table.html
https://www.jooq.org/javadoc/3.11.x/org/jooq/Table.html
https://www.jooq.org/javadoc/3.11.x/org/jooq/Condition.html
https://www.jooq.org/javadoc/3.11.x/org/jooq/Table.html

The jOOQ User Manual 3.3.4.2.2. Implicit path JOIN

- Get all books, their authors, and their respective |anguage
SELECT
a.first_nane,
a. |l ast _nane,
b.title,
| .cd AS | anguage
FROM book b
JO N author a ON b.author_id = a.id
JO N | anguage | ON b.language_id = |.id;

- Count the nunber of books by author and | anguage
SELECT
a.first_nane,
a. |l ast _nane,
| .cd AS | anguage,

COUNT(*)
FROM book
JO N author a ON b.author_id = a.id
JO N | anguage | ON b.language_id = |.id
GROUP BY a.id, a.first_nanme, a.last_nane, |.cd
ORDER BY a.first_nane, a.last_nane, |.cd

There is quite a bit of syntactic ceremony (or we could even call it "noise") to get a relatively simple job
done. A much simpler notation would be using implicit joins:

- Get all books, their authors, and their respective |anguage
SELECT
b. aut hor. first_nane,
b. aut hor. | ast _nane,
b.title,
b. | anguage. cd AS | anguage
FROM book b;

- Count the nunber of books by author and | anguage
SELECT
b. aut hor. first_nane,
b. aut hor. | ast _nane,
b. | anguage. cd AS | anguage,
COUNT(*)
FROM book b
GROUP BY
b. aut hor _id,
b. aut hor. first_nane,
b. aut hor. | ast _nane,
b. | anguage. cd
ORDER BY
b. aut hor. first_nane,
b. aut hor. | ast _nane,
b. | anguage. cd

Notice how this alternative notation (depending on your taste) may look more tidy and straightforward,
as the semantics of accessing a table's parent table (or an entity's parent entity) is straightforward.

From jOOQ 3.11 onwards, this syntax is supported for to-one relationship navigation, and from
jO0OQ 3.19 also for to-many relationship navigation. The code generator produces relevant navigation
methods on generated tables, which can be used in a type safe way. The navigation method names are:

- The parent table name, if there is only one foreign key between child table and parent table
- The foreign key name, if there are more than one foreign keys between child table and parent
table

This default behaviour can be overridden by using a Code Generator Strategy.

The jOOQ version of the previous queries looks like this:

© 2009 - 2025 by Data Geekery™ GmbH. Page 80 /826

The jOOQ User Manual 3.3.4.2.2. Implicit path JOIN

I/ Get all books, their authors, and their respective |anguage
create. sel ect (
BOOK. aut hor () . FI RST_NAME,
BOOK. aut hor () . LAST_NANE,
BOOK. Tl TLE,
BOCK. | anguage() . CD. as("| anguage"))
. f r om(BOOK)
.fetch();

// Count the nunber of books by author and | anguage
create. sel ect (
BOOK. aut hor () . FI RST_NAME,
BOOK. aut hor () . LAST_NANE,
BOCK. | anguage() . CD. as("| anguage"),
count ())
. f r om(BOOK)
. groupBy(
BOOK. AUTHOR_I D,
BOOK. aut hor () . FI RST_NAME,
BOOK. aut hor () . LAST_NAME,
BOCK. | anguage() . CD)
. order By(
BOOK. aut hor () . FI RST_NAME,
BOOK. aut hor () . LAST_NANE,
BOCK. | anguage() . CD)
.fetch();

The generated SQL is almost identical to the original one - there is no performance penalty to this
syntax.

Default JOIN type

The default type of join that is generated is:

- INNER JOIN for to-one path segments with non-nullable parent
- LEFTJOIN for to-one path segments with nullable parent

How it works

During the SQL generation phase, implicit join paths are replaced by generated aliases for the path's
last table. The paths are translated to a join graph, which is always LEFT JOINed to the path's "root table".
If two paths share a common prefix, that prefix is also shared in the join graph.

Known limitations

- UntiljOOQ 3.17, implicit JOINs were only supported in SELECT statements (including any type
of subquery), but not in the WHERE clause of UPDATE statements or DELETE statements, for
instance.

- Implicit JOINs can currently only be used to access columns, not to produce joins. l.e. it is not
possible to write things like FROM book IMPLICIT JOIN book.author

- Implicit JOINs are added to the SQL string after the entire SQL statement is available, for
performance reasons. This means, that VisitListener SPI implementations cannot observe
implicitly joined tables

© 2009 - 2025 by Data Geekery™ GmbH. Page 81 /826

The jOOQ User Manual 3.3.4.3. WHERE clause

3.3.4.3. WHERE clause

The WHERE clause can be used for JOIN or filter predicates, in order to restrict the data returned by the
table expressions supplied to the previously specified from clause and join clause. Here is an example:

SELECT * create.select()

FROM BOOK . from(BOOK)

WHERE AUTHOR ID = 1 . wher e(BOOK. AUTHOR | D. eq(1))

AND TI TLE = ' 1984' . and(BOOK. TI TLE. eq(" 1984"))
.fetch();

The above syntax is convenience provided by jOOQ, allowing you to connect the org.joog.Condition
supplied in the WHERE clause with another condition using an AND operator. You can of course also
create a more complex condition and supply that to the WHERE clause directly (observe the different
placing of parentheses). The results will be the same:

SELECT * create.select()

FROM BOOK . f rom(BOOK)

WHERE AUTHOR ID = 1 . wher e(BOOK. AUTHOR I D. eq(1) . and(

AND TI TLE = ' 1984' BOOK. TI TLE. eq("1984")))
.fetch();

You will find more information about creating conditional expressions later in the manual.

3.3.4.4. CONNECT BY clause

The Oracle database knows a very succinct syntax for creating hierarchical queries: the CONNECT BY
clause, which is fully supported by jOOQ, including all related functions and pseudo-columns. A more
or less formal definition of this clause is given here:

SELECT ..
FROM . .
WHERE . .
CONNECT BY [NOCYCLE] condition [AND condition, ...] [START WTH condition]
- GROUP BY ..
- ORDER [SIBLINGS] BY ..

An example for an iterative query, iterating through values between 1 and 5 is this:

SELECT LEVEL Il Get a table with elenents 1, 2, 3, 4, 5
FROM DUAL create.sel ect(level())
CONNECT BY LEVEL <= 5 .connect By(l evel ().le(5))

.fetch();

Here's a more complex example where you can recursively fetch directories in your database, and
concatenate them to a path:

SELECT
SUBSTR(SYS_CONNECT_BY_PATH(DI RECTORY. NAME, '/'), 2)
FROM DI RECTORY
CONNECT BY
PRI OR DI RECTORY. | D = DI RECTORY. PARENT_| D
START W TH DI RECTCRY. PARENT I D |'S NULL
ORDER BY 1

© 2009 - 2025 by Data Geekery™ GmbH.

.sel ect (

substring(sysConnect ByPat h(DI RECTORY. NAME, "/"), 2))
. fron(DI RECTORY)
. connect By(

prior (DI RECTORY. | D) . eq(DI RECTORY. PARENT_I D))
.start Wt h(Dl RECTORY. PARENT_I D.i sNul | ())
.orderBy(1)
.fetch();

Page 82 /826

https://www.jooq.org/javadoc/3.11.x/org/jooq/Condition.html

The jOOQ User Manual 3.3.4.5. GROUP BY clause

The output might then look like this

s +
| substring |
s +
| C

| C:/eclipse

| C:/ eclipse/ dropi ns

|
|
| C:/eclipsel/configuration |
|
| C:/eclipseleclipse. exe |

|...21 record(s) truncated...

Some of the supported functions, operators, and pseudo-columns are these (available from the DSL):

- CONNECT BY ISCYCLE function
- CONNECT BY ISLEAF function

- CONNECT BY ROQT operator

- LEVEL pseudo-column

- PRIOR operator

- SYS CONNECT BY PATH function

ORDER SIBLINGS

The Oracle database allows for specifying a SIBLINGS keyword in the ORDER BY clause. Instead of
ordering the overall result, this will only order siblings among each other, keeping the hierarchy intact.
An example is given here:

SELECT DI RECTORY. NAMVE . sel ect (DI RECTORY. NAME)
FROM DI RECTORY . fron(DI RECTCRY)
CONNECT BY . connect By/(
PRI OR DI RECTORY. | D = DI RECTORY. PARENT_| D pri or (DI RECTORY. | D). eq(DI RECTORY. PARENT_I D))
START W TH DI RECTORY. PARENT_I D IS NULL .start Wt h(DI RECTORY. PARENT_I D. i sNul | ())
ORDER Sl BLI NGS BY 1 .order Si bl i ngsBy(1)
.fetch();

3.3.4.5. GROUP BY clause

GROUP BY can be used to create unigue groups of data, to form aggregations, to remove duplicates
and for other reasons. It will transform your previously defined set of table expressions, and return only
one record per unigue group as specified in this clause.

3.3.4.5.1. GROUP BY columns

The GROUP BY columns list specifies the columns whose values are used to form groups. The group
columns can then be projected, whereas all the non-group columns can be aggregated. An example of
such a grouped aggregation is this query:

SELECT AUTHOR | D, COUNT(*) create. sel ect (BOOK. AUTHOR | D, count())

FROM BOOK . f r on(BOOK)

GROUP BY AUTHOR_I D . gr oupBy(BOOK. AUTHOR | D)
.fetch();

© 2009 - 2025 by Data Geekery™ GmbH. Page 83 /826

The jOOQ User Manual 3.3.4.5.2. GROUP BY ROLLUP

The above example counts all books per author.

(") Note: a different and more powerful way of grouping data is to use the WINDOW clause and
window functions.

Dialect support
This example using jOOQ:

sel ect (BOOK. AUTHOR | D, count ()). fronm(BOOK) . gr oupBy(BOOK. AUTHOR | D)

Translates to the following dialect specific expressions:

All dialects

SELECT
BOOK. AUTHOR I D,
count (*)
FROM BOOK
GROUP BY BOOK. AUTHOR | D

(1) Generated with JOOQ 3.21. Support in older jOOQ versions may differ. Translate your own SQL
on our website

3.3.4.5.2. GROUP BY ROLLUP

In reports, it may be useful to run multiple aggregations across multiple dimensions of the data in one
g0. ROLLUP is one way to do this.

SELECT AUTHOR_I D, PUBLI SHED_I N, COUNT(*) create. sel ect (BOOK. AUTHOR | D, BOOK. PUBLI SHED_I N, count ())

FROM BOOK . f rom(BOOK)

GROUP BY ROLLUP (AUTHOR_I D, PUBLI SHED_I N) .groupBy(rol | up(BOOK. AUTHOR | D, BOOK. PUBLI SHED_I N))
.fetch();

The above is a more concise (and possibly more performant) form of writing the following UNION ALL
query:

SELECT AUTHCR | D, PUBLI SHED I N, COUNT(*)
FROM BOOK

GROUP BY AUTHOR I D, PUBLI SHED I N
UNI ON ALL

SELECT AUTHOR I D, NULL, COUNT(*)
FROM BOOK

GROUP BY AUTHCR I D

UNI ON ALL

SELECT NULL, NULL, COUNT(*)

FROM BOOK

GROUP BY ()

The ROLLUP function is just syntax sugar for a more complex GROUPING SETS specification. In general:

© 2009 - 2025 by Data Geekery™ GmbH. Page 84 /826

https://www.jooq.org/translate
https://www.jooq.org/translate

The jOOQ User Manual 3.3.4.5.2. GROUP BY ROLLUP

-- This
ROLLUP (A, B, O

- Is just short for this
GROUPING SETS ((A, B, O, (A B), (A, ()

An example result set might look like this:

fmcccoccccos fmcccoccccosocs fmcccccccco +
| AUTHOR ID | PUBLISHED IN | COUNT(*) |

fmcccoccccos fmcccoccccosocs fmcccccccco +

| 1| 1945 | 1| <- GROUP BY (AUTHOR I D, PUBLISHED_I N)
| 1| 1948 | 1| <- GROUP BY (AUTHOR I D, PUBLISHED I N)
| 1| NULL | 2 | < GROUP BY (AUTHOR I D)

| 2 | 1988 | 1| <- GROUP BY (AUTHOR I D, PUBLISHED_IN)
| 2 | 1990 | 1| <- GROUP BY (AUTHOR I D, PUBLISHED I N)
| 2 | NULL | 2 | <= GROUP BY (AUTHOR I D)

| NULL | NULL | 4| < GROWP BY ()

fmcccoccccos fmcccoccccosocs fmcccccccco +

Dialect support

This example using jO0Q:

sel ect (BOOK. AUTHOR | D, BOOK. LANGUAGE_I D, count()).fron(BOOK). groupBy(rol | up(BOOK. AUTHOR | D, BOOK. LANGUAGE | D))

Translates to the following dialect specific expressions:

Aurora MySQL, MariaDB, MySQL

SELECT
BOOK. AUTHOR_I D,
BOOK. LANGUAGE_I D,
count (*)
FROM BOOK
GROUP BY BOOK. AUTHOR | D, BOOK. LANGUAGE_| D
W TH ROLLUP

Aurora Postgres, ClickHouse, DB2, Databricks, DuckDB, Hana, MemSQL, Oracle,
Postgres, Redshift, SQLDataWarehouse, SQLServer, Snowflake, Sybase, Teradata, Trino,
Vertica

SELECT
BOOK. AUTHOR I D,
BOOK. LANGUAGE_| D,
count (*)
FROM BOOK
GROUP BY ROLLUP (BOOK. AUTHOR | D, BOOK. LANGUAGE_| D)

ASE, Access, BigQuery, CockroachDB, Derby, Exasol, Firebird, H2, HSQLDB, Informix,
SQLite, YugabyteDB

/* UNSUPPORTED */

© 2009 - 2025 by Data Geekery™ GmbH. Page 85/ 826

The jOOQ User Manual 3.3.4.5.3. GROUP BY CUBE

(1) Generated with JOOQ 3.21. Support in older JOOQ versions may differ. Translate your own SQL
on our website

3.3.4.5.3. GROUP BY CUBE

In reports, it may be useful to run multiple aggregations across multiple dimensions of the data in one
go. CUBE is one way to do this.

SELECT AUTHOR_I D, PUBLI SHED_I N, COUNT(*) create. sel ect (BOOK. AUTHOR | D, BOOK. PUBLI SHED_I N, count ())

FROM BOOK . f rom(BOOK)

GROUP BY CUBE (AUTHOR I D, PUBLI SHED_I N) . groupBy(cube(BOOK. AUTHOR | D, BOOK. PUBLI SHED_I N))
.fetch();

The above is a more concise (and possibly more performant) form of writing the following UNION ALL
query:

SELECT AUTHCR | D, PUBLI SHED I N, COUNT(*)

FROM BOOK

GROUP BY AUTHCR I D, PUBLISHED I N
UNI ON ALL

SELECT AUTHOR I D, NULL, COUNT(*)
FROM BOOK

GROUP BY AUTHOR | D
SELECT NULL, PUBLISHED I N, COUNT(*)
FROM BOOK

GROUP BY LANGUAGE_ | D

UNION ALL

SELECT NULL, NULL, COUNT(*)

FROM BOOK

GROUP BY ()

The CUBE function is just syntax sugar for a more complex GROUPING SETS specification. In general:

- This
CUBE (A, B, O

- Is just short for this
GROUPING SETS ((A B, O, (A B), (A O, (B O, (A, (B), (9, ()

An example result set might look like this:

fmcccoccccos fmcccoccccosocs fmcccccccco +
| AUTHOR ID | PUBLISHED IN | COUNT(*) |

fmcccoccccos fmcccoccccosocs fmcccccccco +

| NULL | NULL | 4| < GROWP BY ()

| NULL | 1945 | 1| <- GROUP BY (PUBLISHED I N)

| NULL | 1948 | 1| <- GROUP BY (PUBLISHED I N)

| NULL | 1988 | 1| <- GROUP BY (PUBLISHED I N)

| NULL | 1990 | 1| <- GROUP BY (PUBLISHED I N)

| 1| NULL | 2 | <= GROUP BY (AUTHOR I D)

| 1| 1945 | 1| <- GROUP BY (AUTHOR I D, PUBLISHED_IN)
| 1| 1948 | 1| <- GROUP BY (AUTHOR I D, PUBLISHED I N)
| 2 | NULL | 2 | < GROUP BY (AUTHOR I D)

| 2 | 1988 | 1| <- GROUP BY (AUTHOR I D, PUBLISHED_IN)
| 2 | 1990 | 1| <- GROUP BY (AUTHOR I D, PUBLISHED I N)
fmcccoccccos fmcccoccccosocs fmcccccccco +

Dialect support

This example using jO0Q:

© 2009 - 2025 by Data Geekery™ GmbH. Page 86 /826

https://www.jooq.org/translate
https://www.jooq.org/translate

The jOOQ User Manual 3.3.4.5.4. GROUP BY GROUPING SETS

sel ect (BOOK. AUTHOR | D, BOOK. LANGUAGE | D, count ()). from(BOOK) . gr oupBy(cube(BOOK. AUTHOR | D, BOOK. LANGUAGE | D))

Translates to the following dialect specific expressions:

Aurora Postgres, ClickHouse, DB2, Databricks, DuckDB, Hana, Oracle, Postgres,
Redshift, SQLServer, Snowflake, Sybase, Teradata, Trino, Vertica

SELECT
BOOK. AUTHOR I D,
BOOK. LANGUAGE_|I D,
count (*)
FROM BOOK
GROUP BY CUBE (BOCK. AUTHOR | D, BOOK. LANGUAGE_| D)

ASE, Access, Aurora MySQL, BigQuery, CockroachDB, Derby, Exasol, Firebird,
H2, HSQLDB, Informix, MariaDB, MemSQL, MySQL, SQLDataWarehouse, SQLite,
YugabyteDB

/* UNSUPPORTED */

(1) Generated with JOOQ 3.21. Support in older jOOQ versions may differ. Translate your own SQL
on our website

3.3.4.5.4. GROUP BY GROUPING SETS

In reports, it may be useful to run multiple aggregations across multiple dimensions of the data in one
g0. GROUPING SETS is one way to do this.

SELECT AUTHOR_I D, PUBLI SHED_I N, COUNT(*) create. sel ect (BOOK. AUTHOR | D, BOOK. PUBLI SHED_I N, count())

FROM BOOK . f rom(BOOK)

GROUP BY GROUPI NG SETS ((AUTHOR_I D), (PUBLISHED_IN)) . gr oupBy(gr oupi ngSet s(BOOK. AUTHOR | D, BOOK. PUBLI SHED | N))
.fetch();

The above is a more concise (and possibly more performant) form of writing the following UNION ALL
query:

SELECT AUTHOR | D, NULL AS PUBLI SHED_I N, COUNT(*)
FROM BOOK

GROUP BY AUTHOR_I D

UNI ON ALL

SELECT NULL, PUBLI SHED_I N, COUNT(*)

FROM BOOK

GROUP BY LANGUAGE_I D

An example result set might look like this:

© 2009 - 2025 by Data Geekery™ GmbH. Page 87 /826

https://www.jooq.org/translate
https://www.jooq.org/translate

The jOOQ User Manual 3.3.4.5.4. GROUP BY GROUPING SETS

P cooocooooo o oooocoococoos P oocoocooo +
| AUTHOR ID | PUBLISHED_IN | COUNT(*) |

P cooocooooo o oooocoococoos P oocoocooo +

| NULL | 1945 | 1| <- GROUP BY (PUBLISHED I N)
| NULL | 1948 | 1| <- GROUP BY (PUBLISHED I N)
| NULL | 1988 | 1| <- GROUP BY (PUBLISHED I N)
| NULL | 1990 | 1| <- GROUP BY (PUBLISHED I N)
| 1| NULL | 2| < GROUP BY (AUTHCR I D)

| 2 | NULL | 2| < GROUP BY (AUTHCR I D)

P cooocooooo o oooocoococoos P oocoocooo +

Note that the most common GROUPING SETS specifications have a dedicated, special syntax:

- ROLLUP
- CUBE

Dialect support
This example using jO0Q:

sel ect (BOOK. AUTHOR | D, BOOK. LANGUAGE_I D, count()).fron{BOOK) . gr oupBy(groupi ngSet s(BOOK. AUTHOR | D, BOOK. LANGUAGE_| D))

Translates to the following dialect specific expressions:

Aurora Postgres, ClickHouse, DB2, Databricks, DuckDB, Hana, Oracle, Postgres,
Redshift, SQLServer, Snowflake, Sybase, Teradata, Trino, Vertica

SELECT
BOOK. AUTHOR_I D,
BOOK. LANGUAGE_| D,
count (*)

FROM BOOK

GROUP BY GROUPI NG SETS (
(BOOK. AUTHOR I D),
(BOOK. LANGUAGE_| D)

)

ASE, Access, Aurora MySQL, BigQuery, CockroachDB, Derby, Exasol, Firebird,
H2, HSQLDB, Informix, MariaDB, MemSQL, MySQL, SQLDataWarehouse, SQLite,
YugabyteDB

/* UNSUPPORTED */

(1) Generated with JOOQ 3.21. Support in older JOOQ versions may differ. Translate your own SQL
on our website

© 2009 - 2025 by Data Geekery™ GmbH. Page 88 /826

https://www.jooq.org/translate
https://www.jooq.org/translate

The jOOQ User Manual 3.3.4.5.5. GROUP BY empty grouping set

3.3.4.5.5. GROUP BY empty grouping set

A special kind of GROUPING SET is the empty grouping set, which can be achieved in standard SQL
and many SQL dialects using GROUP BY (). It is implicit, whenever an aggregate function is present in
a query, but not an explicit GROUP BY clause.

SELECT COUNT(*) create. sel ect Count ()

FROM BOOK . f rom(BOOK)

GROUP BY () . groupBy()
.fetch();

Dialect support
This example using jOOQ:
sel ect Count () . f r om(BOOK) . gr 0upBy()
Translates to the following dialect specific expressions:

Access

SELECT count (*)
FROM BOOK, (select count(*) dual from MSysResources) as enpty_groupi ng_dumy_tabl e
GROUP BY enpty_groupi ng_dunmy_t abl e. dual

ASE, SQLDataWarehouse

SELECT count (*)
FROM BOOK, (select 1 as dual) as enpty_groupi ng_dummy_tabl e
GROUP BY enpty_groupi ng_dummy_t abl e. dual

Aurora MySQL, MemSQL

SELECT count (*)
FROM BOOK

GROUP BY (SELECT 1
FROM DUAL)

Aurora Postgres, BigQuery, DB2, DuckDB, Exasol, H2, Oracle, Postgres, SQLServer,
Sybase, Teradata, Trino

SELECT count (*)
FROM BOOK
GROUP BY ()

© 2009 - 2025 by Data Geekery™ GmbH. Page 89/ 826

The jOOQ User Manual 3.3.4.6. HAVING clause

ClickHouse, CockroachDB, MariaDB, MySQL, Redshift, SQLite, Vertica, YugabyteDB

SELECT count (*)
FROM BOOK
GROUP BY (SELECT 1)

Databricks, Hana, Snowflake

SELECT count (*)
FROM BOOK
GROUP BY GROUPI NG SETS (())

Derby, HSQLDB

SELECT count (*)
FROM BOOK
GROUP BY 0O

Firebird

SELECT count (*)
FROM BOOK

GROUP BY (SELECT 1
FROMV RDB$DATABASE)

Informix

SELECT count (*)
FROM BOOK, (select 1 as dual from systables where tabid = 1) as enpty_groupi ng_dumy_tabl e
GROUP BY enpty_groupi ng_dunmy_t abl e. dual

(1) Generated with JOOQ 3.21. Support in older jOOQ versions may differ. Translate your own SQL
on our website

3.3.4.6. HAVING clause

The HAVING clause is commonly used to further restrict data resulting from a previously issued GROUP
BY clause. An example, selecting only those authors that have written at least two books:

© 2009 - 2025 by Data Geekery™ GmbH. Page 90/ 826

https://www.jooq.org/translate
https://www.jooq.org/translate

The jOOQ User Manual 3.3.4.7. WINDOW clause

SELECT AUTHOR | D, COUNT(*) create. sel ect (BOOK. AUTHOR | D, count())
FROM BOOK . f r on(BOOK)
GROUP BY AUTHOR | D . gr oupBy(AUTHOR | D)
HAVI NG COUNT(*) >= 2 . havi ng(count (). ge(2))
.fetch();

According to the SQL standard, you may omit the GROUP BY clause and still issue a HAVING clause. This
will implicitly GROUP BY (). jJOOQ also supports this syntax. The following example selects one record,
only if there are at least 4 books in the books table:

SELECT COUNT(*) create. sel ect(count(*))

FROM BOOK . f rom(BOOK)

HAVI NG COUNT(*) >= 4 . havi ng(count (). ge(4))
.fetch();

3.3.4.7. WINDOW clause

The SQL:2003 standard supports a WINDOW clause that allows for specifying WINDOW frames for
reuse in SELECT clauses and ORDER BY clauses.

W ndowDef i nition w = nane("w'). as(
or der By(AUTHOR. FI RST_NAME)) ;

create. sel ect (

SELECT | ag(AUTHOR. FI RST_NAME, 1).over(w).as("prev"),
LAG first_nane, 1) OVER w "prev", AUTHOR. FI RST_NAME,
first_nane, | ead(AUTHOR. FI RST_NAME, 1).over(w).as("next"))
LEAD(first_name, 1) OVER w "next" . fron{ AUTHOR)

FROM aut hor . Wi ndow(w)

W NDOW w AS (ORDER first_nane) . or der By(AUTHOR. FI RST_NANE. desc())

ORDER BY first_nanme DESC .fetch();

Note that in order to create such a window definition, we need to first create a name reference using

DSL.name().

Even if only PostgreSQL and Sybase SQL Anywhere natively support this great feature, jOOQ can
emulate it by expanding any org.joog.WindowDefinition and org.joog.WindowSpecification types that
you pass to the window() method - if the database supports window functions at all.

Some more information about window functions and the WINDOW clause can be found on our blog:
https://blog.joog.org/probably-the-coolest-sgl-feature-window-functions/

Dialect support
This example using jOOQ:

sel ect (rowNumber (). over ("w")). fron{ AUTHOR) . wi ndow(nanme("w") . as(order By(AUTHOR. I D)))

Translates to the following dialect specific expressions:

© 2009 - 2025 by Data Geekery™ GmbH. Page 91 /826

https://www.jooq.org/javadoc/3.11.x/org/jooq/impl/DSL.html#name(java.lang.String...)
https://www.jooq.org/javadoc/3.11.x/org/jooq/WindowDefinition.html
https://www.jooq.org/javadoc/3.11.x/org/jooq/WindowSpecification.html
https://blog.jooq.org/probably-the-coolest-sql-feature-window-functions/

The jOOQ User Manual 3.3.4.8. ORDER BY clause

Aurora Postgres, BigQuery, ClickHouse, CockroachDB, Databricks, DuckDB, Exasol,
Firebird, H2, MySQL, Oracle, Postgres, SQLServer, SQLite, Sybase, Trino, YugabyteDB

SELECT row_nunber () OVER w
FROM AUTHOR
W NDOW w AS (ORDER BY AUTHCR. | D)

DB2, Hana, Informix, MariaDB, MemSQL, SQLDataWarehouse, Snowflake, Teradata,
Vertica

SELECT row_nunber () OVER (ORDER BY AUTHOR. | D)
FROM AUTHOR

ASE, Access, Aurora MySQL, Derby, HSQLDB, Redshift

/* UNSUPPORTED */

(1) Generated with JOOQ 3.21. Support in older jOOQ versions may differ. Translate your own SQL
on our website

3.3.4.8. ORDER BY clause

Databases are allowed to return data in any arbitrary order, unless you explicitly declare that order in
the ORDER BY clause.

SELECT AUTHCR ID, TITLE create. sel ect (BOOK. AUTHCR | D, BOOK. T TLE)
FROM BOOK . r on{ BOCK)
ORDER BY AUTHCR I D ASC, TITLE DESC . or der By(BOOK. AUTHOR I D. asc(), BOOK. TI TLE. desc())

.fetch();

Any jOOQ column expression (or field) can be transformed into an org.joog.SortField by calling the asc()
and desc() methods.

jO0Q's understanding of SELECT .. ORDER BY

The SQL standard defines that a "query expression" can be ordered, and that query expressions can
contain UNION, INTERSECT and EXCEPT clauses, whose subqueries cannot be ordered. While this is
defined as such in the SQL standard, many databases allowing for the LIMIT clause in one way or
another, do not adhere to this part of the SQL standard. Hence, jOOQ allows for ordering all SELECT
statements, regardless whether they are constructed as a part of a UNION or not. Corner-cases are
handled internally by jOOQ, by introducing synthetic subselects to adhere to the correct syntax, where
this is needed.

© 2009 - 2025 by Data Geekery™ GmbH. Page 92 /826

https://www.jooq.org/translate
https://www.jooq.org/translate
https://www.jooq.org/javadoc/3.11.x/org/jooq/SortField.html
https://www.jooq.org/javadoc/3.11.x/org/jooq/Field.html#asc()
https://www.jooq.org/javadoc/3.11.x/org/jooq/Field.html#desc()

The jOOQ User Manual 3.3.4.8.1. Ordering by field index

3.3.4.8.1. Ordering by field index

The SQL standard allows for specifying integer literals (literals, not bind values!) to reference column
indexes from the projection (SELECT clause). This may be useful if you do not want to repeat a lengthy
expression, by which you want to order - although most databases also allow for referencing aliased
column references in the ORDER BY clause.

An example of this is given here:

SELECT AUTHOR I D, TITLE create. sel ect (BOOK. AUTHOR | D, BOOK. Tl TLE)
FROM BOOK . f r on{ BOOK)
ORDER BY 1 ASC, 2 DESC .orderBy(inline(l).asc(), inline(2).desc())

.fetch();

(") Thispracticeis generally discouraged as field indexes may shift in the SELECT clause, and
devel opers might forget to update the indexes in ORDER BY. It is mainly useful for quick-and-dirty
ad-hoc QL. See also the don't do this section about this topic.

Dialect support
This example using jO0Q:
sel ect (BOOK. | D) . f r om(BOOK) . or der By(1)

Translates to the following dialect specific expressions:

All dialects

SELECT BOXK. | D
FROVI BOOK
ORDER BY 1

(1) Generated with JOOQ 3.21. Support in older jOOQ versions may differ. Translate your own SQL
on our website

3.3.4.8.2. Ordering and NULLS

A few databases support the SQL standard "null ordering" clause in sort specification lists, to define
whether NULL values should come first or last in an ordered result.

© 2009 - 2025 by Data Geekery™ GmbH. Page 93 /826

https://www.jooq.org/translate
https://www.jooq.org/translate

The jOOQ User Manual 3.3.4.8.2. Ordering and NULLS

SELECT create. sel ect (
AUTHOR. FI RST_NANE, AUTHOR. FI RST_NAME,
AUTHOR. LAST_NAVE AUTHOR. LAST_NAME)
FROM AUTHOR . f ron{ AUTHOR)
ORDER BY LAST_NAME ASC, . or der By (AUTHOR. LAST_NAME. asc(),
FI RST_NAMVE ASC NULLS LAST AUTHOR. FI RST_NAME. asc() . nul | sLast ())
.fetch();

If your database doesn't support this syntax, JOOQ emulates it using a CASE expression

Dialect support
This example using jOOQ:

sel ect (AUTHOR. FI RST_NAME) . f r om(AUTHOR) . or der By (AUTHOR. FI RST_NAME. asc() . nul | sLast ())

Translates to the following dialect specific expressions:

Access, SQLServer

SELECT AUTHOR. FI RST_NAME
FROM AUTHOR
ORDER BY iif(AUTHOR FI RST_NAME IS NOT NULL, 0, 1), AUTHOR FI RST_NAME ASC

ASE, Aurora MySQL, MemSQL, MySQL, SQLDataWarehouse, Sybase

SELECT AUTHOR. FI RST_NAVE

FROM AUTHOR

ORDER BY CASE
WHEN AUTHOR. FI RST_NAME | S NOT NULL THEN O
ELSE 1

END, AUTHOR. FI RST_NAME ASC

Aurora Postgres, BigQuery, ClickHouse, CockroachDB, Databricks, Derby, DuckDB,
Exasol, Firebird, H2, HSQLDB, Hana, Informix, Oracle, Postgres, SQLite, Snowflake,
Teradata, Trino, YugabyteDB

SELECT AUTHOR. FI RST_NAME
FROM AUTHOR
ORDER BY AUTHOR. FI RST_NAME ASC NULLS LAST

DB2, MariaDB, Redshift, Vertica

SELECT AUTHOR. FI RST_NAME
FROM AUTHOR
ORDER BY nvl 2(AUTHOR. FI RST_NAME, 0, 1), AUTHOR. Fl RST_NAME ASC

(1) Generated with JOOQ 3.21. Support in older JOOQ versions may differ. Translate your own SQL
on our website

© 2009 - 2025 by Data Geekery™ GmbH. Page 94 /826

https://www.jooq.org/translate
https://www.jooq.org/translate

The jOOQ User Manual 3.3.4.8.3. Ordering using CASE expressions

3.3.4.8.3. Ordering using CASE expressions

Using CASE expressions in SQL ORDER BY clauses is a common pattern, if you want to introduce
some sort indirection / sort mapping into your queries. As with SQL, you can add any type of column
expression into your ORDER BY clause.

For instance, if you have two favourite books that you always want to appear on top, you could write:

SELECT * create.sel ect()
FROM BOOK . f rom(BOOK)
ORDER BY CASE TI TLE . order By(case_(BOOK. Tl TLE)
WHEN ' 1984' THEN O .when("1984", 0)
WHEN ' Ani mal Farmi THEN 1 .when("Ani nal Farni', 1)
ELSE 2 END ASC .else_(2).asc())
.fetch();

But writing these things can become quite verbose. jOOQ supports a convenient syntax for specifying
sort mappings. The same query can be written in jJOOQ as such:

create.select()
. f r om(BOOK)
. order By(BOOK. Tl TLE. sort Asc("1984", "Aninmal Farni))
.fetch();

More complex sort indirections can be provided using a Map:

create. select()
. f rom(BOOK)
. order By(BOOK. Tl TLE. sort (Map. of (
"1984", 1,
"Ani mal Farni, 13,
"The j OOQ book", 10

)))
.fetch();

Of course, you can combine this feature with the previously discussed NULLS FIRST / NULLS LAST
feature. So, if in fact these two books are the ones you like least, you can put all NULLS FIRST (all the
other books):

create.select()
. f r om(BOOK)
. order By(BOOK. TI TLE. sort Asc("1984", "Aninal Farni).nullsFirst())
.fetch();

Dialect support
This example using jOOQ:

sel ect (BOOK. I D). f r on{ BOOK) . or der By(BOOK. Tl TLE. sort Asc("1984", "Animal Farni))

Translates to the following dialect specific expressions:

© 2009 - 2025 by Data Geekery™ GmbH. Page 95/ 826

The jOOQ User Manual

Access

SELECT BOXK. | D
FROVI BOOK

ORDER BY SW TCH(BOOK. TI TLE = ' 1984', 0, BOOK. TITLE = ' Aninmal Farni,

1) ASC

3.3.4.8.4. Oracle's ORDER SIBLINGS BY clause

ASE, Aurora MySQL, Aurora Postgres, BigQuery, ClickHouse, CockroachDB, DB2,

Databricks, DuckDB, Exasol, Firebird, H2, HSQLDB, Hana, Informix, MariaDB, MemSQL,
MySQL, Oracle, Postgres, Redshift, SQLDataWarehouse, SQLServer, SQLite, Snowflake,
Sybase, Teradata, Trino, Vertica, YugabyteDB

SELECT BOXXK. | D
FROM BOOK
ORDER BY CASE BOXK. TI TLE
WHEN ' 1984' THEN 0
WHEN ' Ani mal Farmi THEN 1
END ASC

Derby

SELECT BOXK. | D
FROM BOOK
ORDER BY CASE
WHEN BOOK. TI TLE = ' 1984' THEN 0

WHEN BOOK. TI TLE = " Ani mal Farmi THEN 1

END ASC

(1) Generated with JOOQ 3.21. Support in older jOOQ versions may differ. Translate your own SQL

on our website

3.3.4.8.4. Oracle's ORDER SIBLINGS BY clause

jOOQ also supports Oracle's SIBLINGS keyword to be used with ORDER BY clauses for hierarchical

gueries using CONNECT BY

create. sel ect (sysConnect ByPat h(DI RECTORY. LABEL,

. from(DI RECTORY)

.start Wt h(DI RECTORY. PARENT I D.i sNul I ())
. connect By(pri or (DI RECTORY. | D) . eq(DI RECTORY. PARENT_I D))

.order Si bl i ngsBy(DI RECTORY. LABEL)
.fetch();

3.3.4.9. LIMIT .. OFFSET clause

"/").as("dir"))

While being extremely useful for every application that does pagination, or just to limit result sets
to reasonable sizes, this clause has not been standardised up until SQL:2008. Hence, there exist a
variety of possible implementations in various SQL dialects, concerning this limit clause. jJOOQ chose to

© 2009 - 2025 by Data Geekery™ GmbH.

Page 96/ 826

https://www.jooq.org/translate
https://www.jooq.org/translate

The jOOQ User Manual 3.3.4.9. LIMIT .. OFFSET clause

implement the LIMIT .. OFFSET clause as understood and supported by MySQL, H2, HSQLDB, Postgres,
and SQLite. Here is an example of how to apply limits with jOOQ:

create.select().fronBOOK).orderBy(BOOK. ID).limt(1).offset(2).fetch();

This will limit the result to 1 books skipping the first 2 books (offset 2). limit() is supported in all dialects,
offset() in all but Sybase ASE, which has no reasonable means to emulate it. This is how jOOQ trivially
emulates the above query in various SQL dialects with native OFFSET pagination support:

-- MSQ., H2, HSQLDB, and SQLite
SELECT * FROM BOOK ORDER BY ID LIMT 1 OFFSET 2

- Derby, SQL Server 2012, Oracle 12c, PostgreSQL, the SQL: 2008 standard
SELECT * FROM BOOK ORDER BY | D OFFSET 2 ROAS FETCH NEXT 1 ROWS ONLY

- Inform x has SKIP .. FIRST support
SELECT SKIP 2 FIRST 1 * FROM BOOK ORDER BY | D

- Ingres (al nbst the SQL: 2008 standard)
SELECT * FROM BOOK ORDER BY | D OFFSET 2 FETCH FIRST 1 ROAS ONLY

- Firebird
SELECT * FROM BOOK ORDER BY I D ROWS 2 TO 3

- Sybase SQL Anywhere
SELECT TOP 1 START AT 3 * FROM BOOK ORDER BY | D

- DB2 (al nbst the SQL: 2008 standard, w thout OFFSET)
SELECT * FROM BOOK ORDER BY | D FETCH FI RST 1 ROWS ONLY

- Sybase ASE, SQL Server 2008 (without OFFSET)
SELECT TOP 1 * FROM BOOK ORDER BY | D

Things get a little more tricky in those databases that have no native idiom for OFFSET pagination (actual
qgueries may vary):

-~ DB2 (with OFFSET), SQL Server 2008 (with OFFSET)
SELECT * FROM (

SELECT BOCK. *,

ROW NUMBER() OVER (ORDER BY I D ASC) AS RN

FROM BOOK
) AS X
VHERE RN > 2
AND RN <= 3

-- DB2 (with OFFSET), SQL Server 2008 (with OFFSET)
SELECT * FROM (
SELECT DI STI NCT BOXK. | D, BOOK. Tl TLE,
DENSE_RANK() OVER (ORDER BY I D ASC, TITLE ASC) AS RN
FROM BOOK
) AS X
VWHERE RN > 2
AND RN <= 3
- Oracle 11g and |ess
SELECT *
FROM (
SELECT b.*, ROMUM RN
FROM (
SELECT *
FROM BOOK
ORDER BY | D ASC
) b
WHERE ROMNUM <= 3

)
WHERE RN > 2

As you can see, jOOQ will take care of the incredibly painful ROW_NUMBER() OVER() (or ROWNUM for
Oracle) filtering in subselects for you, you'll just have to write limit(1).offset(2) in any dialect.

SQL Server's ORDER BY, TOP and subqueries

As can be seen in the above example, writing correct SQL can be quite tricky, depending on the SQL
dialect. For instance, with SQL Server, you cannot have an ORDER BY clause in a subquery, unless you
also have a TOP clause. This is illustrated by the fact that JOOQ renders a TOP 100 PERCENT clause for
you. The same applies to the fact that ROW_NUMBER() OVER() needs an ORDER BY windowing clause,

© 2009 - 2025 by Data Geekery™ GmbH. Page 97/ 826

The jOOQ User Manual 3.3.4.10. WITH TIES clause

even if you don't provide one to the jOOQ query. By default, JOOQ adds ordering by the first column
of your projection.

Keyset pagination

Note, the LIMIT clause can also be used with the SEEK clause for keyset pagination.

3.3.4.10. WITH TIES clause

The previous chapter talked about the LIMIT clause, which limits the result set to a certain number of
rows. The SQL standard specifies the following syntax:

OFFSET m{ ROW| ROAS }
FETCH { FIRST | NEXT } n { RON| ROAS } { ONLY | WTH TIES }

By default, most users will use the semantics of the ONLY keyword, meaning a LIMIT 5 expression (or
FETCH NEXT 5 ROWS ONLY expression) will result in at most 5 rows. The alternative clause WITH TIES
will return at most 5 rows, except if the 5th row and the 6th row (and so on) are "tied" according to the
ORDER BY clause, meaning that the ORDER BY clause does not deterministically produce a 5th or 6th
row. For example, let's look at our book table:

SELECT * DSL. usi ng(confi gurati on)

FROM book . sel ect Fr on{ BOOK)

ORDER BY aut hor _id . or der By(BOOK. AUTHOR | D)

FETCH NEXT 1 ROAS W TH TI ES limit(1).withTies()

.fetch();

Resulting in:

B T - +

| id]| actor_id | title |

B T B +

|1 1| 1984 |

| 2] 1| Aninal Farm |

B T B +

We're now getting two rows because both rows "tied" when ordering them by ACTOR_ID. The database
cannot really pick the next 1 row, so they're both returned. If we omit the WITH TIES clause, then only
a random one of the rows would be returned.

Dialect support
This example using jOOQ:

sel ect (BOOK. I D) . f r om(BOOK) . or der By(BOOK. AUTHOR I D). limit(1).w thTies()

Translates to the following dialect specific expressions:

© 2009 - 2025 by Data Geekery™ GmbH. Page 98 /826

The jOOQ User Manual

3.3.4.10. WITH TIES clause

Aurora Postgres, CockroachDB, DB2, Firebird, Hana, MySQL, Sybase, Vertica,

YugabyteDB

SELECT vO I D
FROM (
SELECT
BOXK. | D vO,
rank() OVER (ORDER BY BOOK. AUTHOR ID) rn
FROM BOOK
) X
WHERE rn <= (0 + 1)
ORDER BY rn

BigQuery, Databricks, DuckDB, Exasol, Snowflake

SELECT BOCK. | D
FROM BOOK
QUALI FY rank() OVER (ORDER BY BOOK. AUTHOR ID) <= (0 + 1)

ClickHouse, H2, MariaDB, Oracle, Postgres, Trino

SELECT BOXK. | D

FROM BOOK

ORDER BY BOOK. AUTHOR | D
FETCH NEXT 1 ROAS W TH TI ES

Informix

SELECT vO I D
FROM (
SELECT *
FROM (
SELECT
BOXK. I D vO,
rank() OVER (ORDER BY BOOK. AUTHOR ID) rn
FROM BOOK
) X
) X
WHERE rn <= (0 + 1)
ORDER BY rn

Redshift

SELECT BOCK. | D

FROM BOOK

VWHERE 1 = 1

QUALI FY rank() OVER (ORDER BY BOOK. AUTHOR ID) <= (0 + 1)

SQLDataWarehouse, SQLServer, Teradata

SELECT TOP 1 WTH TI ES BOXK. | D
FROM BOOK
ORDER BY BOOK. AUTHOR | D

© 2009 - 2025 by Data Geekery™ GmbH.

Page 99/ 826

The jOOQ User Manual 3.3.4.11. SEEK clause

ASE, Access, Aurora MySQL, Derby, HSQLDB, MemSQL, SQLite

/* UNSUPPORTED */

(1) Generated with JOOQ 3.21. Support in older jOOQ versions may differ. Translate your own SQL
on our website

3.3.4.11. SEEK clause

One of the previous chapters talked about OFFSET pagination using LIMIT .. OFFSET, or OFFSET .. FETCH
or some other vendor-specific variant of the same. This can lead to significant performance issues when
reaching a high page number, as all unneeded records need to be skipped by the database.

A much faster and more stable way to perform pagination is the so-called keyset pagination method
also called seek method. jOOQ supports a synthetic seek() clause, that can be used to perform keyset
pagination (learn about other synthetic sgl syntaxes). Imagine we have these data:

Hommmm e Fommmmm Fommmmm e aaa +
| ID | VALUE | PAGE_BOUNDARY |
Hommmm e Fommmmm Fommmmm e aaa +
[o o
| 474 | 2| 0|
| 533 | 2| 1| <-- Before page 6
640	2	0
776	2	0
815	2	0
947	2	0
37	3	1
287	3	0
3	0	
o o		
+

Now, if we want to display page 6 to the user, instead of going to page 6 by using a record OFFSET, we
could just fetch the record strictly after the last record on page 5, which yields the values (533, 2). This
is how you would do it with SQL or with jOOQ:

DSL. usi ng(confi gurati on)
.select(T.1D, T.VALUE)
SELECT id, value from(T)

FROM t .orderBy(T.VALUE, T.1D)
WHERE (value, id) > (2, 533) .seek(lastValue, lastld) // fromlast page: value = 2, id =
ORDER BY val ue, id 533
LIMT 5 linit(5)
.fetch();

As you can see, the jJOOQ SEEK clause is a synthetic clause that does not really exist in SQL. However,
the jOOQ syntax is far more intuitive for a variety of reasons:

- ltreplaces OFFSET where you would expect

- Itdoesn't force you to mix regular predicates with "seek" predicates

- tis typesafe

- Itemulates row value expression predicates for you, in those databases that do not support
them

This query now yields:

© 2009 - 2025 by Data Geekery™ GmbH. Page 100/ 826

https://www.jooq.org/translate
https://www.jooq.org/translate

The jOOQ User Manual 3.3.4.12. FOR UPDATE clause

Note that you cannot combine the SEEK clause with the OFFSET clause.

More information about this great feature can be found in the jOOQ blog:

- https://blog.joog.org/faster-sgl-paging-with-joog-using-the-seek-method/
- https://blog.joog.org/faster-sgl-pagination-with-keysets-continued/

Further information about offset pagination vs. keyset pagination performance can be found on our
partner page:

3.3.4.12. FOR UPDATE clause

For inter-process synchronisation and other reasons, you may choose to use the SELECT .. FOR UPDATE
clause to indicate to the database, that a set of cells or records should be locked by a given transaction
for subsequent updates. With jOOQ, this can be achieved as such:

SELECT * create.select()

FROM BOOK . f rom(BOOK)

WHERE ID = 3 . wher e(BOXK. | D. eq(3))

FOR UPDATE . forUpdat e()
.fetch();

The above example will produce a record-lock, locking the whole record for updates. Some databases
also support cell-locks using FOR UPDATE OF ..

SELECT * create. sel ect ()

FROM BOOK . f rom(BOOK)

WHERE ID = 3 . wher e(BOOK. I D. eq(3))

FOR UPDATE OF TITLE . for Updat e() . of (BOOK. TI TLE)

.fetch();

Oracle goes a bit further and also allows to specify the actual locking behaviour. It features these
additional clauses, which are all supported by jOOQ:

- FOR UPDATE NOWAIT: This is the default behaviour. If the lock cannot be acquired, the query
fails immediately

- FOR UPDATE WAIT n: Try to wait for [n] seconds for the lock acquisition. The query will fail only
afterwards

- FOR UPDATE SKIP LOCKED: This peculiar syntax will skip all locked records. This is particularly
useful when implementing queue tables with multiple consumers

With jOOQ, you can use those Oracle extensions as such:

© 2009 - 2025 by Data Geekery™ GmbH. Page 101 /826

https://blog.jooq.org/faster-sql-paging-with-jooq-using-the-seek-method/
https://blog.jooq.org/faster-sql-pagination-with-keysets-continued/
https://use-the-index-luke.com/no-offset
https://use-the-index-luke.com/no-offset

The jOOQ User Manual 3.3.4.12. FOR UPDATE clause

create. sel ect().fronBOOK).where(BOOXK.|D.eq(3)).forUpdate().nowait().fetch();
create. sel ect().fronBOOK).where(BOOK.|D.eq(3)).forUpdate().wait(5).fetch();
create. sel ect().fronm BOOK).where(BOXK. | D.eq(3)).forUpdate().skipLocked().fetch();

FOR UPDATE in SQL Server

(") Thisbehaviour has been changed in jOOQ 3.14, where we generate hints instead of updatable
CUrsors.

The SQL standard specifies a FOR UPDATE clause to be applicable for cursors. Most databases
interpret this as being applicable for all SELECT statements. An exception to this rule are the SQL
Server database, that do not allow for any FOR UPDATE clause in a regular SQL SELECT statement.
jOOQ emulates the FOR UPDATE behaviour, by locking record by record with JDBC. JDBC allows for
specifying the flags TYPE_SCROLL_SENSITIVE, CONCUR_UPDATABLE for any statement, and then using
ResultSet.updateXXX() methods to produce a cell-lock / row-lock. Here's a simplified example in JDBC:

try (
PreparedSt atement stnt = connecti on. prepar eSt at enent (
"SELECT * FROM author WHERE id IN (3, 4, 5)",
Resul t Set . TYPE_SCROLL_SENSI Tl VE,
Resul t Set . CONCUR_UPDATABLE) ;
Resul tSet rs = stnt.executeQuery()
) {
while (rs.next()) {

/1 UPDATE the primary key for row|ocks, or any other colums for cell-Iocks
rs. updateCbject (1, rs.getOhject(1));
rs. updat eRow() ;

// Do nore stuff with this record
}
}

The main drawback of this approach is the fact that the database has to maintain a scrollable cursor,
whose records are locked one by one. This can cause a major risk of deadlocks or race conditions if
the JDBC driver can recover from the unsuccessful locking, if two Java threads execute the following
statements:

-- thread 1
SELECT * FROM aut hor ORDER BY id ASC;

-- thread 2
SELECT * FROM aut hor ORDER BY id DESC;

So use this technique with care, possibly only ever locking single rows!

Pessimistic (shared) locking with the FOR SHARE clause

Some databases (MySQL, Postgres) also allow to issue a non-exclusive lock explicitly using a FOR SHARE
clause. This is also supported by jOOQ

Optimistic locking in jJOOQ

Note, that jOOQ also supports optimistic locking, if you're doing simple CRUD. This is documented in
the section's manual about optimistic locking.

© 2009 - 2025 by Data Geekery™ GmbH. Page 102 /826

The jOOQ User Manual 3.3.4.13. Set operations

3.3.4.13. Set operations

SQL allows to perform set operations as understood in standard set theory on result sets. These
operations include unions, intersections, subtractions. For two subselects to be combinable by such a
set operator, each subselect must return a table expression of the same degree and type.

All of these set operations come with 2 flavours:

- DISTINCT (the default): Removing duplicates after applying the set operation
- ALL: Retaining duplicates after applying the set operation

3.3.4.13.1. Type safety

Two subselects of degree less than 22 that are combined by a set operator are required to be of
the same degree and, in most databases, also of the same type. JOOQ 3.0's introduction of Typesafe
Record[N] types helps compile-checking these constraints:

I/ Sonme sanpl e SELECT statenents

Sel ect <Record2<I nteger, String>> sl
Sel ect <Recor d1<I nt eger >> s2
Sel ect <Recor d2<I nteger, |nteger>> s3
Sel ect <Record2<I nteger, String>> s4

sel ect (BOOK. | D, BOOK. Tl TLE) . f r on(BOOK) ;

sel ect One();

sel ect (one(), zero());

sel ect (one(), inline("abc"));

Il Let's try to conbine them

sl.union(s2); // Doesn't conpile because of a degree mi smatch. Expected: Record2<...>, got: Recordl<...>
sl.union(s3); // Doesn't conpile because of a type m smatch. Expected: <Integer, String> got: <Integer, |nteger>
sl.union(s4); // OK The two Record[N] types match

3.3.4.13.2. Projection rowtype

Much like most dialects use only the first set operation subquery's column names and types for the
resulting row type, so does jOOQ.

Since jOOQ does not know which row is produced by which union subqguery, it cannot disambiguate
these rows in case the projection row type isn't exactly identical. As such, the ad-hoc converter in the
following example is ignored:

Resul t <Recor d1<l nteger>> result =
create. sel ect (BOXK. | D)

. f rom(BOOK)

. uni on(

/1l This has no effect
sel ect (AUTHOR. | D. convert Fronm(i -> -i))

. from(AUTHOR))
.fetch();

While this can lead to subtle bugs, it makes perfect sense, knowing that a Converter is always applied
at the client side of the execution.

© 2009 - 2025 by Data Geekery™ GmbH. Page 103 /826

The jOOQ User Manual 3.3.4.13.3. Differences to standard SQL

3.3.4.13.3. Differences to standard SQL

As previously mentioned in the manual's section about the ORDER BY clause, JOOQ has slightly changed
the semantics of these set operators. While in SQL, a set operation subselect may not immediately
contain any ORDER BY clause or LIMIT clause (unless you wrap the subselect into a derived table), JOOQ
allows you to do so. In order to select both the youngest and the oldest author from the database, you
can issue the following statement with jJOOQ (rendered to the MySQL dialect):

(SELECT * FROM AUTHOR create. sel ect Fr on(AUTHOR)
ORDER BY DATE_OF _BIRTH ASC LIM T 1) . or der By(AUTHOR. DATE_OF_BI RTH. asc()).linit (1)
UNI ON . uni on(
(SELECT * FROM AUTHOR sel ect Fr on{ AUTHOR)
ORDER BY DATE_OF BI RTH DESC LIM T 1) . or der By(AUTHOR. DATE_OF_BI RTH. desc()).limt (1))
ORDER BY 1 .orderBy(1)
.fetch();

In case your database doesn't support ordered UNION subselects, the subselects are nested in derived
tables.

SELECT * FROM (
SELECT * FROM AUTHOR
ORDER BY DATE_OF BIRTH ASC LIMT 1

)
UNI ON
SELECT * FROM (
SELECT * FROM AUTHOR
ORDER BY DATE_OF BIRTH DESC LIMT 1

)
ORDER BY 1

Dialect support
This example using jO0Q:

sel ect (BOOK. I D) . f ron{ BOOK) . or der By(BOOK. I D). i mi t (1) . uni on(sel ect (AUTHOR. I D). f r on{ AUTHOR) . or der By(AUTHOR. I D). | i mi t (1)) . order By(1)

Translates to the following dialect specific expressions:

Access, SQLDataWarehouse, Sybase

(
SELECT TOP 1 BOCK. | D
FROM BOOK
ORDER BY BOOK. | D

)

UNION (
SELECT TOP 1 AUTHCR. | D
FROM AUTHOR
ORDER BY AUTHOR. | D

)
ORDER BY 1

© 2009 - 2025 by Data Geekery™ GmbH. Page 104 /826

The jOOQ User Manual 3.3.4.13.3. Differences to standard SQL

ASE, SQLServer

SELECT *

FROM (
SELECT TOP 1 BOXK. | D
FROM BOOK
ORDER BY BOXK. | D

) X

UNI ON

SELECT *

FROM (
SELECT TOP 1 AUTHOR. | D
FROM AUTHOR
ORDER BY AUTHOR. | D

) X

ORDER BY 1

Aurora MySQL, Aurora Postgres, CockroachDB, DuckDB, Exasol, HSQLDB, Hana, MySQL,
Redshift, Snowflake, Vertica, YugabyteDB

SELECT BOXXK. I D
FROM BOOK

ORDER BY BOX. | D
LIMT 1

)

UNION (
SELECT AUTHCR | D
FROM AUTHOR
ORDER BY AUTHCR | D
LIMT 1

)
ORDER BY 1

BigQuery

SELECT BOCK. I D
FROM BOOK
ORDER BY BOCK. | D
LIMT 1

)

UNI ON DI STI NCT (
SELECT AUTHCR. | D
FROM AUTHOR
ORDER BY AUTHCR. | D
LIMT 1

)

ORDER BY 1

© 2009 - 2025 by Data Geekery™ GmbH. Page 105/ 826

The jOOQ User Manual

ClickHouse

SELECT
o™
FROM (
(
SELECT BOXK. I D
FROVI BOOK
ORDER BY BOXK. I D
LIMT 1

)

UNION DI STINCT (
SELECT AUTHOR. | D
FROM AUTHOR
ORDER BY AUTHOR. | D
LIMT 1

)

)t
ORDER BY 1

Databricks

SELECT BOXK. | D
FROM BOOK
ORDER BY BOXK. | D
LIMT CAST(1 AS int)
)
UNION (
SELECT AUTHCR. | D
FROM AUTHOR
ORDER BY AUTHCR. | D
LIMT CAST(1 AS int)
)
ORDER BY 1

DB2, Firebird, Oracle

SELECT *
FROM (
SELECT BOX. | D
FROM BOOK
ORDER BY BOXK. | D
FETCH NEXT 1 ROAS ONLY
) X
UNI ON
SELECT *
FROM (
SELECT AUTHOR. | D
FROM AUTHOR
ORDER BY AUTHOR. | D
FETCH NEXT 1 ROAS ONLY
) X
ORDER BY 1

© 2009 - 2025 by Data Geekery™ GmbH.

3.3.4.13.3. Differences to standard SQL

Page 106 /826

The jOOQ User Manual 3.3.4.13.3. Differences to standard SQL

Derby, H2, MariaDB, Postgres, Trino

SELECT BOXK. | D

FROVI BOOK

ORDER BY BOXK. I D
FETCH NEXT 1 ROWS ONLY

)
UNION (
SELECT AUTHOR. | D
FROM AUTHOR
ORDER BY AUTHOR. | D
FETCH NEXT 1 ROAB ONLY

)
ORDER BY 1

Informix

SELECT *
FROM (
SELECT BOXXK. I D
FROM BOOK
ORDER BY BOX. | D
) X
UNI ON
SELECT *
FROM (
SELECT *
FROM (
SELECT FIRST 1 AUTHOR | D
FROM AUTHOR
ORDER BY AUTHOR. | D
) X
) X
ORDER BY 1

MemSQL

SELECT
(P
FROM (

SELECT BOXK. | D
FROM BOOK

ORDER BY BOXK. | D
LIMT 1

)
UNI ON (
SELECT AUTHCR. | D
FROM AUTHOR
ORDER BY AUTHCR. I D
LIMT 1
)
)t
ORDER BY 1

© 2009 - 2025 by Data Geekery™ GmbH. Page 107 /826

The jOOQ User Manual

SQLite

SELECT *

FROM (
SELECT BOXX. | D
FROM BOOK
ORDER BY BOXK. | D
LIMT 1

) X

UNI ON

SELECT *

FROM (
SELECT AUTHOR. | D
FROM AUTHOR
ORDER BY AUTHOR. | D
LIMT 1

) X

ORDER BY 1

Teradata

(
SELECT TOP 1 BOXK. I D

FROVI BOOK
ORDER BY BOX. | D
)
UNION (
SELECT *
FROM (
SELECT TOP 1 AUTHOR. | D
FROVI AUTHOR
ORDER BY AUTHOR. | D
) X
)
ORDER BY 1

3.3.4.13.4. UNION

(1) Generated with JOOQ 3.21. Support in older jOOQ versions may differ. Translate your own SQL

on our website

3.3.4.13.4. UNION

A UNION operation combines two subquery results of compatible row type into a single result. UNION
DISTINCT semantics is implied, i.e. all duplicate records resulting from this combination are removed.
Typically, you should prefer UNION ALL over UNION, if you don't really need to remove duplicates, see
also this section of the manual. The following example shows how to use such a UNION operation in

j00Q.

SELECT * FROM BOOK WHERE ID = 3
UNI ON
SELECT * FROM BOOK WHERE ID = 5

Dialect support

This example using jOOQ:

© 2009 - 2025 by Data Geekery™ GmbH.

create. sel ect Fron(BOOK) . wher e(BOOK. | D. eq(3))

create. sel ect Fron(BOOK) . wher e(BOOK. | D. eq(5)))

Page 108 / 826

https://www.jooq.org/translate
https://www.jooq.org/translate

The jOOQ User Manual 3.3.4.13.4. UNION

sel ect (BOOK. I D). f ron{ BOOK) . uni on(sel ect (AUTHOR. | D) . f r on{ AUTHOR)) . or der By (BOCK. | D)
Translates to the following dialect specific expressions:

ASE, Access, Aurora MySQL, Aurora Postgres, CockroachDB, DB2, Databricks, Derby,
DuckDB, Exasol, H2, HSQLDB, Hana, Informix, MariaDB, MySQL, Oracle, Postgres,

Redshift, SQLDataWarehouse, SQLServer, SQLite, Snowflake, Sybase, Teradata, Trino,
Vertica, YugabyteDB

SELECT BOXK. | D
FROM BOOK

UNI ON

SELECT AUTHOR. | D
FROM AUTHOR
ORDER BY I D

BigQuery

SELECT BOXK. | D
FROVI BOOK

UNI ON DI STI NCT
SELECT AUTHOR. | D
FROM AUTHOR
ORDER BY I D

ClickHouse

SELECT
t.*

FROM (
SELECT BOXK. | D
FROM BOOK
UNI ON DI STI NCT
SELECT AUTHOR. | D
FROM AUTHOR

) t

ORDER BY I D

Firebird

SELECT BOXK. | D
FROM BOOK

UNI ON

SELECT AUTHOR. | D
FROM AUTHOR
ORDER BY 1

© 2009 - 2025 by Data Geekery™ GmbH. Page 109/ 826

The jOOQ User Manual 3.3.4.13.5. UNION ALL

MemSQL

SELECT
.

FROM (
SELECT BOOK. | D
FROM BOCK
UNI ON
SELECT AUTHCR | D
FROM AUTHOR

)t

ORDER BY | D

(1) Generated with JOOQ 3.21. Support in older jOOQ versions may differ. Translate your own SQL
on our website

3.3.4.13.5. UNION ALL

A UNION ALL operation combines two subquery results of compatible row type into a single result
without removing duplicates. Typically, you should prefer UNION ALL over UNION, if you don't really
need to remove duplicates, see also this section of the manual. The following example shows how to
use such a UNION ALL operation in jOOQ.

SELECT * FROM BOOK WHERE ID = 3 create. sel ect Fr on(BOOK) . wher e(BOOK. | D. eq(3))

UNI ON ALL . uni onAl | (

SELECT * FROM BOOK WHERE ID = 5 create. sel ect Fronm(BOXK) . wher e(BOOK. I D. eq(5)))
.fetch();

Dialect support
This example using jOOQ:

sel ect (BOOK. I D) . f rom(BOOK) . uni onAl | (sel ect (AUTHOR. | D) . f r om{ AUTHOR)) . or der By (BOOK. | D)

Translates to the following dialect specific expressions:

ASE, Access, Aurora MySQL, Aurora Postgres, BigQuery, CockroachDB, DB2, Databricks,
Derby, DuckDB, Exasol, H2, HSQLDB, Hana, Informix, MariaDB, MySQL, Oracle, Postgres,
Redshift, SQLDataWarehouse, SQLServer, SQLite, Snowflake, Sybase, Teradata, Trino,
Vertica, YugabyteDB

SELECT BOX. | D
FROM BOOK

UNION ALL

SELECT AUTHOR. | D
FROM AUTHOR
ORDER BY I D

© 2009 - 2025 by Data Geekery™ GmbH. Page 110/826

https://www.jooq.org/translate
https://www.jooq.org/translate

The jOOQ User Manual 3.3.4.13.6. INTERSECT

ClickHouse, MemSQL

SELECT
.

FROM (
SELECT BOOK. | D
FROM BOCK
UNI ON' ALL
SELECT AUTHCR | D
FROM AUTHOR

)t

ORDER BY | D

Firebird

SELECT BOXK. | D
FROM BOOK

UNION ALL

SELECT AUTHOR. | D
FROM AUTHOR
ORDER BY 1

(1) Generated with JOOQ 3.21. Support in older jOOQ versions may differ. Translate your own SQL
on our website

3.3.4.13.6. INTERSECT

INTERSECT is the operation that produces only those values that are returned by both subselects. By
default, this removes duplicate rows. Use INTERSECT ALL in order to retain them, and require duplicates
to appear in both subqueries.

SELECT | D FROM BOOK create. sel ect (BOOK. | D). f r om(BOOK)

| NTERSECT .intersect(

SELECT | D FROM AUTHOR create. sel ect (AUTHOR. | D). f r on{ AUTHOR))
.fetch();

Dialect support
This example using jOO0Q:

sel ect (BOOK. I D). f ronm(BOOK) . i nt er sect (sel ect (AUTHOR. | D) . f r on{ AUTHOR)) . or der By (BOOK. | D)

Translates to the following dialect specific expressions:

© 2009 - 2025 by Data Geekery™ GmbH. Page 111/826

https://www.jooq.org/translate
https://www.jooq.org/translate

The jOOQ User Manual

3.3.4.13.6. INTERSECT

ASE, Aurora Postgres, CockroachDB, DB2, Databricks, Derby, DuckDB, Exasol, H2,
HSQLDB, Hana, Informix, MariaDB, MySQL, Oracle, Postgres, SQLDataWarehouse,

SQLServer, SQLite, Snowflake, Sybase, Teradata, Trino, Vertica, YugabyteDB

SELECT BOXK. | D
FROVI BOOK

| NTERSECT

SELECT AUTHOR. | D
FROM AUTHOR
ORDER BY I D

BigQuery

SELECT BOXXK. | D
FROM BOOK

I NTERSECT DI STI NCT
SELECT AUTHOR. | D
FROM AUTHOR

ORDER BY I D

ClickHouse

SELECT
(P

FROM (
SELECT BOXK. | D
FROM BOOK

I NTERSECT DI STI NCT

SELECT AUTHOR. | D
FROM AUTHOR

)t

ORDER BY ID

MemSQL

SELECT
t.*

FROM (
SELECT BOOK. | D
FROM BOOK
| NTERSECT
SELECT AUTHOR. | D
FROM AUTHOR

)t

ORDER BY | D

Access, Aurora MySQL, Firebird, Redshift

/* UNSUPPORTED */

(1) Generated with JOOQ 3.21. Support in older JOOQ versions may differ. Translate your own SQL

on our website

© 2009 - 2025 by Data Geekery™ GmbH.

Page 112/826

https://www.jooq.org/translate
https://www.jooq.org/translate

The jOOQ User Manual 3.3.4.13.7. INTERSECT ALL

3.3.4.13.7. INTERSECT ALL

INTERSECT ALL is the operation that produces only those values that are returned by both subselects
without removing duplicates.

SELECT | D FROM BOOK create. sel ect (BOOK. | D). f r om(BOOK)

| NTERSECT ALL .intersectAll (

SELECT | D FROM AUTHOR create. sel ect (AUTHOR. | D). f r on{ AUTHOR))
.fetch();

Dialect support
This example using jOOQ:

sel ect (BOOK. I D). fron{ BOOK) . i ntersect Al | (sel ect (AUTHOR. | D) . f r om{ AUTHOR)) . or der By (BOOK. | D)

Translates to the following dialect specific expressions:

Aurora Postgres, CockroachDB, DB2, Databricks, Derby, DuckDB, HSQLDB, MariaDB,
MySQL, Oracle, Postgres, Sybase, Teradata, Trino, YugabyteDB

SELECT BOXK. | D
FROM BOOK

| NTERSECT ALL
SELECT AUTHOR. | D
FROM AUTHOR
ORDER BY I D

ClickHouse

SELECT
t.*

FROM (
SELECT BOOK. | D
FROM BOOK
| NTERSECT ALL
SELECT AUTHOR. | D
FROM AUTHOR

) t

ORDER BY | D

ASE, Access, Aurora MySQL, BigQuery, Exasol, Firebird, H2, Hana, Informix, MemSQL,
Redshift, SQLDataWarehouse, SQLServer, SQLite, Showflake, Vertica

/* UNSUPPORTED */

(1) Generated with JOOQ 3.21. Support in older jOOQ versions may differ. Translate your own SQL
on our website

© 2009 - 2025 by Data Geekery™ GmbH. Page 113/826

https://www.jooq.org/translate
https://www.jooq.org/translate

The jOOQ User Manual 3.3.4.13.8. EXCEPT

3.3.4.13.8. EXCEPT

EXCEPT (or MINUS in Oracle) is the operation that returns only those values that are returned exclusively
in the first subselect. By default, this removes duplicate rows. Use EXCEPT ALL in order to retain them,
and require duplicates to appear in both subqueries.

SELECT | D FROM BOOK create. sel ect (BOOK. | D). f r om(BOOK)

EXCEPT . except (

SELECT | D FROM AUTHOR create. sel ect (AUTHOR. | D). f r on{ AUTHOR))
.fetch();

Dialect support
This example using jOOQ:

sel ect (BOOK. I D). f r on{ BOOK) . except (sel ect (AUTHOR. | D) . f r on{ AUTHOR)) . or der By (BOOK. | D)

Translates to the following dialect specific expressions:

