The jOOQ™ User Manual

SQL was never meant to be abstracted. To be confined in the narrow
boundaries of heavy mappers, hiding the beauty and simplicity of relational
data. SQL was never meant to be object-oriented. SQL was never meant to
be anything other than... SQL!

The jOOQ User Manual

Overview

This manual is divided into six main sections:

Getting started with JOOQ

This section will get you started with jOOQ quickly. It contains simple explanations about what
jO0Q is, what jOOQ isn't and how to set it up for the first time

SQL building

This section explains all about the jOOQ syntax used for building queries through the query DSL
and the query model API. It explains the central factories, the supported SQL statements and
various other syntax elements

Code generation

This section explains how to configure and use the built-in source code generator

SQL execution

This section will get you through the specifics of what can be done with jJOOQ at runtime, in order
to execute queries, perform CRUD operations, import and export data, and hook into the jOOQ
execution lifecycle for debugging

Tools

This section is dedicated to tools that ship with jOOQ.

Reference

This section is a reference for elements in this manual

© 2009 - 2024 by Data Geekery™ GmbH. Page 2/1238

#Overview

The jOOQ User Manual

Table of contents

L P B AT ettt

2. Copyright, LICENSE, @Nd Trad@mMArKS........c.oiuiiiiiiiiieieie b
3. Getting Started WIth JOOQ i
3.1. How to read this manual........cccooeiviininni.

3.2. The sample database used in this manual
3.3. Different use €Cases fOr JOOQ . ..ot
3.3.1.jO0Q as a SQL builder without code generation

3.3.2.jO0Q as a SQL builder With COAE SENEIATION.oiiieiee s
3.3.3. JOOQ @S 3 SQL EXECULON .ttt bbbt
3.3.4 JOOQ TOF CRUD ...ttt et
3.3.5. JOOQ FOF PROS.....ooieiiit et
3.4, GELEING JOOQ ..ttt
35 TUBOTIIS bbb
3.5.7. JOOQ TN 7 CASY SEOPS. ettt
3 51T SEEP 1o PIEPAIATION ..ttt
3.5.7.2. SEEP 21 YOUT QALADASE. ...
3.5.7.3. STEP 3 COUE GENEIATION......viiiieiei i
3.5.1.4. Step 4: Connect to your database
3.5.1.5. Step 5:
3.5.1.6. Step 6:
3.5.1.7. Step 7:
3.5.2. Using jOOQ with Flyway
3.5.3. USING JOOQ WITN JDBNG ...ttt
3.6, JOOQ QNG JAVA B.oiiiiiiiiiii bbb
3.7, JOOQ @NA JAVAFX ...ttt
3.8, JOOQ AN NASNOIM. .ot
3.9. JOOQ @NA SCAIA. 1.t
310, JOOQ ANA GIOOVY...ooiiiiiiiiiiii a2
31T, JOOQ NG KON ettt
312, JOOQ @NA NOSQL .ttt
313 JOOQ GNG JPA e
3.14. Build your own
3.15. jO0OQ and backwards-compatibility
A SQL DUITAING s
4.1. The query DSL type
A1 DSL SUDCIASSES. ..o
4.2. The DSLContext API
2.1, SQL DIAIECE. ..t
4.2.2. SQL DIAIECT FAMUIY. 1ot
4.2.3. SQL DIAIECE CAOEOMNY vttt
4.2.4. CONNECLION VS, DBLASOUITE. ...ttt
.25, CUSTOM GATAL ...ttt
4.2.6. CUSTOM EXECULELISTONEOIS.ot
A.2.7. CUSTOM LN DD S otttk 71
4. 2.8, CUSTOM SEELINES. 1.ttt 8 sttt bbbttt
4.2.8.1. Auto-attach Records........ccccoeeviiviirnininnn.

4.2.8.2. Auto-inline bind values
4.2.8.3. BACKSIASN ESCAPING. ..ot
4.2.8.4. Batch size
4.2.8.5. Computed column emulation

© 2009 - 2024 by Data Geekery™ GmbH. Page 3/1238

The jOOQ User Manual

4.2.8.6. DIAGNOSHICS COMMETTION. ...ttt
4.2.8.7. DIGENOSHICS LOZEINE. ..ottt bbbttt eees
4.2.8.8. Dollar quoted string token....

A.2.8.9. EXCCULE LOBEINE. vttt ettt 1 b8ttt
4.2.8.10. ExeCUte LOZZING SQL EXCEPTIONS. .. cvieiiiiiet ettt 76
428071, FEECN WaAITINES. ..ottt 76
4.2.8.12. GROUP_CONCAT CONTIGUIGLION. ...ttt 77
A.2.8.03. IONTITIEN SEYIO ... 77
4.2.8. T4 TMPICIT JOIN DY POttt 78
4.2.8.15. ININE TRFESNONIA. ... 79
42816, IN-IIST PAOAING. ... 80
4.2.8.17. INTEIPreter CONFIGUIATION.ot 81
42,818, JDBEC FIBZS . ettt 81
4.2.8.19. KEYWOIT STYIE....ioiiiii e 82
4.2.8.20. LISTENET INVOCALION OFTET ...ttt 82
4.2.827. LOCAlES. ..o,

4.2.8.22. Map JPA Annotations

4.2.8.23. ODJECE GUANTICATION ...ttt
4.2.8.24. Object qUAlITICAtION TOI COIUMMS ...t
4.2.8.25. OPHMUSTIC LOCKING ...ttt
4.2.8.26. PAramELr NAME PIEIIX .. ittt 2
A.2.8.27 . PAramMETET TYDES. ottt
4.2.8.28. PaArSEr CONTIGUIATION ...t
4.2.8.29. REFIECHION CATNING ..ttt
4.2.8.30. RETUN Il COIUMNS ON STOTE.....coiiiiieiiiii s
4.2.8.371. Return comMputed COIUMNS ON STOM ...t
4.2.8.32. Return DEFAULT COIUMNS ON STOT...... ittt
4.2.8.33. RetUrn 1dentify ValUe ON STOTE......co i
4.2.8.34. Runtime catalog, schema and table mapping

4.2.8.35. Scalar subqueries for STOred fUNCHIONS. ..o
4.2.8.36. SEEK Clause IMPIEMENTATION. ...t 91
A.2.8.37 . STATEIMENT TY Dttt 8 £ 92
4.2.8.38. UDAALabIE Primary KOYS... ... 93
4.2.9. TRFEAA SAFETY ... 93
4,30 TNE DSL AP 94
4.3 MULADITITY (NESTOMIC) vtk 95
A4 TNE MOAET AP 95
AT DSIEIN ettt R Rt 96
A2 TEAVEISAL. it 96
A.4.3. REPIGCEIMENT ..ot s bbb 98
4.4.3.7. Pattern transformation REPIACEToi e 100new)

4.4.3.2. Table mapping Replacer
4.4.3.3. LISTENING REPIGCET ...t
4.4.3.4. DECOMPOSING REPIACET ...ttt

4.4.4. The historic model API

4.5, SQL SEATEMIENES (DIML).. oo ettt ettt ettt ettt ettt
.51, THE WITH ClAUSE ..ot bbbt
4.5.2. The WITH RECURSIVE ClaUSE.......oovioeiieceies ettt 104
4.5.3. THE SELECT SEATEMIENT...iviiitiiiieiicii a2 105
45,31, SELECT ClAUSE ..ottt 106
4.5.3.7.7. PrOJECLION TYPE SATRLY ...ttt 106
A.5.3.1.2. SEIECIRIIA. ...ttt 106
4.5.3.1.3. TADIES @S SEIECEFIEIA. iviiiiiiiiici bbb 107
A5 3.1 4, SELECT oot 107

© 2009 - 2024 by Data Geekery™ GmbH. Page 4/1238

The jOOQ User Manual

4.5.3.1.5. SELECT # EXCEPT (o)t 108
4.5.3.1.0. SELECT DISTINCT oottt
4.5.3.1.7. SELECT DISTINCT ON..............

4.5.3.1.8. Convenience methods

4.5.3.2. FROM ClAUSE ...
.5.3.3. JOIN OPBIATON ..ttt
4.5.3.4. IMPLCIE PATN JOIN .ot
4.5.3.5. IMPpIicit T0-Many PAtN JOIN ..o 115new)
4.5.3.6. EXPICIE PAN JOIN ..ottt T16new)
4.5.3.7. IMPlICIE PAtN COMTEIATION. ...t 1172new)
4.5.3.8. WHERE ClAUSE. ... 117
4.5.3.9. CONNECT BY ClaUSE. ..ottt 117
4.5.3.10. GROUP BY ClAUSE ...ttt 119
4.53.10.T. GROUP BY COIUMINS....cooviitiiitt e 119
4.5.3.10.2. GROUP BY COIUMN INABX. ...ttt 119
4.5.3.10.3. GROUP BY tables...............

4.5.3.10.4. GROUP BY ROLLUP
4.5.3.10.5. GROUP BY CUBE

4.5.3.70.6. GROUP BY GROUPING SETS ... 123
4.5.3.10.7. GROUP BY €MPDLY SrOUDING ST vttt ettt 124
5377, HAVING CIAUSE. ..o 126
45312, WINDOW ClAUSE ...t 126
45313, QUALIFY ClAUSE. ...ttt ettt ettt ettt 127
45314, ORDER BY ClAUSE. ...uviiiiiei e 127
A.5.3.75. LIMIT o0 OFFSET ClAUSE ...t 129
4.5.3.16. WITH TIES clause

25,317, SEEK ClAUSE ...viie b
A.5.3.T8. FOR CIAUSE. ...ttt
4.5.3.19. FOR UPDATE clause
4.5.3.20. Set operations

4.5.3.20.71. TYPE SATETY. oot

4.5.3.20.2. PrOJECTION TOWEYDE. ... ottt 136
4.5.3.20.3. Differences t0 StANAArd SQL... ..ottt 136
2532004 UNITON ..ot 140
4.5.3.20.5. INTERSECT ... 141
2.5.3.20.6. EXCEPT oottt 143
4.5.3.27. Lexical and 108iCal SELECT ClaUSE OFQ@N ... 144
454, TRE INSERT STATEMIENT ..ottt 145
A5 A0 INSERT L VALUES o 146

4.5.4.2. INSERT ..
4.5.4.3. INSERT ..
4544, INSERT .. SELECT...
4.5.4.5. INSERT .. ON DUPLICATE KEY UPDATE
4.5.4.6. INSERT .. ON DUPLICATE KEY UPDATE .. EXCLUDED......ccociiiiiiiiieeee e 152
4.5.4.7. INSERT .. ON DUPLICATE KEY IGNORE
4.5.4.8. INSERT .. ON CONFLICT .. EXCLUDEDc.ciiiiiiiiiiiee et
A.5.4.9. INSERT .. ON CONFLICT .ottt ettt
45470, INSERT o0 RETURNING ootttk sttt ettt
4.5.5. TNE UPDATE STAEEMIENT ...ttt
A5 5T UPDATE Lo SET ettt h et e st s sttt
A.5.5.2. UPDATE .. SET ROWS ...t bbbttt
4.5.5.3. UPDATE . FROM ..ottt b s s h bttt
A.5.5.4. UPDATE . WHERE ... bbbt
4.5.5.5. UPDATE .. ORDER BY .. LIMIT ..ottt
© 2009 - 2024 by Data Geekery™ GmbH. Page 571238

The jOOQ User Manual

4.5.5.6. UPDATE .. RETURNING . ..ottt bbb 181
4.5.6. THE DELETE SEAEMIENT.....viviet ettt 182
4.5.6.1. DELETE .. USING.......

4.5.6.2. DELETE .. WHERE

4.5.6.3. DELETE .. ORDER BY .. LIMIT oottt b 185
4.5.6.4. DELETE .. RETURNINGc.iiiiet ettt 187
4.5.7. TNE MERGE STATEIMENT. ..ottt 188
4.6, SQL SEATEMIENES (DDL) .. ittt ettt ettt ettt ettt 189
4.6.1. TNE ALTER STATEIMENT. .. iiiiiieieiieieii et bbb 190
4677 ALTER DATABASEottt 190
4.6.1.2. ALTER DOMAIN ...t ittt 453114+ bbb 191
A.6.7.30 ALTER INDEX ..ottt et 192
4.0.1.4, ALTER SCTHEMA ..ottt 45 bbb 195
4.6.1.5. ALTER SEQUENCEoiiiieeeeeteeee ettt 197
Z.0.1.6. ALTER TABLE ...ttt s bbb
4.6.1.7. ALTER TYPE

4.6.1.7.1. ALTER TYPE ..

4.6.1.7.2. ALTER TYPE ..

Z0.1.8. ALTER VIEWttt
A.6.T.8.T. ALTER VIEW L AS ..ottt 200
4.6.1.8.2. ALTER VIEW .. COMMENT ..ottt s bbb 203
4.6.1.8.3. ALTER VIEW .. RENAMEoiitiiiieee ettt 204
4.6.1.8.4, ALTER VIEW TF EXISTS oottt bbb 205
4.6.2. The COMMENT SEATEMIENT......ooieiveieieet ettt ettt 206
4.6.2.1. COMMENT ON TABLE . ..ottt 206
4.6.2.2. COMMENT ON VIEW.....oiiiiet ettt ettt 208
4.6.2.3. COMMENT ON MATERIALIZED VIEW.......oooiiiiiiietieiieieie et 209new)
4.6.2.4. COMMENT ON COLUMNoooitieisteeieeet ettt ettt 210
4.6.3. The CREATE statement

4.6.3.1. CREATE DATABASEoooeeeeeeeee ettt
4.6.3.2. CREATE DOMAIN ...ttt 1145 bbb
4.6.3.3. CREATE FUNCTION ..ottt ettt
4.6.3.3.71. SCAIAI TUNCLIONS. ...ttt a3t
4.6.3.3.2. CREATE OR REPLACE FUNCTIONooiitiieieteie ettt 214
4.6.3.3.3. SQL data ACCESS CRAIACERIISTICS. ..cviviiiietee ettt ettt ettt 214
4.6.3.3.4. DETERMINISTIC CRAIACLEIISTIC......iiviieviiiceeies ettt 215
4.6.3.3.5. ON NULL INPUT CRAIaCEIISTIC. .ivoiuiiiiiieeiiiiiieieieieie et 215
4.6.3.4, CREATE INDEX ...ttt et 216
4.6.3.5. CREATE PROCEDUREcoiiitiiiititieie e e bbb bbb 217
4.6.3.5.7. CREATE OR REPLACE PROCEDURE. ... oottt 218
4.6.3.5.2. SQL data ACCESS CRAIACEEIISTICS. c.iviviiiieiee ettt ettt ettt 218
4.6.3.6. CREATE SCHEMAccooivvieiiieceeee e

4.6.3.7. CREATE SEQUENCE

4.6.3.7.1. CREATE SEQUENCE IF NOT EXISTS ..ottt ettt 221
4.6.3.7.2. CREATE SEQUENCE .. CACHE......cccoovvriunnnn.

4.6.3.7.3. CREATE SEQUENCE .. CYCLE ..ottt
4.6.3.7.4. CREATE SEQUENCE .. MINVALUE.......coiiiiiiiiiiet e bbb 224
4.6.3.7.5. CREATE SEQUENCE .. MAXVALUEoiiiiiiieeeeee et 224
4.6.3.7.6. CREATE SEQUENCE .. INCREMENT BY ..ottt 225
4.6.3.7.7. CREATE SEQUENCE .. START WITH ...ooiitioieiceees ettt 226
4.6.3.8. CREATE TABLE ..ottt b bbb bbbt 226
.6.3.8. 1. COIUMINS ..ottt 227
4.0.3.8.2. INUIADIITTY ... 228
.6.3.8.3. DEIAUILS ..ottt 230

© 2009 - 2024 by Data Geekery™ GmbH. Page 6/1238

The jOOQ User Manual

203,84 IABNTITIES ..o+ 232
4.6.3.8.5. COMPUEEA COIUMNS ... 236
4.6.3.8.6. Primary Key........ccccoou.

4.6.3.8.7. Unigue constraints

4.0.3.8.8. FOTQIGM KEYS.... oottt
4.6.3.8.9. CHECK CONSIIAINES.oiviieceieesce ettt sttt
4.6.3.8.10. FIOM @ SELECT ..o a bbbttt
4.6.3.8. 1T, TEMPOTANY TADIES..... i
4.6.3.9. CREATE TRIGGER ..ottt e
03,91, EVBNTS ettt L LA Ak £ b s h etk ekt et s sttt ettt
4.6.3.9.2. REFERENCING ClAUSE ..ottt bbb 252
4.6.3.9.3. STATEMENT VS ROW TFIEEEIS ...ttt 253
£.6.3.9.4, WHEN ClAUSE......ciiiiiiie e 253
4.6.3.10. CREATE TYPE . AS ENUM ..ottt st 253
4.6.3.17. CREATE TYPE .. AS OBJECT ..o e 254new)
4.6.3.12. CREATE VIEW...........

4.6.3.12.1. OR REPLACE

4.6.3.12.2. WITH CHECK OPTIONottt ettt 258
4.6.3.12.3. WITH READ ONLY .ottt s bbb bbb 259
4.6.3.12.4, MATERIALIZED ..ottt 263new)
4.6.4. TNE DROP STAEEIMENT....viitiiiiiiiiieieteteei ettt s 11 263
A.6.4.7. DROP DATABASE ..ottt 263
4.6.4.1.7. DROP DATABASE 1F EXISTS ..ottt bbb 264
4.6.4.2. DROP DOMAIN ... cooiiiiitieieie ettt ettt ettt 265
4.6.4.2.17. DROP DOMAIN TF EXISTS. oottt bbb 266
4.6.4.3. DROP FUNUCTION.....coiiiiiteteeeee ettt 267
4.6.4.3.17. DROP FUNCTION TF EXISTS oottt s bbb 268
46,44, DROP INDEX. ..ottt ettt
4.6.4.4.1. DROP INDEX IF EXISTS....

4.6.4.5. DROP PROCEDUREcoiiieeteteeee ettt ettt
4.6.4.5.7. DROP PROCEDURE IF EXISTS ..ottt s 273
4.6.4.6. DROP SCHEMA ..ottt 274
4.6.4.6.17. DROP SCHEMA TF EXISTS . oottt st 275
4.6.4.7. DROP SEQUENCE ..ottt ettt st 277
4.6.4.7.17. DROP SEQUENCE IF EXISTS ..ottt ettt e bbb 278
A.6.4.8. DROP TABLE ...ttt e 279
4.6.4.8.1. DROP TABLE IF EXISTS ..ottt bbbt 280
4.6.4.9. DROP TRIGGER ..ottt 282
4.6.4.9.7. DROP TRIGGER IF EXISTS ..ottt bbb 283
A.6.4.70. DROP TYPE ...ttt
4.6.4.10.1. DROP TYPE IF EXISTS

4.6.411. DROP VIEW......ccovevvevrr.

4.6.4.11.1. DROP VIEW IF EXISTS

4.6.4.11.2. DROP MATERIALIZED VIEW ..ottt 288new)
4.6.5. The GRANT statement....... 289
4.6.6. The REVOKE statement 289
Z.6.7. THE SET STAEIMENT.....iviiitiiieiei et 289
A.6.7.0. SET CATALOG . ..ottt 289
Z.0.7.2. SET STHEMA ... oot s bbb 290
4.6.8. THE TRUNCATE SEATEMIENT......cvieiiiieiet ettt sttt 292
4.6.9. GENEratiNg DDL fTOM ODJECES ...t 293
4.7, TranSACtIONAl STATEMENTS. ...ttt et 293
A.7.7. START TRANSACTION STATEMIENT. ...ttt 294
4.7.2. COMMIT STAEEMENT. ...ttt s stttk 2 e s s b s et £ et 2 s s s btk s bbbttt 296

© 2009 - 2024 by Data Geekery™ GmbH. Page 7/1238

The jOOQ User Manual

A.7.3. ROLLBACK STATEMIENT. ..ottt ettt sttt
4.7 4. SAVEPOINT SEATEIMIENT. ...tttk et et 2 e s st h bbbt s s skttt es ettt
4.7.5. RELEASE SAVEPOINT statement
4.8, ProCEAUNAl SEATEIMENES.oveceiees ettt ettt
4,871, BIOCK STATEMIENT. ..ottt
8.2, CALL STATOIMENT. ..ttt s ettt 2 s s s s sk b b s s skttt
2.8.3. CONTINUE STAEEIMIENT. ...tttk s bbbttt
484, EXECUTE STATEMENT. ..ottt ettt h stk b bbbtk b bttt s
8.5, EXIT STATEIMENT ..ottt Rkttt
A.8.6. FOR STATOIMENT ..ottt h ettt bbb s s bt 242 s s s s h ettt b bbbttt
A.8.7. GOTO STATEMIENT ..ttt a2tttk s s a bbb s bbbttt
8.8, TF SEATEIMIENT. ..ottt ettt h stk s A skt h R skttt
28,9, LADIS ... s

4.812. SIGNAL.......ooovere.
4.8.13. Variables

A8 T4 WHILE STATOIMIENT. ..ttt h bttt b bt s s s btk £ £ b s s s h et b bbbttt
4.9. Catalog and SCNEMIA EXPIESSIONS.ttt
A.10. TADIE EXPIESSIONS. ...t
4.710.7. GENETATEA TADIES. ..ot bbbt
A.10.2. AlTASEA TADIES ..ottt
4.70.2.1. AlIaSed GENETATEA TADIES ... e
4.10.2.2. AllaSEA £aDIE EXPIESSIONS.ot
4.70.2.3. AlIBSEA JOINEA TADIES ...
4.70.2.4. DErIVEA COIUMIN TISES ..ottt ettt
4.10.2.5. UNNAMEA dEIIVEA TADIES ...t bbb
A.70.3. JOINEBA TADIES ... ettt
4.10.3.1. CROSS JOIN
AT0.3.20 INNER JOIN ettt
Z.710.3.3. OUTER JOIN ..ottt s bbb
A.T0.3.4. SEMI JOIN oot
210,350 ANTI JOIN ittt bbb
A.10.3.6. ON ClAUSE ...ttt
4.10.3.7. ON KEY ClAUSE ...t bbb
A.10.3.8. USING CIAUSE. ..ottt ettt
2.710.3.9. NATURAL ClAUSE ...ttt s
A.T0.3.T0. LATERAL ..t
103070 APPLY oot
470312, PARTITION BY oottt sttt
10,3130 JOIN NNES. ittt s bbb bbb
4.10.3.13.1. HASH JOIN
4.10.3.13.2. LOOP JOIN

351(new)
352new)

4.70.3.13.3. MERGE JOIN oot

4.10.4. The VALUES() table constructor

A.710.5. DEMNVEA TADIES. ...t
4.70.6. INlINE ETIVEA TADIES........iiii bbb
4.10.7. The Oracle 118 PIVOT ClAUSE. ...
4.10.8. JOOQ'S relatioNal iVISION SYNMTAX ...ttt 361
4.10.9. Array and CUISOT UNMNESTING.....c.iviiiiiiieieiieieese e s st 361
4.70.70. TabIE-VAIUE TUNCHIONS.vieiiiiriit et 362
47017, GENERATE_SERIES. ...ttt 362
47072, WITH ORDINALITY oottt 366
AT0.130 JSON TABLE e 367

© 2009 - 2024 by Data Geekery™ GmbH. Page 8/1238

The jOOQ User Manual

A0 T4 XMLTABLE. .. 369
47015, TRE DUAL TADIE. .. 371
4.10.16. Temporal tables........ccccooviviiinnenn, OO OSSOSO O ROTTOROPI 374
4.10.17. Data Change delta TADIES ... 376
.71, COIUMIN BXPIESSIONS. oottt 378
AT TADIE COIUMINS o 378
471777, GeNerated TaDIE COMUMMS ...t 378
4.17.1.2. Dereferenced table COIUMNS ... 379
4.77.7.3. NAMEA LADIE COUMMNS ..ot 379
A.17.2. AlTASEA COIUMNS ...k 379
Z.17.3. CAST BXPIESSIONS. ..ttt ettt 380
4.17.4. Cast expressions (WIth TRY_CAST). ..o 384new)
17,5, DAlALYPE CORITIONS. oottt bbbt sttt
A.17.6. REAAONIY COIUMNS ...t
47717, COMPUEEA COIUMMNS. oottt
4.11.8. Collations......c.ccccvevrvrisicin.

4.11.9. Arithmetic expressions
A TT.T0. SING COMCATENMATION ...ttt b b8ttt
47717, CaSE SENSITIVITY WITN STIINES. vttt 386
AN7T.020 GENETAI FUNCIIONS ..o 387
ATT2.0 CHOOSE. s 387
4.11.12.2.
411.12.3.
4.11.12.4.
4.11.12.5.
4.11.12.6.
411.12.7.
4.11.13. Numeric functions
4.11.13.1.
4.11.13.2.
4.11.13.3.
4.11.13.4.
4.11.13.5.
4.11.13.6.
4.11.13.7.
4.11.13.8.
4.11.13.9.
AT 03100 COTH. 88
AT 03T DEG s
T30 2 B
AT 03030 EXP e
4.11.13.14. FLOOR...........

4.11.13.15. GREATEST
4.11.13.16. LEAST
4.11.13.17.
4.11.13.18.
4.11.13.19.
4.11.13.20.
4.11.13.21.
4.11.13.22.
4.11.13.23.
4.11.13.24.
4.11.13.25.
4.11.13.26.
© 2009 - 2024 by Data Geekery™ GmbH. Page 9/1238

The jOOQ User Manual

4.11.13.27.

4.11.13.28.

4.11.13.29.

4.11.13.30.

4.11.13.31.

4.11.13.32.

4.11.13.33.

4170334 WIDTH_BUCKET ..ottt 431
AT7.TA BIEWISE TUNCHIONS ..ottt 432
AT T4 BIT AND . 22 432
AT TA2. BIT_COUNT ittt 434
BT T3 BIT _GET 437
T T4 BIT NAND .t 440
AT T45. BIT_NOR o 441
T 1400, BIT_NOT e 443
4.11.14.7. BIT_OR............

4.11.14.8. BIT_SET

AATT4.9. BIT XNOR s 448
AT 1400, BITXOR e 450
BT TAT. SHL b 452
T A 20 SHR e 454
A TT5. SEING FUNCLIONS .o 456
T 15T ASCL i 456
AT15.20 BIT_LENGTH. o 457
ZTT15.30 CHR s 459
A07T.T5.4, CONCAT (|| OPEIATOMN i 460
4.11.15.5. DIGITS

4.11.15.6.

4.11.15.7.

4.11.15.8.

4.11.15.9.

BATT5T00 LTRIM o 468
ZTTT5TT. MDD R 469
BATT50 20 MID i 470
AT 15030 OCTET_LENGTH. oottt 470
BT 0574, OVERLAY ..t 471
T 1515, POSITION. ittt 474
4170576, REGEXP_REPLACE. ...ttt 476
01517, REPEAT e 477
BT 0508, REPLACE ...t 478
T 15190 REVERSE ..o 480
4.11.15.20.

4.11.15.21.

4.11.15.22.

4.11.15.23.

4.11.15.24. SPLIT_PART

T 1525, SUBSTRING .ottt 488
4.77.15.26. SUBSTRINGLINDEX ..ottt 489
ATT5.27. TO_CHAR e 490
AT 05,28, TO_HEX it 491
ZTT15.29, TRANSLATE ..ot 493
BTTT5.30. TRIM ot 494
AT 53T UPPER s 495
BATT5.32, UUID .ot 496

© 2009 - 2024 by Data Geekery™ GmbH. Page 10/1238

The jOOQ User Manual

4.11.
4.1
411
4.1
411
4.1
411
4.1
411
4.1
411
4.1
411
4.1
411
4.1
411
4.1
411
4.1
411
4.1
411
4.1
411
4.1
411
4.1
411
4.1
411
4.1
411
4.1
411
4.1
411
4.1
411
4.1
411
4.1
411
4.11.
411
4.1
411
4.1
411
4.1
411
4.1
411
4.11.

16, DAtBUIME TUNCEIONS. ...ttt ettt ettt ettt s ettt s

J6.1.
16.2.
16.3.
16.4.
16.5.
.16.6.
16.7.
16.8.
16.9.
TB.T0. DATE s
0T DATEADD
BT 2. DATEDIFF .
0. T30 DATESUB. ..
T T DAY L
16.15. DAY_OF_YEAR
.16, DECADRE ...
B.T7. EPOCH. s
BT, EXTRACT .o
0T, HOUR e
.16.20.
16.21.
16.22.
16.23.
T60.24. LOCALDATETIME ...t 543
16.25.
.16.26.
16.27.
.16.28.
16.29.
.16.30.
16.31
16.32.
16.33.
034 TIMESTAMP ...
16.35.
.16.36.
16.37.
.16.38.
16.39.
.16.40.
16.41.
16.42.

A7.0.
A7.2.
A7.3.
17.4.
A7.5.
17.6.
A7.7.
17.8.
17.9.

CENTURY e
CURRENT_DATE................

CURRENT_LOCALDATE
CURRENT_LOCALDATETIME. ...t 503
CURRENT_LOCALTIME ...t 505
CURRENT_OFFSETDATETIME. ...t 506
CURRENT_OFFSETTIME. ... 508
CURRENT_TIME . .t 509
CURRENT_TIMESTAMP ... 511

ISO_DAY_OF _WEEK ... 534
LOCALDATE ...t 536
LOCALDATEADD ... 538
LOCALDATESUB. ... 540

LOCALDATETIMEADD. ...t 544
LOCALDATETIMESUB. ...ttt 547
LOCALTIME. ..ttt

MILLENNIUM
IVIINUTE bbbttt

CQUARTER e
SECOND .

TO_DATE et

TO_LOCALDATE...... .o 570
TO_LOCALDATETIME. ..o 571
TO_TIMESTAMP ... 572

ARRAY_APPEND (| | operator)
ARRAY_CONCAT (| | operator)
ARRAY _GET s

ARRAY OVERLAP......co e e

ARRAY_PREPEND (] | OPBIATOI. ..ttt s 580
ARRAY _REMOVE ...t 581
ARRAY _REPLACE ...t 582
ARRAY CONSTIUCTON ..ttt ettt sttt 583
ARRAY CONSEIUCTON TTOM SUDGUETY. ..o 584

T7.T0. CARDINALITY ettt heh stk es bbbkttt 585
© 2009 - 2024 by Data Geekery™ GmbH. Page 11/1238

The jOOQ User Manual

ATT08. JSON FUNCHIONS. ..ottt ettt ettt ettt ettt e et
AT T8 JSONLARRAY ...t
4.11.18.2. JSON_INSERT function....
ATT8.3. JSONLKEYS .
AT T84 JSON _OBJECT ...
4.77.18.5. JSON_REMOVE FUNCHION. 1.1ttt
4.11.18.6. JSON_REPLACE function
ATT08.7. JSON _SET FUNCLION 1ottt
ATTT8.8. JSON _VALUE. ...
4.17.18.9. JSON array element aCCESS WITN => OF >3 ... 597
4.11.18.10. JSON 0Dbject attribute aCCeSS WITN => OF =>>. . e 599
A0TT90 XML FUNCHIONS. ..ot
ATT.79.7 XMLATTRIBUTES. ..
ANT.T9. 2. XMLCOMMENT ..ottt
ATT.T9.30 XMLCONCAT ...
4.11.19.4. XMLDOCUMENT...
ATT.T9.5, XMLELEMENT ..ot
A T.T9.0. XMLFOREST ...
ATTT9.7. XMLPARSE ...
ATTTO.8. XMLPLL e
411799 XMLQUERY ..o
ANT.T9.70. XMLSERIALIZE. ...
477,20, SYSTEM TUNCLIONS ..ttt 8
A17.20.7. CURRENT_SCHEMA ...t 612
4.771.20.2. CURRENT_USER ..ot 613
A07T.27. SPATIAL FUNCEIONS. ... 615
AT 2700 ST AT AL
A T.271. 20 ST ASTEXE e
4.11.21.3. ST_Centroid.......
4.11.21.4. ST Difference
AT 2705, ST_DISTANCE ...t
ATT.27.0. ST _ENMAPOINT et
AT.27.7. ST EXEEIIOTRINE ..ttt 621
ATT.27.8. ST_GROMEBLIYN. ...ttt 8 E bbbttt 622
A17.27.9. ST GROMIEIIYTYPE ..ttt 623
A T.27T.00. ST GOOMEIOMTEXL. ..o ettt ettt 625
A0T.2T.7700 ST INEEIIOTRINEN oottt 626
AT 270 2. ST I ISECEION .. ettt ettt ettt ettt 627
01270030 ST NG 628
AAT.2T.04. ST NUMGEOMELIIES. ... oo et ettt ettt ettt ettt 629
A07.27.75, ST NUMINEEIIONRINES c.. ettt bbbttt 630
4.11.21.16. ST_NumPoints
AT 2707 ST_POINTN bbb
AT.271.180 ST_SRID e
4.11.21.19. ST_StartPoint
ANT.271.200 ST _UNION oo
AT T2 2700 ST XL
AT.271.220 STY e
BTN 2T.230 ST Z e
A.17.22. AZEIEZATE TUNCHIONS. ...ttt 640
1T 22,7 GIOUDING vttt bbb 1 bbbt 640
AT .22.2. DISTINMTINESS. ..ttt b8t h bttt 642
0T .22.3, FIEIING 642

A1 T.22. 8, OFAEIING. oo s s 644
© 2009 - 2024 by Data Geekery™ GmbH. Page 12/1238

The jOOQ User Manual

4.11.22.5. 0rdering WITHIN GROUP........ccoiiiiitii et 645
AT .22.0. KBOPINE .ttt h £ h ARt

4.11.22.7. ANY_VALUE
4.11.22.8. ARRAY_AGG
ATT.22.9. AVG L

AN7.22.710. BIT_AND _AGG 648
ATT.22.77 BIT_NAND _AGG. ...t 653
ANT.22.72. BITINOR _LAGG. ...ttt 659
411227030 BIT_OR _LAGGt 665
ANT.22.74, BIT_XOR _AGG. ...ttt 670
41122750 BITXNOR LAGG. ...t 681
A07.22.716. BOOL_ANDttt

ATT.22.07. BOOL_OR ...

AN T.22.018. COLLECT oottt

ATT.22.090 COUNT Lot

4.11.22.20. CUME_DIST......
4.11.22.21. DENSE_RANK
ANT.22.22. EVERY s
4.171.22.23. GROUP_CONCAT ...t
AN7.22.24. JSON_ARRAYAGG. ...ttt
4.171.22.25. JSON_OBJECTAGG. ...t
ANT.22.26. LISTAGG oo
ATT.22.27. IMAX s
ANT.22.28. MEDIAN ...
ATT.22.290 MIN Lo
ANT.22.30. MODE. ...
4112231, MULTISET_AGG ...t
A.17.22.32. PERCENT _RANK ...
4.11.22.33. PERCENTILE_CONT...
A.17.22.34. PERCENTILE_DISC ...ttt
ATT.22.35. PRODUCT ...
AT.22.36. RANK .
ATT.22.37. SUML. s
ANT.22.38. XIMLAGG

4071231, PARTITION BY ottt

4172320 ORDER BY oo

4.11.23.3. ROWS, RANGE, GROUPS (fram@ ClAUSE)........cuuviuiiiririirii ettt 726
A17.2304 EXCLUDE e

ATT.23.5. NULL ErBATIMENT. ...ttt

4.11.23.6. FROM FIRST, FROM LAST ..ottt

4.11.23.7. Nested aggregate functions....
4.77.23.8. WINAOW Q8EIEEATION ...ttt
4.17.23.9. WINAOW OFAEread @BEIEEALEt
4.11.23.10. ROW_NUMBER
ATT.231 7. RANK e
A17.23.0 20 DENSE_RANK ..
477123130 PERCENT _RANK ...ttt
A7.2304 CUMEL_DIST s
0123015, INTILE s
ATT.23760. LEAD e
ATT.23.17. LAG . et
A7.23.080 FIRST_VALUE e

ATT.23.79. LAST _VALUE ..ottt h ekttt
© 2009 - 2024 by Data Geekery™ GmbH. Page 13/1238

The jOOQ User Manual

A17.23.200 NTHVALUE oo
A.17.24. GIOUPING TUNCHIONS ...t
4.11.25. User-defined functions.........ccccccoeeuuu.

4.11.26. User-defined aggregate functions

4.11.27. User-defined type attriDULE PAlNS.......oiviiiiiiii e 747new)
417,28 TNE CASE @XPIESSION. ...tttk 748
4.77.29. SEQUENCES AN SEIIAIS ...t 749
417,30, SCAIAN SUDGUETIES ... 749
4.77.371. ARRAY VAlUE CONSIIUCTON ..ottt 750
4.17.32. MULTISET ValU@ CONSTIUCTON ...t 751
4.771.33. TUPIES OF TOW VaAIUE EXPIESSIONS. ... oeeeeririiitetieiie it 757
A.17.34. NESTEA FECOMTS ...t 759
472, CONAITIONAl EXPIESSIONS. ..ot 762
4027, CONAIION DUIAING .t 763
4.12.2. TRUE aNA FALSE CONTITION. ...ttt 764

4.12.3. BOOLEAN columns
4.12.4. AND, OR, NOT boolean operators

025 XOR s
4.72.6. COMPAIISON PrEAICATR. ... 767
4.12.7. BOOIEAN OPEIratOr PrECEAEINCE ...ttt 768
4.12.8. ComMParison PrediCate (AEEIMEE >). i 768
4.12.9. Quantified COMPANISON PrEAICATE.oioiiiiiieieirie bbb 770
4.72.10. BETWEEN PrOOICATE ..o iveiiii e 771
41217, BETWEEN PrediCate (AEEIEE >).t 773
402,12, DISTINCT PIrEAICATE. ...
41213, DOCUMENT PrEAICATE ...t
40214, EXISTS PIOAICATE. ..ot

A 2050 IN PEEAICATE ..o
4.12.16. IN predicate (degree > 1)

AN2.707. JSON PIEAICATE ...
472,18, JSON_EXISTS PrOAICATE. ..ot
A.02.79. LIKE PrOAICALE. ..o
472,20 NULL PIrOAICATE ..ottt
4.12.27. NULL PrediCate (AEEIEE > M)t 785
4.12.22. OVERLAPS PIOAICATE ...t 786
4.12.23. SIMILAR TO PIrOAICATE. ...ttt 787
4.12.24. SPATAI PIrOAICATES. ... e 788
L2287 0 ST ONEAINS e ettt ettt ettt ettt ettt ettt ettt

BT 2.24.2. ST _CTOSSES. ...
A.02.24.3. ST _DISJOINT ettt
02244, ST EGUAIS oo
412.24.5. ST Intersects

A12.24.0. ST_ISCIOSEA......eiiiiict

AT 2.24.7 . ST SEMDTY ettt
4.12.24.8. ST_Overlaps

L12.28.9. ST TOUCES. ..o ettt ettt et ettt ettt ettt e ettt e ettt e ettt ettt ettt ettt
A2 24700 ST_WITRIN ..
A.12.25. UNIQUE PrEAICATE ... v 799
4.72.26. XMLEXISTS PrEAICATE. ...ttt 801
4.12.27. QUETY By EXAMPIE (QBE).... i 802
4713, OPEraAtOr PrECEUERNCE ...ttt 803
A4, SYNTNETIC SQL ClAUSES ... s b 803
15, DYNAMIC SOttt 804
4.15.7. OptioNal COIUMMN EXPIESSIONS.iuiiiiiii e 806

© 2009 - 2024 by Data Geekery™ GmbH. Page 14/1238

The jOOQ User Manual

4.15.2. OptioNal CONAILIONAI EXPIESSIONS. ...t 806
4.15.3. Optional CONAILIONAI TADIES. ...

4.16. Plain SQL...oiiiieeeeeeeeeeeeeee

4.17. Plain SQL Templating Language
4.78. Plain SQL AW TEMPIATES. ...
T, HINES et E Rt
00T, IMYSQL NINTS e
A9 T T INABX NNES o2
A.79.7.2. STRAIGHT _JOIN. oottt
4.19.1.3. Oracle style NINES N MYSQL ...
A.19.2. OTBCE NINES. it
409,83, SOL SOV NINES ..ottt ettt ettt
ATO.3.T 0 WITH bbb
21932, OPTION. 1ttt
.20, SO P Al ettt ettt
4.20.1. SQL Parser API
4.20.2. SQL Parser CLI
F R T @ I e Y=Y gl IS (= o= OO OO
Z.20.4, SOL AN AT ...ttt
RN @ I e =T S SY=I G CT=Ta 0] 0 1= SO ORRPORPRTPRRO
27 SO MBI P B ..ttt
422, SCNEMA Qi
4,23 SCNEMA AT CLLitii s
4.2, NAMES AN IABNMTTIOIS ..ot
4.25. BINA VAIUES GNA PAraMETETS. ...

A.25.7. INAEXEA PATAMELEIS ..o
4.25.2. NAMEA PATAMETETS. ...ttt
4.25.3. INJINEA PArAMIETEIS. ...
4.25.4. SQL injection
.26, QUETYPAITS ..ottt
426,71, SQL TENARIING ottt
4.26.2. DECIArAtION VS MEIEIENCEok
4.26.3. Pretty PriNTNG SQL . bbbt
A.26.4. Variable DINAING. ...
4.26.5. CUSTOM dALa TYPE DINAINGS. iv.eeiiieitieiee s
4.26.6. CUSTOM SYNTAX ElEMIENTS ...ttt
4.26.7. PlaiN SQL QUETYPAITS. ...ttt
4.26.8. SETIANZADIIITY ...
2.26.9. SO ErANS OO ...ttt ettt
4.26.9.7. ANSI JOIN TO TADIE TISTS ..ttt
4.26.9.2. TADIE TISES T0 ANSI JOIN ..ottt ettt etenenans
4.26.9.3. ROWNUM to LIMIT............
4.26.9.4. QUALIFY to derived table
4.26.9.5. IN condition subquery with LIMIT t0 derived table...........ooiiiiiiiie e 839
4.26.9.6. GROUP BY <column index>
£.26.9.7. INTINE CTE oottt

4.26.9.8. UNNECESSArY aritNmMETIC EXPIESSIONSttt 840
4.26.9.9. Pattern based TranSfOrMATION.cooiie s 841
4.26.9.9.T. AND O NOT IN.iuiiiiiiiiiieieiei ettt 842
4.26.9.9.2. ArTTNMETIC COMPAIISONS ... ittt 842
4.26.9.9.3. ATTTNMETIC EXPIESSIONS. ... ot 842
4.26.9.9.4. BIT_GET fUNCHION. ..ttt 843
4.26.9.9.5. BIT_SET TUNCHON. ...ttt 844

4.26.9.9.6. CASE 5€arched t0 CASE SIMIPIE.. ..o 844
© 2009 - 2024 by Data Geekery™ GmbH. Page 15/1238

The jOOQ User Manual

4.26.9.9.7. CASE 10 CASE GDDIVITION. ..o
4.26.9.9.8. CASE with DISTINCT FROM 0 DECODE.iiiiieiieciirieiect sttt
4.26.9.9.9. CASE with ELSE NULL...ovvoiviviiviiiicireccees

4.26.9.9.10. COUNT(*) scalar subquery comparison
4.26.9.9.717T. COUNT(CONSE). oottt ettt ettt ettt ettt ettt ettt ettt
4.26.9.9.12. COUNT(expr) scalar SUDQUENY COMPATISON. ..ottt 847
4.26.9.9.13. DISTINCT FROM NULL ...ttt
4.26.9.9. 14, EMPLY SCAIAI SUDGUETY ...t
4.26.9.9.15. FIGTEEN CASE ..o
4.26.9.9.16. FIGtEeN CASE GDDIEVIATIONS ...ttt
4.26.9.9.17. FIATEEN DECODE ...t
4.26.9.9.18. HYPEIDONC FUNCHIONS. ...
4.26.9.9.19. Idempotent function repetition
4.26.9.9.20. Inverse NyperDOlIC FUNCLIONS. . ..ot
4.26.9.9.27. LOGAITNMIC TUNCHIONS. ...ttt
4.26.9.9.22. Merge AND predicates
4.26.9.9.23. Merge BIT_NOT with BIT_NAND
4.26.9.9.24. Merge BIT_NOT WIth BIT_NOR ..ottt
4.26.9.9.25. Merge BIT_NOT with BIT_XNOR
4.26.9.9.26. Merge CASE .. WHEN @Nd ELSE ClAUSES.o.oiiiiiiiie e
4.26.9.9.27. Merge CASE .. WHEN ClAUSES. ..ot
4.26.9.9.28. METZE IN PIOAICATES.ot
4.26.9.9.29. Merge NOT With COMPAriSON PreEAICATES.t
4.26.9.9.30. Merge NOT With DISTINCT PIreiCAle......ooiiiiiiiiiiiieieie e
4.26.9.9.37. METEE OR PrEAICATES. ... iveieiiieiie et
4.26.9.9.32. METIZE FANZE PrEOICATES. ...ttt
4.26.9.9.33. NOIrmaliSe aSSOCIAtIVE OPEIALIONS.ttt
4.26.9.9.34. Normalise fields COMPAred 0 VAIUES........coooiiiiiiiiee e
4.26.9.9.35. Normalise IN list with single element to comparison
£.26.9.9.30. NOT AND .ottt
4.26.9.9.37. INOT ORiciiiiii e
4.26.9.9.38. NULL ON NULL INPUT ..ottt
4.26.9.9.39. OR 0 INuioiiiiiitt s
4.26.9.9.40. Repeated DItWISE NEGATION ..ottt
4.26.9.9.47. Repeated l0ZICal NMEZATION. ...t
4.26.9.9.42. REPEATEA NOT ...ttt
4.26.9.9.43. SIMPIiTy CASE GDDIOVIATIONS. ...
4.26.9.9.44. TrigONOMELIIC FUNCIIOMNS ...t
£.26.9.9.45. TTIM ittt
4.26.9.9.46. Trivial DItWISE OPEIATIONS........iiiiiiie s
4.26.9.9.47. Trivial CASE @DDIEVIATIONS. ..ottt
4.26.9.9.48. Trivial predicates.............c........
4.26.9.9.49. Unnecessary DISTINCT
4.26.9.9.50. Unnecessary EXISTS SUDGUETY ClAUSES ...
4.26.9.9.51. Unnecessary GROUP BY expressions
4.26.9.9.52. UNNECESSANY INNER JOIN ..o
4.26.9.9.53. Unnecessary ORDER BY @XPIESSIONS.ottt
4.26.9.9.54. UNNECESSANY SCAlAr SUDGUETYiiiiiii e
4.26.9.9.55. UNreachable CASE CIAUSES ..ot
4.26.9.9.56. UNreachable DECODE ClAUSES........oiiiiiti ettt
4.26.10. Custom SQL transformation WIth VIS LISTENME ..ottt
4.26.10.1. Example: Logging abbreviated DiNd VAlUES.........cc.coiiiiiii e

2 2. T T . PO I S ettt 864new)

A.26. 7717 CONFIGUIATION ...t 866new)
© 2009 - 2024 by Data Geekery™ GmbH. Page 16/1238

The jOOQ User Manual

426,172, IMPIEMIENTATION. ... e
426,173 IMNEIIIANCE s
4.26.11.4. Security considerations.............

4.27. Zero-based vs one-based APIs
4.28. SQL DUITAING TN KON 1ot
4.28.7. KOtHN MULTISET COIBTIOTS ...t
4.28.2. KON RESUILQUETY COIBITOTS. ..ot 872
4.28.3. KOtliN BOOLEAN ValU@ EXPIESSIONS.ttt 873
4.28.4. KON ARRAY GCCESS ...ttt 874
4.28.5. KON JSON GCCESS. ...ttt 874
4.28.6. KON COMOUTINE SUDDOMT ..ottt 875
4.29. SQL DUITAING TN SCAIA ... 875
D SQL BXECUTION ...ttt ettt ettt a ettt e ettt ettt 878
5.1. Comparison between jOOQ N JDBCo 879
5.2, QUETY VS, RESUITQUETY ...ttt

5.3. Fetching....ccccooovvisiiccne,
5.3.1. Record vs. TableRecord
5.3.2. RECOMAT 1O RECOMTZ22 ..
5.3.3. AITAYS, MAPS @NA LISTS .ttt
5,304 RECOIAHANAIET ...
5.3, 5. RECOTAMAPDPE ..o
5,310, POJOS. iR
5.3.7. The RECOTAMAaPPEIPIOVIAEE SPL......iiiiiiiie s 889
5,308, AG-NOC CONVITE ...k 889
5.3.9. CONVETTEIPIOVIART ...ttt 892
5.3.10. LAZY TOICNING oo 894
5.3.17. LazZy TEECHING WITN STr@AMNIS ..o 894
5,312 MANY FEECNING s
5.3.13. Later fetching.............

5.3.14. Reactive Fetching
5. 3.1 5. RESUIESEE TEECNING. .ttt
5.3.76. AULO daLa TYPE COMVEISION. ...tttk
5.3.17. CUSTOM LA TYPE CONVEISION ...ttt
5.3, T8, CONEEXE COMVEITOI ..ttt 88ttt
5.4. Static Statements VS. Prepared STATEIMENTS.i i
5.5. Reusing a QUEry'S Prepar@dSTateMIENT.ot
5.0, JDBC TlAZS. .ttt
5.7. USING JDBC DALCN OPIATIONS. .. .o
5.8, SEOUENCE EXECULION. ..ttt e h et f bbbttt
5.9. Stored procedures aNd fUNCHIONS. ...
5.9.T. OrACIE PACKAZES. ..
5.9.2. Oracle member procedures .
5.10. Exporting to XML, CSV, JSON, HTML, Text, Charts
5,101, EXPOITING XMLttt
5.10.2. Exporting CSV
5.10.3. Exporting JSON
5,704, EXPOTTING HTIML ittt
5.10.5. EXPOITING TOXE. ...ttt b2t
57060, EXPOTTING CNaITS. oottt

5. 10,7, FOMMATIINEPTOVIART ...

ST IMPOTTING GATA. i1
ST TRE LOGAEBE AP

5T 1.2, IMIPOTT OPTIONS ettt bbbttt

ST 2T TRIFOTEIINE. oo

© 2009 - 2024 by Data Geekery™ GmbH. Page 17/1238

The jOOQ User Manual

5.11.2.2. Duplicate handling

5123, B 0T NANAING e
5.11.3. Import data sources

51731, IMPOITING TSVttt
5.1T.3.2. IMPOTTING JSON .ottt
517,33, IMPOITING TECOMTS. ...

5T T304, IMIDOTTING @ITAYS ittt E sttt
5.17.3.5. IMPOITING XMLttt

ST T4 IMIDOTT HISTENMEIS ..o
5.11.5. IMport result and €O NANAING ... 919
5.12. CRUD WiIth UpAatabIERECOTAS. ... 920
5127, SIMPIE CRUD oo
5.12.2. RECOIAS" INEEINAI TIAS ...ttt
51230 IDENTITY VAIUBS. ...
5.12.4. NAVIGATION METNOTS ...
5.12.5. Non-updatable records

5.12.6. OPUMISTIC TOCKING. ...ttt
5.12.7. BALCN EXECUTION ...ttt
5.12.8. CRUD SPI: RECOMTLISTENET ...ttt 926
513, DADS oL 927
574, TranSACTION MANAEEIMENT. . c.ciivu ittt et s bt a1 e bbbttt bbbttt 928
515, EXCEPTION NANAING. ... 932
5T 0. EXECULELISTOMEOIS ... 933
5.17. DAtabaS@ MELA AALA. ... 935
5. T7.7. DB MELA TBLA ittt ettt ettt 935
5.17.2. INTEIPreted META TaTa. .. oot 936
5.17.30 XML MELA AT it 936
5.17.4. GENETATEA MIETA T ... s bbb 937
5.18. JDBC Connection..............

5.19. Batched Connection

5.20. MOCKING CONMNMECTION. ...ttt 939
5.271. MOCK FIl8 DATADASE. ...t 941
5.22. ParSiNG COMMECTION ...ttt 8 bbbttt 943
5,23, DIBEINOSTICS vttt 944
5.23.T. TOO MANY ROWS....tiiiiiiitiiiitte sttt 945
5.23.2. TOO MANY COIUMINS. ...ttt 945
5.23.3. DUPIICALE STATEMIENES .ottt 946
5.23.4. REPEATEA STATEMENTS. ...t 948
5.23.5. CONSECULIVE GZEIEEATION ...ttt bbbt 949
5,230, WASNUIL CAIIS.... e 949
5.23.7. CONCATENATION 1N PIrOAICATES ... et 950
5.23.8. Possibly wrong expressions

5.23.9. TrIVIAI COMTITION. ...ttt

5.23.10. TraNSTOIMN PATIEIMIS ..ot
5.24. Logging with LoggerListener
5.25. Logging with SQLExceptionLoggerListener

5.26. LOZEING COMMETTION. ...ttt sttt
5.27. LOBEING SYSTEIM PrOPEITIES. ...t eeieieeei ettt

5.28. PerformanCe CONSIAEIATIONS.c..iiiiiiie s 957
5.29. Alternative @XeCUTION MIOAEIS.oiiiiiie bbb 957
5.29.1. Using JOOQ WIth SPring's JADCTEMIPIATE.o 957
5.29.2. USING JOOQ WITN JPA .. oot 958
5.29.2.1. USING JOOQ WIth JPA NATIVE QUETY ...cuuiiuiiiiiiiiiieiie it 959
5.29.2.2. USING JOOQ WITN JPA ENTITIES. ...ttt 960

© 2009 - 2024 by Data Geekery™ GmbH. Page 18/1238

The jOOQ User Manual

5.29.2.3. USINgG JOOQ WIth JPA ENTEYRESUIT. ...t
0. OO BENEIATION. ...t s s
6.1. Configuration and setup of the generator

6.2. Advanced Zenerator CONFIGUIATION. ..ot
0. 2.1 LOZEINE. .ttt bbbt
0.2.2. EITON NANAIING. ...
0.2.3. JADC s
0. 2.4 GBNEIATON ...
0.2.5. DALADASE. ...
6.2.5.1. Database NAME AN PrOPEITIES.......oiiiiiiiie et
6.2.5.2. Inline database IMPIEMENTATION.iii s
0.2.5.3. REZEXFIAZS ...
6.2.5.4. INCIUAES GNA EXCIUGES. ...
6.2.5.5. INCIUAE OIJECE TYPES ...

6.2.5.6. Record Version and Timestamp Fields
6.2.5.7. COMmMENtS.....ooecvrrirrnnnes

6.2.5.8. Synthetic objects

6.2.5.8.1. SYNTNETIC COMUMNS. ...t
6.2.5.8.2. SYNtNEtiC reAAONIY COIUMNS. ...
6.2.5.8.3. SyNthetiC readOnly ROWIDS. ..ot
6.2.5.8.4. SYNTNETIC INTITIES ...t
6.2.5.8.5. SYNNETIC ENUMIS ..ot
6.2.5.8.6. SYNTNETIC PIIMANY KEYS.... . iviiiiiiiii s
6.2.5.8.7. SYNTNETIC UNIGUE KEYS. ..ot
6.2.5.8.8. SYNNETIC TOTQIGN KEYS. ...
0.2.5.9. DAt @S TIMIESTAMIP ... iutteiieeieteteieee ettt 8 sttt

6.2.5.10. Ignore procedure return values (AEPreCatE)...... ... 1015
6.2.5. 17, REATONIY COIUMNS. ...
6.2.5.12. Unsigned types......cccccovvrcvirernen.

6.2.5.13. Catalog and schema mapping

6.2.5.14. Catalog and SChEMA VEISION PrOVIAETS vuiiiiiieieiee s 1025
6.2.5.15. Custom ordering Of GENEratea COTR.......oiiiiiiiiiie bbb 1028
0.2.5.T0. FOITRA TYPBS. .. e 1030
6.2.5.16.7. MATCRING OF fOICEA TYPES. ..o 1030
6.2.5.16.2. DATA TYPE TEWITTINEG. ... cvuiriieriiiieieiiet ettt ettt 1035
0.2.5.16.3. QUANTIEA CONVEITETS. ... ettt ettt ettt 1036
0.2.5.16.4. INIINE CONMVEITEIS.oiitiiei ettt s
6.2.5.16.5. LAMDAA CONMVEITEIS.ottt
0.2.5.T6.6. AULO CONVEITRIS ...ttt ettt a4 £ttt
0.2.5.16.7. ENUIM CONVEITEIS ..otttk s st b e s s stk b b es bbbttt
0.2.5.16.8. JACKSON CONMVEITOIS. ...ttt ettt ettt ettt ettt enns
6.2.5.16.9. JAXB converters...........
6.2.5.16.10. Data type bindings
6.2.5.16.11. Client side COMPUIEA COIUMINS.......oiiiiiie st
6.2.5.16.12. Audit COIUMNS.....ccovviviiriiieiees
6.2.5.16.13. Visibility Modifier (per forced type)
6.2.5.17. TabIE VAU TUNCLIONS. ...t

D.2.0. GBINEBIATE ... ootttk ettt s s h et £ L e h Ak £ E ettt ettt
0.2.6. T ANNOTATIONS ..ottt ettt
6.2.6.2. COVAMANT OVEITIAES. ..ottt et
0.2.6.2.T. OVEITIAING @S()-+rvrtvrevrerririiei ittt
6.2.6.2.2. OVEITIAING FENAME()... .. ittt
6.2.6.2.3. OVEITIAING WINETE(). ...t

6.2.6.3. Default catalog and SCREMIA. ...

© 2009 - 2024 by Data Geekery™ GmbH. Page 19/1238

The jOOQ User Manual

0.2.6.4, EXLENARI TYDBS. .. i
0.2.0.5. FIUENT SETLOIS ...
6.2.6.6. Fully Qualified Types
0.2.6.7. GlIODAI ATTEIACES ..o
6.2.6.8. GlIODAI ODJECT NMAMIES.o 1072 (new)
6.2.6.9. IMPHCIT JOIN PATNS. ..o 1073
0.2.0.10. JAVA TIME TYPES. oottt s bbbttt 1075
6.2.6. 17, SEIIAI VEISION UID ...t 1076
0.2.0.T 2. SOUITES. ..o 1077
0.2.6. 13, TEXE DIOCKS ... 1078
6.2.6.14. ViSiDIlity MOGITIE (SlOD@I). ... 1079
6.2.6.15. Whitespace (Newlines and iNAENTATION). ..o 1081
6.2.6.16. ZEr0 SCAIE DECIMAI TYPES ..t 1082
6.2.7. OULPUL TArGET CONTIGUIATION ..o 1083
6.3. ProgrammatiC SeNErator CONTIGUIATION. i 1085
6.4. Custom generator strategies... .
0.5, MATCNET STrATEEIES. ...
0.5, 1. IMATCNEIRUIE. ...
6.5.2. MATCNING CATAIOES. ...ttt
6.5.3. MATCNING SCNEIMAS. ...
6.5.4. MATCNING TADIES ...
6.5.5. MATCHING FIEIAS. ...
6.5.6. MALCNING INAEXES. ... e

6.5.7. MALCRING PIIMAIY KEYS.. ..o

6.5.8. MALCNING UNIGUE KEYS....ouiiiiiiitii e

6.5.9. MAtChING FOMBIGN KEYS ..ottt
6.5.T0. MALCNTING TOUTINMES. ...t
0.5. 171, MALCNING SEGUENCES. ...
6.5.12. Matching enums...............
6.5.13. MatChiNg @MBDEAAADIES. ..o
0.5, T4, IMALCNTING UDTS. ..o

6.5. 15, MATCIING GEIMDULES ...t

0.5. 16, MALCNEI EXAMIPIES ...
6.6, CUSTOM COAR SETLIONS. ..o
6.7. GENEIrated GlODAI AIrTEIACES.ttt
0.8, GENEIALEA TADIES.... o
6.9, GENETALET TECONTS. ..ot
6.10. GENEIALEA POJOS. ...ttt
6. 17, GENEIATEA INEEITACES. ...
6.72. GENETATEA DADS. ...
6.13. GENETALEA SEOUENCES. ...ttt
6.14. Generated procedures....
6.15. GENEIATEA AOMEBINS....iuiiiiiiiiieiic e
0.76. GENETATEA UDTS.... it
6.17. Data type extensions...
0.17. 1. POSTEIOSOIL £ttt

6. 18, EMDEATADIE TYPES. ...

0. 181 CONTIGUIATION. ...
6.18.2. Overlapping emMDEAaDIE TYPES..... oo 1153
6.18.3. FIEIA FOPIACEMIENT. ...t 1154
6. 18,4, EMDEATEA KYS ... oo 1156
6.18.5. EMDEATEA GOMGINS ...ttt 1158
6.19. Mapping generated Catalogs aNd SCREMAS.o 1160
6.20. Code generation fOr larZe SCNEMAS. ...t 1162
© 2009 - 2024 by Data Geekery™ GmbH. Page 20/ 1238

The jOOQ User Manual

6.21. Code generation and VEISION COMIIOL ... 1163
6.22. JPADatabase: Code generation frOM ENTITIES. ... 1164
6.23. XMLDatabase: Code generation from XML files....
6.24. DDLDatabase: Code generation from SQL fIlES........coie s 1172
6.25. LiquibaseDatabase: Code generation from Liquibase XML, YAML, JSON fil€S.......ccoiniiiiineeeeeseens 1181
6.26. XMLGENETrator: GENETATUING XML oottt

6.27 . KOUINMGENEIGTON ...t

0.28. SCAIAGENEIATON ...ttt

6.29. Running the code generator WItN IMAVEN.o

6.30. RUNNING the COde ZeNErator WITR ANT... .o

6.31. Running the code generator WIth Gradl@..... ...

6.32. System properties governing COOE GENEIATION.........c.iiieiiiieieie et

6.33. In-memory compilation of programmatic CONTIGUrATION...........ciiriiiiiiieeee e

6.34. Features requiring SENEIAtEA COTB.......oiiiiiiieies bbb

7. TOOIS e

7.1. APl validation using the Checker Framework or Error Prone
7.2, JOOQ RETASTET ...
7.3, JOOQ CONSOIO ...t
8. COMINEG TTOM JPA s
8.1, ST DASEA TNINMKINE. ...
8.2, DALADASE IS
8.3, EAGET OF 1AZY 10GAING ...t
8.4. First level cache and SECONA [EVE] CACNE. ...
8.5, EMDEATADIE. ..
BB ATLTIDUTECONVEITE ... bbb
8.7 U ST LY DS ettt E ARt
8.8 IMIPIICIE JOIN ..ot
8.9. @ONETOONE OF @MANYTOOMNE. ..ottt bttt
8.10. @OneToMany or @ManyToMany
0. RETEIEICE. ...
9.7, SUPPOITEA RDBIMS ...
9.2. COMMEICIAl ONIY FEATUIES ...ttt
9.3, EXPEIIMENTAN TRATUIES ..ottt
0.4 DATA LY PSR e
9,471, BLOBS GNA CLOBS.....oviiiiei
9.4.2. BOOLEAN TaTA LY.ttt
0.4.3. UNSIGNEA INTEZEI TYPES .ottt
.44, INTERVAL GALA TYPES iuieeieiiiieieie s
9.5, JSON TATA TYPES .ttt
0.6, XML AL TYPS ettt
9.4 7. SPATIAI LA TYPES. it s
9.4.8. CURSOR data types
9.4.9. ARRAY aNA TABLE GaTA LY PES .ttt
9.4.10. Oracle DATE AALa TYPE. ..ttt
9.4.11. DOMaINS....cccocvivviirivininne
9.5. SQL to DSL mapping rules
9.6, QUANTTY ASSUIANCE. ...ttt

0.7 SBCUITEY ettt s Rt
0.7 T SQL N CEION 1ttt

0.7.2. DEDUE TOZZINE. ...
0.7.3. EXCEPUION MNESSAEE. .. cevriieitete ettt
0.7 COMTACT ettt R et

9.8. MIZrating O JOOQ 3.0 it 1223
9.9, DON'T A0 NS i 1228
© 2009 - 2024 by Data Geekery™ GmbH. Page 21/1238

The jOOQ User Manual

9.9.1. JOOQ: IMPIEMENTING TNE DSL TYPES. ...ttt 1228
9.9.2. JOOQ: REfEreNCING the STEP TYPES. .. 1229
9.9.3. Schema: NULL columns................

9.9.4. Schema: Unnamed constraints

9.9.5. SChema: UNNECESSANY SUMOZATE KEYS........iuiiiiiiiiiiiieti ittt 1230
9.9.6. SCNEMA: WIONEZ LA TYPES. ..ttt 1231
9.9.7. SQL: COUNT() INSTEAA OF EXISTS()...vvuvvueriiriiiiiiitiiee i 1231
9.9.8. SOL: NHT et 1232
9.9.9. SQL: NOT IN PIrEAICATE. ... ettt 1233
9.9.10. SQL: Rely 0N IMPHCIT OFAITING ... i 1233
9.0, SQLE SELECT o 1235
9.9.12. SQL: SELECT DISTINCT ..ottt 1236
9.9.13. SQL: Unnecessary UNION instead Of UNION ALL ..ot 1237
9.10. The MOost IMPOrtaNt JOOQ LYPES. ...ttt 1237
DT T CBAITS e 1237

© 2009 - 2024 by Data Geekery™ GmbH. Page 22 /1238

The jOOQ User Manual 1. Preface

1. Preface

jO0Q's reason for being - compared to JPA

Java and SQL have come a long way. SQL is an "old", yet established and well-understood technology.
Javais alegacy too, although its platform JVM allows for many new and contemporary languages built on
top of it. Yet, after all these years, libraries dealing with the interface between SQL and Java have come
and gone, leaving JPA to be a standard that is accepted only with doubts, short of any surviving options.

So far, there had been only few database abstraction frameworks or libraries, that truly respected SQL
as a first class citizen among languages. Most frameworks, including the industry standards JPA, EJB,
Hibernate, JDO, Criteria Query, and many others try to hide SQL itself, minimising its scope to things
called JPQL, HQL, JDOQL and various other inferior query languages

JOOQ has come to fill this gap.

jO0Q's reason for being - compared to LINQ

Other platforms incorporate ideas such as LINQ (with LINQ-to-SQL), or Scala's SLICK, or also Java's
QueryDSL to better integrate querying as a concept into their respective language. By querying, they
understand querying of arbitrary targets, such as SQL, XML, Collections and other heterogeneous data
stores. jJOOQ claims that this is going the wrong way too.

In more advanced querying use-cases (more than simple CRUD and the occasional JOIN), people will
want to profit from the expressivity of SQL. Due to the relational nature of SQL, this is quite different
from what object-oriented and partially functional languages such as C#, Scala, or Java can offer.

It is very hard to formally express and validate joins and the ad-hoc table expression types they create.
It gets even harder when you want support for more advanced table expressions, such as pivot tables,
unnested cursors, or just arbitrary projections from derived tables. With a very strong object-oriented
typing model, these features will probably stay out of scope.

In essence, the decision of creating an API that looks like SQL or one that looks like C#, Scala, Java
is a definite decision in favour of one or the other platform. While it will be easier to evolve SLICK in
similar ways as LINQ (or QueryDSL in the Java world), SQL feature scope that clearly communicates
its underlying intent will be very hard to add, later on (e.g. how would you model Oracle's partitioned
outer join syntax? How would you model ANSI/ISO SQL:1999 grouping sets? How can you support scalar
subquery caching? etc...).

JOOQ has come to fill this gap.

jO0Q's reason for being - compared to SQL / JDBC

So why not just use SQL?

SQL can be written as plain text and passed through the JDBC API. Over the years, people have become
wary of this approach for many reasons:

© 2009 - 2024 by Data Geekery™ GmbH. Page 23/1238

https://www.jooq.org/criteria-query

The jOOQ User Manual 1. Preface

- No typesafety

- No syntax safety

- No bind value index safety

- Verbose SQL String concatenation

- Boring bind value indexing techniques

- Verbose resource and exception handling in JDBC

- Avery "stateful", not very object-oriented JDBC API, which is hard to use

For these many reasons, other frameworks have tried to abstract JDBC away in the past in one way or
another. Unfortunately, many have completely abstracted SQL away as well

jOOQ has come to fill this gap.

jO0Q is different

SQL was never meant to be abstracted. To be confined in the narrow boundaries of heavy mappers,
hiding the beauty and simplicity of relational data. SQL was never meant to be object-oriented. SQL
was never meant to be anything other than... SQL!

© 2009 - 2024 by Data Geekery™ GmbH. Page 24 /1238

The jOOQ User Manual 2. Copyright, License, and Trademarks

2. Copyright, License, and Trademarks

This section lists the various licenses that apply to different versions of jOOQ. Prior to version 3.2, JOOQ
was shipped for free under the terms of the Apache Software License 2.0. With jJOOQ 3.2,jO0Q became
dual-licensed: Apache Software License 2.0 (for use with Open Source databases) and commercial (for
use with commercial databases).

This manual itself (as well as the www.joog.org public website) is licensed to you under the terms of
the CC BY-SA 4.0 license.

Please contact legal@datageekery.com, should you have any questions regarding licensing.

License for JOOQ 3.2 and later

This work is dual-licensed
- under the Apache Software License 2.0 (the "ASL")
- under the jOOQ License and Maintenance Agreenent (the "jOOQ License")

You may choose which |icense applies to you:

- If you're using this work with Open Source databases, you may choose
ei ther ASL or jOOQ License.

- If you're using this work with at |east one conmercial database, you nust
choose j OOQ Li cense

For nore information, please visit https://wwmjooq.org/licenses

Apache Software License 2.0:

Li censed under the Apache License, Version 2.0 (the "License");
you may not use this file except in conpliance with the License.
You may obtain a copy of the License at

htt ps: // www. apache. org/ | i censes/ LI CENSE- 2. 0

Unl ess required by applicable |aw or agreed to in witing, software

di stributed under the License is distributed on an "AS | S" BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KIND, either express or inplied.
See the License for the specific |anguage governi ng perm ssions and
limtations under the License.

j OOQ License and Mai ntenance Agreenent:

Dat a Geekery grants the Custoner the non-exclusive, tinely limted and
non-transferable |icense to install and use the Software under the terms of
the jOOQ Li cense and Mai nt enance Agreenent .

This library is distributed with a LI M TED WARRANTY. See the jOOQ License
and Mai ntenance Agreement for nore details: https://ww.jooq.org/licensing

Historic license for jJOOQ 1.x, 2.x, 3.0, 3.1

Li censed under the Apache License, Version 2.0 (the "License");
you nmay not use this file except in conpliance with the License.
You may obtain a copy of the License at

https://ww. apache. org/ | i censes/ LI CENSE- 2. 0

Unl ess required by applicable |aw or agreed to in witing, software
distributed under the License is distributed on an "AS | S" BASIS,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KIND, either express or inplied.
See the License for the specific |anguage governing perni ssions and
limtations under the License.

© 2009 - 2024 by Data Geekery™ GmbH. Page 25/1238

https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.jooq.org/licensing
https://www.jooq.org
https://creativecommons.org/licenses/by-sa/4.0/
mailto:legal@datageekery.com

The jOOQ User Manual 2. Copyright, License, and Trademarks

Trademarks owned by Data Geekery™ GmbH

JOOA™ is a trademark by Data Geekery™ GmbH
jOOQ™ is a trademark by Data Geekery™ GmbH
- JOOR™ s a trademark by Data Geekery™ GmbH
jOOU™ is a trademark by Data Geekery™ GmbH
jOOX™ is a trademark by Data Geekery™ GmbH

Trademarks owned by database vendors with no affiliation to Data
Geekery™ GmbH

- Access® is a registered trademark of Microsoft® Inc.

- Adaptive Server® Enterprise is a registered trademark of Sybase®, Inc.
- DB2® s a registered trademark of IBM® Corp.

- Derby is a trademark of the Apache™ Software Foundation

- H2is atrademark of the H2 Group

- HANA'is a trademark of SAP SE

- HSQLDBis a trademark of The hsgl Development Group

- Ingres is a trademark of Actian™ Corp.

- MariaDBis a trademark of Monty Program Ab

- MySQL® is a registered trademark of Oracle® Corp.

- Firebird® is a registered trademark of Firebird Foundation Inc.

- Oracle® database is a registered trademark of Oracle® Corp.

- PostgreSQL® is a registered trademark of The PostgreSQL Global Development Group
- Postgres Plus® is a registered trademark of EnterpriseDB® software

- SQL Anywhere® is a registered trademark of Sybase®, Inc.

- SQL Server® is a registered trademark of Microsoft® Inc.

- SQLite is a trademark of Hipp, Wyrick & Company, Inc.

Other trademarks by vendors with no affiliation to Data Geekery™ GmbH

- Java® is a registered trademark by Oracle® Corp. and/or its affiliates
Liquibase is a trademark by Datical, Inc

- Flyway is a trademark by Red Gate Software Ltd

- Scalais atrademark of EPFL

Other trademark remarks

Other names may be trademarks of their respective owners.

Throughout the manual, the above trademarks are referenced without a formal ® (R) or ™ (TM) symbol.
It is believed that referencing third-party trademarks in this manual or on the jJOOQ website constitutes
"fair use". Please contact us if you think that your trademark(s) are not properly attributed.

© 2009 - 2024 by Data Geekery™ GmbH. Page 26 /1238

mailto:contact@datageekery.com

The jOOQ User Manual 2. Copyright, License, and Trademarks

Contributions

The following are authors and contributors of JOOQ or parts of jJOOQ in alphabetical order:

© 2009 - 2024 by Data Geekery™ GmbH. Page 27 /1238

The jOOQ User Manual

Aaron Digulla
Andreas Franzén
Anuraag Agrawal
Arnaud Roger

Art O Cathain
Artur Dryomov
Ben Manes

Brent Douglas
Brett Meyer
Christian Stein
Christopher Deckers
Dennis Neufeld
Ed Schaller

Eric Peters

Ernest Mishkin
Espen Stromsnes
Eugeny Karpov
Fabrice Le Roy
Gonzalo Ortiz Jaureguizar
Gregory Hlavac
Henrik Sjostrand
lvan Dugic

Javier Durante
Johannes Buhler
Joseph B Phillips
Joseph Pachod
Knut Wannheden
Laurent Pireyn
Logan Hauspie
Luc Marchaud
Lukas Eder

Matti Tahvonen
Michael Doberenz
Michael Simons
Michat Kotodziejski
Miguel Gonzalez Sanchez
Mustafa Yucel
Nathaniel Fischer
Octavia Togami
Oliver Flege

Per Lundberg
Peter Ertl

Richard Bradley
Robin Stocker
Roland Weisleder
Samy Deghou
Sander Plas

Sean Wellington
Sergey Epik
Sergey Zhuravlev
Stanislas Nanchen
Stephan Schroevers
Sugiharto Lim
Sven Jacobs
Szymon Jachim

© 2009 TarenceZhang™ GmbH.

Thomas Darimont
Timothy Wilson
Timur Shaidullin

2. Copyright, License, and Trademarks

Page 28 /1238

The jOOQ User Manual 2. Copyright, License, and Trademarks

See the following website for details about contributing to jOOQ:
https://www.joog.org/legal/contributions

© 2009 - 2024 by Data Geekery™ GmbH. Page 29/1238

https://www.jooq.org/legal/contributions

The jOOQ User Manual 3. Getting started with jOOQ

3. Getting started with jJOOQ

These chapters contain a quick overview of how to get started with this manual and with jOOQ. While
the subsequent chapters contain a lot of reference information, this chapter here just wraps up the
essentials.

3.7. How to read this manual

This section helps you correctly interpret this manual in the context of jOOQ.

Code blocks

The following are code blocks:

-- A SQL code bl ock
SELECT 1 FROM DUAL

/1 A Java code bl ock
for (int i =0; i < 10; i++);

<!-- An XML code bl ock -->
<hel | o what ="wor | d"></ hel | 0>

A config file code bl ock
org.j ooq. property=val ue

These are useful to provide examples in code. Often, with jOOQ, it is even more useful to compare SQL
code with its corresponding Java/jJOOQ code. When this is done, the blocks are aligned side-by-side,
with SQL usually being on the left, and an equivalent JOOQ DSL query in Java usually being on the right:

- In SQL: /] Using jOOQ
SELECT 1 FROM DUAL create. sel ect One().fetch()

Code block contents

The contents of code blocks follow conventions, too. If nothing else is mentioned next to any given code
block, then the following can be assumed:

-- SQL assunptions

- If nothing else is specified, assune that the Oracle syntax is used
SELECT 1 FROM DUAL

© 2009 - 2024 by Data Geekery™ GmbH. Page 30/ 1238

The jOOQ User Manual 3.2. The sample database used in this manual

/1l Java assunptions
A

/'l \Whenever you see "standal one functions", assume they were static inported from org.jooq.inpl.DSL

/1 "DSL" is the entry point of the static query DSL

exists(); max(); min(); val(); inline(); // correspond to DSL.exists(); DSL.max(); DSL.min(); etc...

/1 \Whenever you see BOOK/ Book, AUTHOR/ Author and simlar entities, assune they were (static) inported fromthe generated schema
BOOK. TI TLE, AUTHOR. LAST_NAME // com exanpl e. gener at ed. Tabl es. BOOK. TI TLE, com exanpl e. gener at ed. Tabl es. AUTHOR. LAST_NAVE
FK_BOOK_AUTHOR /1 com exanpl e. gener at ed. Keys. FK_BOOK_AUTHOR

/'l Whenever you see "create" being used in Java code, assune that this is an instance of org.jooq. DSLCont ext.

/1l The reason why it is called "create" is the fact, that a jOOQ QueryPart is being created fromthe DSL object.

/Il "create" is thus the entry point of the non-static query DSL
DSLCont ext create = DSL.using(connection, SQLDi al ect.ORACLE);

Your naming may differ, of course. For instance, you could name the "create" instance "db", instead.

Execution

When you're coding PL/SQL, T-SQL or some other procedural SQL language, SQL statements are always
executed immediately at the semi-colon. This is not the case in jJOOQ, because as an internal DSL, jOOQ
can never be sure that your statement is complete until you call fetch() or execute(). The manual tries
to apply fetch() and execute() as thoroughly as possible. If not, it is implied:

SELECT 1 FROM DUAL create.sel ectOne().fetch();
UPDATE t SET v = 1 create.update(T).set(T.V, 1).execute();

Degree (arity)

jOOQ records (and many other APl elements) have a degree N between 1 and 22. The variable degree
of an APl element is denoted as [N], e.g. Row[N] or Record[N]. The term "degree" is preferred over arity,
as "degree" is the term used in the SQL standard, whereas "arity" is used more often in mathematics
and relational theory.

Settings

jOOQ allows to override runtime behaviour using org.joog.conf.Settings. If nothing is specified, the
default runtime settings are assumed.

Sample database

jOOQ query examples run against the sample database. See the manual's section about the sample
database used in this manual to learn more about the sample database.

3.2. The sample database used in this manual

For the examples in this manual, the same database will always be referred to. It essentially consists of
these entities created using the Oracle dialect

© 2009 - 2024 by Data Geekery™ GmbH. Page 31/1238

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/conf/Settings.html

The jOOQ User Manual 3.3. Different use cases for jJOOQ

CREATE TABLE | anguage (

id NUVBER(7) NOT NULL PRI MARY KEY,
cd CHAR(2) NOT NULL,
descri ption VARCHAR2(50)

)i

CREATE TABLE aut hor (

id NUVBER(7) NOT NULL PRI MARY KEY,
first_nane VARCHAR2(50) ,
| ast _name VARCHAR2(50) NOT NULL,

date_of _birth DATE,

year _of _birth NUVBER(7),

di stingui shed NUMBER(1)
)

CREATE TABLE book (

id NUVBER(7) NOT NULL PRI MARY KEY,

aut hor _i d NUVBER(7) NOT NULL,

title VARCHAR2(400) NOT NULL,

publ i shed_in NUVBER(7) NOT NULL,

| anguage_i d NUVBER(7) NOT NULL,

CONSTRAI NT f k_book_aut hor FOREI GN KEY (aut hor _i d) REFERENCES aut hor (i d),

CONSTRAI NT f k_book_| anguage FOREI GN KEY (| anguage_i d) REFERENCES | anguage(i d)
)

CREATE TABLE book_store (
nane VARCHAR2(400) NOT NULL UNI QUE
)

CREATE TABLE book_t o_book_store (

nane VARCHAR2(400) NOT NULL,

book_i d | NTEGER NOT NULL,

st ock | NTEGER,

PRI MARY KEY(name, book_id),

CONSTRAI NT f k_b2bs_book_store FOREI GN KEY (name) REFERENCES book_store (name) ON DELETE CASCADE,
CONSTRAI NT f k_b2bs_book FOREI GN KEY (book_i d) REFERENCES book (i d) ON DELETE CASCADE

More entities, types (e.g. UDT's, ARRAY types, ENUM types, etc), stored procedures and packages are
introduced for specific examples

In addition to the above, you may assume the following sample data:

I NSERT | NTO | anguage (id, cd, description) VALUES (1, 'en', 'English);

I NSERT | NTO | anguage (id, cd, description) VALUES (2, 'de', 'Deutsch');

I NSERT | NTO | anguage (id, cd, description) VALUES (3, 'fr', 'Francais');
I NSERT | NTO | anguage (id, cd, description) VALUES (4, 'pt', 'Portugués');

I NSERT | NTO aut hor (id, first_nane, |ast_nane, date_of _birth , year_of _birth)
VALUES (1, '"George’ , 'Orwell' , DATE '1903-06-26', 1903)

I NSERT | NTO aut hor (id, first_nane, |ast_nane, date_of birth , year_of _birth)
VALUES (2, 'Paulo , 'Coel ho' , DATE '1947-08-24', 1947)

I NSERT | NTO book (id, author_id, title , published_in, |anguage_id)
VALUES (1,1 , '1984' , 1948 , 1 ;

I NSERT | NTO book (id, author_id, title , published_in, |anguage_id)
VALUES (2,1 , "Animal Farm , 1945 , 1 ;

I NSERT | NTO book (id, author_id, title , published_in, |anguage_id)
VALUES (3, 2 , 'O A quinista, 1988 , 4 ;

I NSERT | NTO book (id, author_id, title , published_in, |anguage_id)
VALUES (4, 2 , ' Brida , 1990 , 2 ;

I NSERT | NTO book_store VALUES (' Orell Fussli');
I NSERT | NTO book_store VALUES (' Ex Libris");
I NSERT | NTO book_store VALUES (' Buchhandl ung i m Vol kshaus');

I NSERT | NTO book_t o_book_store VALUES (' Orell Fussli' , 1, 10);
I NSERT | NTO book_t o_book_store VALUES (' Orell Fussli' , 2, 10);
I NSERT | NTO book_t o_book_store VALUES (' Orell Fussli' , 3, 10);
I NSERT | NTO book_t o_book_store VALUES (' Ex Libris' , 1, 1);
I NSERT | NTO book_t o_book_store VALUES (' Ex Libris' , 3, 2)
I NSERT | NTO book_t o_book_store VALUES (' Buchhandl ung i m Vol kshaus', 3, 1)

3.3. Different use cases for jJO0OQ

jOOQ has originally been created as a library for complete abstraction of JDBC and all database
interaction. Various best practices that are frequently encountered in pre-existing software products
are applied to this library. This includes:

© 2009 - 2024 by Data Geekery™ GmbH. Page 32/1238

The jOOQ User Manual 3.3.1.jO0Q as a SQL builder without code generation

- Typesafe database object referencing through generated schema, table, column, record,
procedure, type, dao, pojo artefacts (see the chapter about code generation)

- Typesafe SQL construction / SQL building through a complete querying DSL APl modelling SQL
as a domain specific language in Java (see the chapter about the query DSL API)

- Convenient query execution through an improved API for result fetching (see the chapters about
the various types of data fetching)

- SQL dialect abstraction and SQL clause emulation to improve cross-database compatibility and
to enable missing features in simpler databases (see the chapter about SQL dialects)

- SQL logging and debugging using jOOQ as an integral part of your development process (see the
chapters about logging)

Effectively, JOOQ was originally designed to replace any other database abstraction framework short of
the ones handling connection pooling (and more sophisticated transaction management)

Use JOOQ the way you prefer

... but open source is community-driven. And the community has shown various ways of using jOOQ
that diverge from its original intent. Some use cases encountered are:

- Using Hibernate for 70% of the queries (i.e. CRUD) and jOOQ for the remaining 30% where SQL
is really needed

- Using jJOOQ for SQL building and JDBC for SQL execution

- Using jJOOQ for SQL building and Spring Data for SQL execution

- Using JOOQ without the source code generator to build the basis of a framework for dynamic
SQL execution.

The following sections explain about various use cases for using jOOQ in your application.

3.3.1.J00Q as a SQL builder without code
generation

We strongly recommend to use jOOQ with its code generator to get the most out of jOOQ)!

However, if you have a dynamic schema, you don't have to use the code generator. This is the most
simple of all use cases, allowing for construction of valid SQL for any database. In this use case, you will
not use JOOQ's code generator and maybe not even jOOQ's query execution facilities. Instead, you'll use
I00Q's guery DSL API to wrap strings, literals and other user-defined objects into an object-oriented,
type-safe AST modelling your SQL statements. An example is given here:

/] Fetch a SQL string froma jOOQ Query in order to nmanually execute it with another tool.
/'l For sinplicity reasons, we're using the APl to construct case-insensitive object references, here.
Query query = create.select(field("BOOK TITLE"), field("AUTHOR FI RST_NAME"), fi el d("AUTHOR LAST_NAME"))

.fron(tabl e("BOXK"))
.join(table("AUTHOR"))
.on(field("BOOK AUTHOR | D").eq(fiel d("AUTHOR I D")))
.where(fiel d("BOOK. PUBLI SHED | N'). eq(1948));
String sql = query.get SQL();
Li st <Obj ect > bi ndVal ues = query. get Bi ndVal ues();

The SQL string built with the jOOQ query DSL can then be executed using JDBC directly, using
Spring's JdbcTemplate, using Apache DbUtils and many other tools (note that since jOOQ uses

© 2009 - 2024 by Data Geekery™ GmbH. Page 33/1238

The jOOQ User Manual 3.3.2.jO0Q as a SQL builder with code generation

lava.sgl.PreparedStatement by default, this will generate a bind variable for "1948". Read more about
bind variables here).

You can also avoid getting the SQL string and bind values separately:

String sql = query.get SQL(Paranype. | NLI NED) ;

If you wish to use jOOQ only as a SQL builder, the following sections of the manual will be of interest
to you:

- SQL building: This section contains a lot of information about creating SQL statements using the
jOOQ API

- Plain SQL: This section contains information useful in particular to those that want to supply
table expressions, column expressions, etc. as plain SQL to jOOQ), rather than through
generated artefacts

- Bind values: This section explains how bind values are managed and/or inlined in jOOQ.

3.3.2.]00Q as a SQL builder with code generation

In addition to using jOOQ as a standalone SQL builder, you can also use jOOQ's code generation
features in order to compile your SQL statements using a Java compiler against an actual database
schema. This adds a lot of power and expressiveness to just simply constructing SQL using the query
DSL and custom strings and literals, as you can be sure that all database artefacts actually exist in the
database, and that their type is correct. We strongly recommend using this approach. An example is
given here:

/] Fetch a SQL string froma jOOQ Query in order to nmanually execute it with another tool.
Query query = create. sel ect (BOOK. TI TLE, AUTHOR. FI RST_NAME, AUTHOR. LAST_NANE)

. f rom(BOOK)

. j oi n(AUTHOR)

. on(BOOK. AUTHOR_| D. eq(AUTHOR. | D))
. wher e(BOOK. PUBLI SHED | N. eq(1948)) ;

String sql = query.get SQL();
Li st <Obj ect > bi ndVal ues = query. get Bi ndVal ues();

The SQL string built with the jOOQ query DSL can then be executed using JDBC directly, using
Spring's JdbcTemplate, using Apache DbUtils and many other tools (note that since jOOQ uses
lava.sgl.PreparedStatement by default, this will generate a bind variable for "1948". Read more about
bind variables here).

You can also avoid getting the SQL string and bind values separately:

String sql = query.get SQL(Paranype. | NLI NED) ;

If you wish to use jOOQ only as a SQL builder with code generation, the following sections of the manual
will be of interest to you:

- SQOL building: This section contains a lot of information about creating SQL statements using the
jOOQ API

- Code generation: This section contains the necessary information to run jOOQ's code generator
against your developer database

- Bind values: This section explains how bind values are managed and/or inlined in jOOQ.

© 2009 - 2024 by Data Geekery™ GmbH. Page 34 /1238

https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/PreparedStatement.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/PreparedStatement.html

The jOOQ User Manual 3.3.3.jO0Q as a SQL executor

3.3.3.J00Q as a SQL executor

Instead of any tool mentioned in the previous chapters, you can also use jOOQ directly to execute your
jOOQ-generated SQL statements. This will add a lot of convenience on top of the previously discussed
API for typesafe SQL construction, when you can re-use the information from generated classes to fetch
records and custom data types. An example is given here:

/1l Typesafely execute the SQL statement directly with j OOQ
Resul t <Record3<String, String, String>> result =
create. sel ect (BOOK. TI TLE, AUTHOR FI RST_NAME, AUTHOR. LAST_NAME)
. f r om(BOOK)
. j 0i n(AUTHOR)
. on(BOOK. AUTHOR | D. eq(AUTHOR. | D))
. wher e(BOOK. PUBLI SHED_I N. eq(1948))
.fetch();

By having jOOQ execute your SQL, the jOOQ query DSL becomes truly embedded SQL.

jOOQ doesn't stop here, though! You can execute any SQL with jOOQ. In other words, you can use any
other SQL building tool and run the SQL statements with jOOQ. An example is given here:

/1l Use your favourite tool to construct SQL strings:
String sql = "SELECT title, first_nane, |ast_name FROM book JO N aut hor ON book.author_id = author.id " +
"WHERE book. publ i shed_in = 1984";

I/ Fetch results using jO0Q
Resul t <Record> result = create.fetch(sql);

/Il O execute that SQL with JDBC, fetching the ResultSet wth jOOQ

Resul t Set rs = connection. createStatenent().executeQuery(sql);
Resul t <Record> result = create.fetch(rs);

If you wish to use jOOQ as a SQL executor with (or without) code generation, the following sections of
the manual will be of interest to you:

- SQL building: This section contains a lot of information about creating SQL statements using the
jOOQ API

- Code generation: This section contains the necessary information to run jOOQ's code generator
against your developer database

- SQL execution: This section contains a lot of information about executing SQL statements using
the jOOQ API

- Fetching: This section contains some useful information about the various ways of fetching data
with jOOQ

3.3.4.j00Q for CRUD

Apart from jOOQ's fluent API for query construction, JOOQ can also help you execute everyday CRUD
operations. An example is given here:

© 2009 - 2024 by Data Geekery™ GmbH. Page 35/1238

The jOOQ User Manual 3.3.5.jO0Q for PROs

/'l Fetch an aut hor
Aut hor Record aut hor = create.fetchOne(AUTHOR, AUTHOR ID.eq(1));
/Il Create a new author, if it doesn't exist yet
if (author == null) {
aut hor = create. newRecor d(AUTHOR) ;
aut hor.setld(1);
aut hor . set Fi r st Nane(" Dan") ;
aut hor . set Last Name(" Brown") ;

}

/1l Mark the author as a "distinguished" author and store it
aut hor . set Di sti ngui shed(1);

/] Executes an update on existing authors, or insert on new ones
aut hor. store();

If you wish to use all of JOOQ's features, the following sections of the manual will be of interest to you
(including all sub-sections):

- SQL building: This section contains a lot of information about creating SQL statements using the
jOOQ API

- Code generation: This section contains the necessary information to run jOOQ's code generator
against your developer database

- SQL execution: This section contains a lot of information about executing SQL statements using
the jOOQ API

3.3.5.)J00Q for PROs

jOOQ isn't just a library that helps you build and execute SQL against your generated, compilable
schema. jOOQ ships with a lot of tools. Here are some of the most important tools shipped with jOOQ:

- JOOQ's Execute Listeners: jOOQ allows you to hook your custom execute listeners into jOOQ's
SQL statement execution lifecycle in order to centrally coordinate any arbitrary operation
performed on SQL being executed. Use this for logging, identity generation, SQL tracing,
performance measurements, etc.

- Logging: jOOQ has a standard DEBUG logger built-in, for logging and tracing all your executed
SQL statements and fetched result sets

- Stored Procedures: jOOQ supports stored procedures and functions of your favourite database.
All routines and user-defined types are generated and can be included in jOOQ's SQL building
API as function references.

- Batch execution: Batch execution is important when executing a big load of SQL statements.
jOOQ simplifies these operations compared to JDBC

- Exporting and Importing: jOOQ ships with an API to easily export/import data in various formats

If you're a power user of your favourite, feature-rich database, jOOQ will help you access all of your
database's vendor-specific features, such as OLAP features, stored procedures, user-defined types,
vendor-specific SQL, functions, etc. Examples are given throughout this manual.

3.4. Getting jJOOQ

jOOQ is distributed over 3 main channels:

© 2009 - 2024 by Data Geekery™ GmbH. Page 36/ 1238

The jOOQ User Manual 3.4. Getting jOOQ

- The website as downloadable ZIP files: https://www.joog.org/download/versions
- The repository for jJOOQ's commercial editions only: https://repo.joog.org
- Maven Central for jOOQ's open source edition only: https://repol.maven.org/maven2/org/jooq

The ZIP file

If you choose to download jOOQ over the website, you will be able to download a ZIP file with the
following layout:

- maven-deploy.bat: A Windows batch script to deploy artifacts to a maven repository

- maven-deploy.sh: A bash script to deploy artifacts to a maven repository

- maven-install.bat: A Windows batch script to install artifacts to the local maven repository
- maven-install.sh: A bash script to install artifacts to the local maven repository

The website hosts the latest versions of the JOOQ Open Source Edition as well as all the historic versions
of the commercial jJOOQ editions including snapshot builds of all distributions that are available to
paying customers only.

The commercial artifact repository

The commercial artifact repository hosts all the historic versions of the commercial jOOQ editions
including snapshot builds of all distributions that are available to paying customers only.

Below is information regarding how to include these dependencies in Maven / Gradle:
Maven

settings.xm|

<server>
<i d>j ooq- pro</i d>
<user name>[your |icensee email]</username>
<passwor d>[your |icense key] </ password>

</ server>

© 2009 - 2024 by Data Geekery™ GmbH. Page 37/1238

https://www.jooq.org/download/versions
https://repo.jooq.org
https://repo1.maven.org/maven2/org/jooq

The jOOQ User Manual 3.4. Getting JOOQ

pom.xml

<repositories>
<reposi tory>
<id>central </id>
<url >https://repol. maven. or g/ maven2/ </ url >
</ repository>
<!-- Oher repositories ... -->

<reposi tory>
<i d>j oog- pro</i d>
<url >https://repo.jooq. org/repo</url >
</ repository>
</repositories>
<pl ugi nReposi tori es>
<pl ugi nReposi t ory>
<id>central </id>
<url >https://repol. maven. or g/ maven2/ </ url >
</ pl ugi nReposi t ory>
<!-- Oher repositories ... -->

<pl ugi nReposi t ory>
<i d>j oog- pro</i d>
<url >https://repo.jooq.org/repo</url >
</ pl ugi nReposi t ory>
</ pl ugi nReposi tories>

Gradle (Kotlin)

settings.gradle kts

pl ugi nManagenment {
repositories {
mavenCentral ()
I/l OQther repositories...

maven {
url = uri("https://repo.jooq.org/repo")
credentials {
user nane
passwor d

"<your |icensee enail>"
"<your |icense key>"

build.gradle.kts

repositories {
mavenCentral ()
/'l Qther repositories...

nmaven {
url = uri("https://repo.jooq.org/repo")
credentials {
usernane = "<your |icensee email>"
password = "<your |icense key>"
}
}

Gradle (Groovy)

© 2009 - 2024 by Data Geekery™ GmbH. Page 38/1238

The jOOQ User Manual 3.5. Tutorials

settings.gradle

build.gradle

Dependencies

Depending on the edition you're using, please declare the following dependencies in Maven or Gradle:
Maven

<dependency>
<!-- Use org.jooq for the Open Source Edition
org.joog. pro for comercial editions with Java 17 support,
org.joog. pro-java-11 for comercial editions with Java 11 support,
org.joog. pro-java-8 for commercial editions with Java 8 support,
org.joog.trial for the free trial edition with Java 17 support,

org.jooqg.trial-java-11 for the free trial edition with Java 11 support,
org.joog.trial-java-8 for the free trial edition with Java 8 support

Note: Only the Open Source Edition is hosted on Maven Central .
Install the others locally using the provided scripts, or access themfrom here: https://repo.jooqg.org -->
<gr oupl d>or g. j ooq</ gr oupl d>
<artifactld>jooqg</artifactld>
<ver si on>3. 19. 6</ ver si on>
</ dependency>

Gradle (Kotlin)

dependenci es {

/1l Use org.jooq for the Open Source Edition
11/ org.jooq. pro for commercial editions with Java 17 support,
11/ org.jooq.pro-java-11 for commercial editions with Java 11 support,
11/ org.jooq.pro-java-8 for comercial editions with Java 8 support,
11/ org.jooq.trial for the free trial edition with Java 17 support,
11/ org.jooq.trial-java-11 for the free trial edition with Java 11 support,
11/ org.jooqg.trial-java-8 for the free trial edition with Java 8 support
Il
/1 Note: Only the Open Source Edition is hosted on Maven Central .
11/ Install the others locally using the provided scripts, or access themfrom here: https://repo.jooq.org
i mpl enent ati on("org.jooq: jooq: 3. 19. 6")
}
Gradle (Groovy)

3.5. Tutorials

Don't have time to read the full manual? Here are a couple of tutorials that will get you into the most
essential parts of jJOOQ as quick as possible.

3.5.1.J00Q In 7 easy steps

This manual section is intended for new users, to help them get a running application with jOOQ, quickly.

© 2009 - 2024 by Data Geekery™ GmbH. Page 39/1238

The jOOQ User Manual 3.5.1.1. Step 1: Preparation

3.5.1.1. Step 1: Preparation

If you haven't already downloaded it, download jOOQ:
https://www.joog.org/download

Alternatively, you can create a Maven dependency to download jOOQ artefacts:

Open Source Edition

<dependency>
<gr oupl d>or g. j ooq</ gr oupl d>
<artifactld>joog</artifactld>
<ver si on>3. 19. 6</ ver si on>

</ dependency>

<!-- These may not be required, unless you use the GenerationTool manually for code generation -->

<dependency>
<gr oupl d>or g. j ooq</ gr oupl d>
<artifactld>j oog-neta</artifactld>
<ver si on>3. 19. 6</ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. j ooq</ gr oupl d>
<artifact!d>j oog-codegen</artifactld>
<ver si on>3. 19. 6</ ver si on>

</ dependency>

Commercial Editions (Java 17+)

<!-- Note: These aren't hosted on Maven Central. Inport them manually from your distribution -->
<dependency>

<gr oupl d>or g. j 0oq. pr o</ gr oupl d>

<artifactld>jooqg</artifactld>

<ver si on>3. 19. 6</ versi on>
</ dependency>

<!-- These nmay not be required, unless you use the GenerationTool manually for code generation -->

<dependency>
<gr oupl d>or g. j 0ooq. pr o</ gr oupl d>
<artifact!d>j oog-neta</artifactld>
<ver si on>3. 19. 6</ versi on>

</ dependency>

<dependency>
<gr oupl d>or g. j 0oq. pr o</ gr oupl d>
<artifact!d>j oog-codegen</artifactld>
<ver si on>3. 19. 6</ versi on>

</ dependency>

© 2009 - 2024 by Data Geekery™ GmbH. Page 40/ 1238

https://www.jooq.org/download

The jOOQ User Manual

Commercial Editions (Java 11+)

<l-- Note: These aren't hosted on Maven Central. Inport them manually fromyour distribution -->
<dependency>

<gr oupl d>or g. j 00q. pro-j ava- 11</ gr oupl d>

<artifactld>jooqg</artifactld>

<ver si on>3. 19. 6</ versi on>
</ dependency>

<!-- These may not be required, unless you use the GenerationTool manually for code generation -->
<dependency>
<gr oupl d>or g. j 00q. pro-j ava- 11</ gr oupl d>
<artifactld>j oog-neta</artifactld>
<ver si on>3. 19. 6</ ver si on>
</ dependency>
<dependency>
<gr oupl d>or g. j 00q. pro-j ava- 11</ gr oupl d>
<artifact!d>j oog-codegen</artifactld>
<ver si on>3. 19. 6</ ver si on>
</ dependency>

Commercial Editions (Java 8+)

<!-- Note: These aren't hosted on Maven Central. Inport them manually from your distribution -->
<dependency>

<gr oupl d>or g. j 0oq. pr o-j ava- 8</ gr oupl d>

<artifactld>joog</artifactld>

<ver si on>3. 19. 6</ versi on>
</ dependency>

<!-- These nmay not be required, unless you use the GenerationTool manually for code generation -->

<dependency>
<gr oupl d>or g. j 0oq. pr o-j ava- 8</ gr oupl d>
<artifact!d>j oog-neta</artifactld>
<ver si on>3. 19. 6</ versi on>

</ dependency>

<dependency>
<gr oupl d>or g. j 0oq. pr o-j ava- 8</ gr oupl d>
<artifact!d>j oog-codegen</artifactld>
<ver si on>3. 19. 6</ versi on>

</ dependency>

Commercial Editions (Free Trial, Java 17+)

<!-- Note: These aren't hosted on Maven Central. Inport them manually from your distribution -->
<dependency>

<groupl d>org. jooq.trial </ groupl d>

<artifactld>jooq</artifactld>

<ver si on>3. 19. 6</ ver si on>
</ dependency>

<!-- These may not be required, unless you use the GenerationTool nenually for code generation -->

<dependency>
<groupl d>org. jooq.trial </ groupl d>
<artifactld>jooq-neta</artifactld>
<ver si on>3. 19. 6</ ver si on>

</ dependency>

<dependency>
<groupl d>org. jooq.trial </ groupl d>
<artifactld>j ooq-codegen</artifactld>
<ver si on>3. 19. 6</ ver si on>

</ dependency>

© 2009 - 2024 by Data Geekery™ GmbH.

3.5.1.1. Step 1: Preparation

Page 41/1238

The jOOQ User Manual

Commercial Editions (Free Trial, Java 11+)

<l-- Note: These aren't hosted on Maven Central. Inport them manually fromyour distribution -->
<dependency>

<groupl d>org. jooq. trial -java-11</ gr oupl d>

<artifactld>jooqg</artifactld>

<ver si on>3. 19. 6</ versi on>
</ dependency>

<!-- These may not be required, unless you use the GenerationTool manually for code generation -->
<dependency>
<groupl d>org. jooq. trial -java-11</ gr oupl d>
<artifactld>j oog-neta</artifactld>
<ver si on>3. 19. 6</ ver si on>
</ dependency>
<dependency>
<groupl d>org. jooq. trial -java-11</ gr oupl d>
<artifact!d>j oog-codegen</artifactld>
<ver si on>3. 19. 6</ ver si on>
</ dependency>

Commercial Editions (Free Trial, Java 8+)

<!-- Note: These aren't hosted on Maven Central. Inport them manually from your distribution -->
<dependency>

<groupl d>org. j ooq. trial -j ava- 8</ groupl d>

<artifactld>joog</artifactld>

<ver si on>3. 19. 6</ versi on>
</ dependency>

<!-- These nmay not be required, unless you use the GenerationTool manually for code generation -->
<dependency>
<groupl d>org. j ooq. trial -j ava- 8</ groupl d>
<artifact!d>j oog-neta</artifactld>
<ver si on>3. 19. 6</ versi on>
</ dependency>
<dependency>
<groupl d>org. j ooq. trial -j ava- 8</ groupl d>
<artifact!d>j oog-codegen</artifactld>
<ver si on>3. 19. 6</ versi on>
</ dependency>

Commercial Editions (Java 6+)

<!-- Note: These aren't hosted on Maven Central. Inport them manually from your distribution -->
<dependency>

<gr oupl d>or g. j 00q. pr o-j ava- 6</ gr oupl d>

<artifactld>jooq</artifactld>

<ver si on>3. 19. 6</ ver si on>
</ dependency>

<!-- These may not be required, unless you use the GenerationTool nenually for code generation -->

<dependency>
<gr oupl d>or g. j 00q. pr o-j ava- 6</ gr oupl d>
<artifactld>jooq-neta</artifactld>
<ver si on>3. 19. 6</ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. j 00q. pr o-j ava- 6</ gr oupl d>
<artifactld>j ooq-codegen</artifactld>
<ver si on>3. 19. 6</ ver si on>

</ dependency>

3.5.1.1. Step 1: Preparation

Note that only the JOOQ Open Source Edition is available from Maven Central. If you're using the jOOQ
Professional Edition or the JOOQ Enterprise Edition, you will have to manually install JOOQ in your local
Nexus, or in your local Maven cache. For more information, please refer to the licensing pages.

Please refer to the manual's section about Code generation configuration to learn how to use jOOQ's

code generator with Maven.

© 2009 - 2024 by Data Geekery™ GmbH.

Page 42 /1238

https://www.jooq.org/licensing

The jOOQ User Manual 3.5.1.2. Step 2: Your database

For this example, we'll be using MySQL. If you haven't already downloaded MySQL Connector/},
download it here:
https://dev.mysgl.com/downloads/connector/j/

If you don't have a MySQL instance up and running yet, get it from https://www.mysgl.com or https://
hub.docker.com/ /mysgl now!

3.5.1.2. Step 2: Your database

We're going to create a database called "library" and a corresponding "author" table. Connect to MySQL
via your command line client and type the following:

CREATE DATABASE “library’;

USE “library’;

CREATE TABLE "aut hor™ (

“id int NOT NULL,

“first_nane’ varchar(255) DEFAULT NULL,
“last _nane’ varchar (255) DEFAULT NULL,
PRI MARY KEY (“id")

)

3.5.1.3. Step 3: Code generation

In this step, we're going to use jJOOQ's command line tools to generate classes that map to the Author
table we just created. More detailed information about how to set up the jOOQ code generator can
be found here:

IO0Q manual pages about setting up the code generator

The easiest way to generate a schema is to copy the jOOQ jar files (there should be 3) and the MySQL
Connector jar file to a temporary directory. Then, create a library.xml that looks like this:

© 2009 - 2024 by Data Geekery™ GmbH. Page 43 /1238

https://dev.mysql.com/downloads/connector/j/
https://www.mysql.com/
https://hub.docker.com/_/mysql
https://hub.docker.com/_/mysql

The jOOQ User Manual

<?xm version="1.0" encodi ng="UTF-8" standal one="yes"?>
<confi guration>
<!-- Configure the database connection here -->
<j dbc>
<driver>com nysql.cj.jdbc.Driver</driver>
<url >j dbc: nysql :/ /1 ocal host: 3306/ i brary</url>
<user >r oot </ user >
<passwor d></ passwor d>
</ j dbc>

<gener at or >

<!-- The default code generator. You can override this one, to generate your own code style.

Supported generators:

- org.jooq. codegen. JavaGener at or

- org.jooq. codegen. Kot | i nGener at or

- org.jooq. codegen. Scal aGener at or

Defaults to org.jooq.codegen. JavaGenerator -->
<nane>or g. j ooq. codegen. JavaGener at or </ nane>

<dat abase>
<!-- The database type. The format here is:
org.jooq. net a. [dat abase] . [dat abase] Dat abase -->
<name>or g. j 00q. net a. nysql . MySQLDat abase</ name>

<!-- The database schena (or in the absence of schenma support, in your RDBMS this
can be the owner, user, database nane) to be generated -->
<i nput Schema>| i br ary</ i nput Schema>

<l-- Al elenents that are generated from your schenma
(A Java regul ar expression. Use the pipe to separate several expressions)

Watch out for case-sensitivity. Depending on your database, this mght be inportant! --

<i ncl udes>. *</ i ncl udes>

<l-- Al elenents that are excluded from your schema
(A Java regul ar expression. Use the pipe to separate several expressions).
Excl udes match before includes, i.e. excludes have a higher priority -->

<excl udes></ excl udes>
</ dat abase>

<target >

<!-- The destination package of your generated classes (wthin the destination directory) --

<packageNanme>t est . gener at ed</ packageNane>

<!-- The destination directory of your generated classes. Using Maven directory |ayout here --

<di rect ory>C: / wor kspace/ M\ySQLTest / src/ nai n/ j ava</ di rect ory>
</target>
</ gener at or >
</ configuration>

>

3.5.1.3. Step 3: Code generation

Replace the username (<username/> or <user/>) with whatever user has the appropriate privileges to
query the database meta data. You'll also want to look at the other values and replace as necessary.

Here are the two interesting properties:

<packageName/> - set this to the parent package you want to create for the generated
classes. Setting the value to testgenerated will cause the test.generated.tables.Author and

test.generated.tables.records.AuthorRecord classes to be created

<directory/> - the directory to output the generated classes to.

Once you have the JAR files and library.xml in your temp directory, type this on a Windows machine:

java -classpath joog-3.19.6.jar;"
joog-neta-3.19.6.jar;"

j oog- codegen-3.19.6.jar; "
reactive-streans-1.0.3.jar;"

r2dbc-spi-1.0. 0. RELEASE. j ar;

jakarta.xm . bind-api-3.0.0.jar; "

nysql -connector-java.jar;. *

org. j ooq. codegen. Generati onTool |ibrary.xni

... or type this on a UNIX/ Linux / Mac system (colons instead of semi-colons):

java -classpath jooqg-3.19.6.jar:\
joog-neta-3.19.6.jar:\

j 0oog- codegen-3.19.6.jar:\
reactive-streans-1.0.3.jar:\

r2dbc-spi - 1. 0. 0. RELEASE. j ar : \

jakarta.xn . bind-api-3.0.0.jar:\

nysql -connector-java.jar:. \

org. j ooq. codegen. GenerationTool |ibrary.xm

")

© 2009 - 2024 by Data Geekery™ GmbH.

Page 44 /1238

The jOOQ User Manual 3.5.1.4. Step 4: Connect to your database

- jOOQ will try loading the library.xml from your classpath. Thisis also why thereisatrailing period (.)
on the classpath. If the file cannot be found on the classpath, jOOQ will look on the file system from the
current working directory.

- Replace the filenames with your actual filenames. In this example, jOOQ 3.19.6 is being used.

- If you're using a linux style shell on Windows, but a Windows JDK/JRE, you still need to use semi-
colonsin your classpath! (;) In git-bash, you might have to quote your classpath ("joog-3.19.6.jar;joog-
meta-3.19.6.jar;...")

If everything has worked, you should see this in your console output:

Nov 1, 2011 7:25:06 PM org.jooq.inpl.JooqLogger info

INFO Initialising properties /library.xni

Nov 1, 2011 7:25:07 PM org.jooq.inpl.JooqLogger info

I NFO Dat abase paraneters

Nov 1, 2011 7:25:07 PM org.jooq.inpl.JooqLogger info

[R e R T
Nov 1, 2011 7:25:07 PM org.jooq.inpl.JooqLogger info

| NFO di al ect o MYSQL

Nov 1, 2011 7:25:07 PM org.jooq.inpl.JooqLogger info

I NFO schema library

Nov 1, 2011 7:25:07 PM org.jooq.inpl.JooqLogger info

I NFO target dir C: / wor kspace/ \ySQLTest/ src

Nov 1, 2011 7:25:07 PM org.jooq.inpl.JooqLogger info

I NFO target package : test.generated

Nov 1, 2011 7:25:07 PM org.jooq.inpl.JooqLogger info

[R e R T
Nov 1, 2011 7:25:07 PM org.jooq.inpl.JooqLogger info

I NFO Enptyi ng C: /wor kspace/ MySQLTest / src/ t est/ gener at ed

Nov 1, 2011 7:25:

INFO Generating

Nov 1, 2011 7:25:

07 PM org. j ooq
classes in
07 PM org. j ooq

.inpl . JoogLogger

info

C: / wor kspace/ MySQLTest / src/ t est/ gener at ed

.inpl . JoogLogger

info

I NFO Generating schena Library.java

Nov 1, 2011 7:25:07 PM org.jooq.inpl.JooqLogger info

I NFO Schema gener at ed : Total: 122.18ns

Nov 1, 2011 7:25:07 PM org.jooq.inpl.JooqLogger info

I NFO Sequences fetched : 0 (0 included, 0 excluded)
Nov 1, 2011 7:25:07 PM org.jooq.inpl.JooqLogger info

I NFO Tabl es fetched : 5 (5 included, 0 excluded)
Nov 1, 2011 7:25:07 PM org.jooq.inpl.JooqLogger info

INFO Generating tables C: /wor kspace/ M\ySQLTest / src/ t est/ gener at ed/ t abl es
Nov 1, 2011 7:25:07 PM org.jooq.inpl.JooqLogger info

I NFO ARRAYs fetched : 0 (0 included, 0 excluded)
Nov 1, 2011 7:25:07 PM org.jooq.inpl.JooqLogger info

INFO Enuns fetched : 0 (0 included, 0 excluded)
Nov 1, 2011 7:25:07 PM org.jooq.inpl.JooqLogger info

I NFO UDTs fetched : 0 (0 included, 0 excluded)
Nov 1, 2011 7:25:07 PM org.jooq.inpl.JooqLogger info

INFO Generating table Aut hor . j ava

Nov 1, 2011 7:25:07 PM org.jooq.inpl.JooqLogger info

I NFO Tabl es generated : Total: 680.464ns, +558.284ms
Nov 1, 2011 7:25:07 PM org.jooq.inpl.JooqLogger info

I NFO Generating Keys C: /wor kspace/ M\ySQLTest / src/ t est/ gener at ed/ t abl es
Nov 1, 2011 7:25:08 PM org.joog.inpl.JooqLogger info

I NFO Keys gener at ed : Total: 718.621ns, +38.157ns
Nov 1, 2011 7:25:08 PM org.jooq.inpl.JooqLogger info

I NFO Generating records C: / wor kspace/ MySQLTest / src/ t est/ gener at ed/ t abl es/ recor ds
Nov 1, 2011 7:25:08 PM org.jooq.inpl.JooqLogger info

I NFO Generating record Aut hor Record. j ava

Nov 1, 2011 7:25:08 PM org.jooq.inpl.JooqLogger info

INFO Tabl e records generated Total : 782.545ms, +63.924ns
Nov 1, 2011 7:25:08 PM org.jooq.inpl.JooqLogger info

I NFO Routines fetched : 0 (0 included, 0 excluded)
Nov 1, 2011 7:25:08 PM org.jooq.inpl.JooqLogger info

I NFO Packages fetched : 0 (0 included, 0 excluded)
Nov 1, 2011 7:25:08 PM org.jooq.inpl.JooqLogger info

I NFO GENERATI ON FI NI SHED! Total : 791.688ms, +9.143ns

3.5.1.4. Step 4: Connect to your database

Let's just write a vanilla main class in the project containing the generated classes:

© 2009 - 2024 by Data Geekery™ GmbH. Page 45/1238

The jOOQ User Manual 3.5.1.5. Step 5: Querying

/'l For conveni ence, always static inport your generated tables and jOOQ functions to decrease verbosity:
inmport static test.generated. Tables. *;
import static org.jooq.inpl.DSL.*;

import java.sql.*;

public class Main {
public static void main(String[] args) {

String userName = "root";
String password = "";
String url = "jdbc:nysql://local host:3306/1ibrary";

// Connection is the only JDBC resource that we need

/'l PreparedStatenment and ResultSet are handled by jOOQ internally

try (Connection conn = DriverManager. get Connection(url, userName, password)) {
1.

}

/'l For the sake of this tutorial, let's keep exception handling sinple
catch (Exception e) {

e.printStackTrace();
}

}
}

This is pretty standard code for establishing a MySQL connection.

3.5.1.5. Step 5: Querying

Let's add a simple query constructed with jOOQ's query DSL:

DSLCont ext create = DSL.using(conn, SQLDi al ect. MYSQL);
Resul t <Record> result = create.select().fron(AUTHOR).fetch();

First get an instance of DSLContext so we can write a simple SELECT query. We pass an instance of
the MySQL connection to DSL. Note that the DSLContext doesn't close the connection. We'll have to
do that ourselves.

We then use jOOQ's query DSL to return an instance of Result. We'll be using this resultin the next step.

3.5.1.6. Step 6: Iterating

After the line where we retrieve the results, let's iterate over the results and print out the data:

for (Record r : result) {
Integer id = r.getVal ue(AUTHOR | D) ;
String firstNanme = r.getVal ue(AUTHOR. Fl RST_NAME) ;
String |astNane = r.get Val ue(AUTHOR. LAST_NAME) ;

Systemout.printin("ID " +id + " first nane: " + firstNane + " last name: " + |astNane);

The full program should now look like this:

© 2009 - 2024 by Data Geekery™ GmbH. Page 46 /1238

The jOOQ User Manual 3.5.1.7. Step 7: Explore!

package test;

/'l For conveni ence, always static inmport your generated tables and
// jOOQ functions to decrease verbosity:

inmport static test.generated. Tables. *;

import static org.jooq.inpl.DSL.*;

import java.sql.*;

import org.jooq.*;
import org.jooq.inpl.*;

public class Main {

J**
* (@aram ar gs
*/
public static void main(String[] args) {
String userName = "root";
String password = "";
String url = "jdbc:nysql://local host:3306/1ibrary";

// Connection is the only JDBC resource that we need

/'l PreparedStatenent and ResultSet are handled by jOOQ internally

try (Connection conn = DriverManager. get Connection(url, userName, password)) {
DSLCont ext create = DSL.using(conn, SQLDi al ect.MYSQL);
Resul t <Record> result = create.select().fron{ AUTHOR).fetch();

for (Record r : result) {
Integer id = r.getVal ue(AUTHOR | D);
String firstName = r.getVal ue(AUTHOR FI RST_NAME) ;
String | astNane = r. get Val ue(AUTHOR. LAST_NAME) ;

Systemout.printIn("ID: " +id + " first nane: " + firstName + " last nanme: " + |astNane);
}
}

/'l For the sake of this tutorial, let's keep exception handling sinple

catch (Exception e) {
e.printStackTrace();
}

}
}

3.5.1.7. Step 7: Explore!

jOOQ has grown to be a comprehensive SQL library. For more information, please consider the
documentation:
https://www.joog.org/learn

... explore the Javadoc:
https://www.jooqg.org/javadoc/latest/

... or join the news group:
https://groups.google.com/forum/#!forum/joog-user

This tutorial is the courtesy of Ikai Lan. See the original source here:
https://ikaisays.com/2011/11/01/getting-started-with-joog-a-tutorial/

3.5.2. Using JOOQ with Flyway

When
performing database migrations, we at Data Geekery recommend using jOOQ with Flyway - Database
Migrations Made Easy. In this chapter, we're going to look into a simple way to get started with the two
frameworks.

© 2009 - 2024 by Data Geekery™ GmbH. Page 47/1238

https://www.jooq.org/learn
https://www.jooq.org/javadoc/latest/
https://groups.google.com/forum/#!forum/jooq-user
https://ikaisays.com/2011/11/01/getting-started-with-jooq-a-tutorial/
https://flywaydb.org/

The jOOQ User Manual 3.5.2. Using jOOQ with Flyway

Philosophy

There are a variety of ways how jOOQ and Flyway could interact with each other in various development
setups. In this tutorial we're going to show just one variant of such framework team play - a variant that
we find particularly compelling for most use cases.

The general philosophy behind the following approach can be summarised as this:

- 1. Database increment
- 2. Database migration
- 3. Code re-generation
- 4. Development

The four steps above can be repeated time and again, every time you need to modify something in your
database. More concretely, let's consider:

- 1. Database increment - You need a new column in your database, so you write the necessary
DDL in a Flyway script

- 2. Database migration - This Flyway script is now part of your deliverable, which you can share
with all developers who can migrate their databases with it, the next time they check out your
change

- 3. Code re-generation - Once the database is migrated, you regenerate all JOOQ artefacts (see
code generation), locally

- 4. Development - You continue developing your business logic, writing code against the updated,
generated database schema

Maven Project Configuration - Properties

The following properties are defined in our pom.xml, to be able to reuse them between plugin
configurations:

<properties>
<db. url >j dbc: h2: ~/ f| yway-t est </ db. ur| >
<db. user name>sa</ db. user name>

</ properties>

0. Maven Project Configuration - Dependencies

While jOOQ and Flyway could be used in standalone migration scripts, in this tutorial, we'll be
using Maven for the standard project setup. You will also find the source code of this tutorial on
GitHub at https://github.com/jO0Q/jO0Q/tree/main/jO0Q-examples/[O0Q-flyway-example, and the
full pom.xml file here.

These are the dependencies that we're using in our Maven configuration:

© 2009 - 2024 by Data Geekery™ GmbH. Page 48 /1238

https://github.com/jOOQ/jOOQ/tree/main/jOOQ-examples/jOOQ-flyway-example
https://github.com/jOOQ/jOOQ/blob/master/jOOQ-examples/jOOQ-flyway-example/pom.xml

The jOOQ User Manual 3.5.2. Using jJOOQ with Flyway

<l-- We'll add the latest version of jOOQ and our JDBC driver - in this case H2 -->
<dependency>
<!-- Use org.jooq for the Open Source Edition
org.joog. pro for comercial editions with Java 17 support
org.joog. pro-java-11 for comercial editions with Java 11 support
org.joog. pro-java-8 for commercial editions with Java 8 support
org.joog.trial for the free trial edition with Java 17 support

org.jooqg.trial-java-11 for the free trial edition with Java 11 support
org.joog.trial-java-8 for the free trial edition with Java 8 support

Note: Only the Open Source Edition is hosted on Maven Central
Install the others locally using the provided scripts, or access themfrom here: https://repo.jooqg.org -->
<gr oupl d>or g. j ooq</ gr oupl d>
<artifactld>jooqg</artifactld>
<ver si on>3. 19. 6</ ver si on>
</ dependency>
<dependency>
<gr oupl d>com h2dat abase</ gr oupl d>
<artifactld>h2</artifactld>
<versi on>1. 4. 197</ ver si on>
</ dependency>

<!-- For inproved | ogging, we'll be using |log4j via slf4j to see what's going on during mgration and code generation -->
<dependency>

<groupl d>or g. apache. | oggi ng. | og4j </ gr oupl d>

<artifactld>l og4j-slf4j-inpl</artifactld>

<versi on>2. 11. 0</ ver si on>
</ dependency>

<!-- To ensure our code is working, we're using JUnit -->
<dependency>
<groupl d>j uni t </ gr oupl d>
<artifactld>junit</artifactld>
<versi on>4. 11</ ver si on>
<scope>t est </ scope>
</ dependency>

0. Maven Project Configuration - Plugins
After the dependencies, let's simply add the Flyway and jOOQ Maven plugins like so. The Flyway plugin:

<pl ugi n>
<groupl d>or g. f | ywaydb</ gr oupl! d>
<artifact!d>flyway-maven-pl ugi n</artifact!d>
<ver si on>3. 0</ ver si on>

<!-- Note that we're executing the Flyway plugin in the "generate-sources" phase -->
<executions>
<execution>
<phase>gener at e- sour ces</ phase>
<goal s>
<goal >ni gr at e</ goal >
</ goal s>
</ executi on>
</ executi ons>

<!-- Note that we need to prefix the db/mgration path with filesystem to prevent Flyway
fromlooking for our migration scripts only on the classpath -->

<confi guration>
<url>${db. url}</url>
<user >${ db. user nane} </ user >
<l ocati ons>

<l ocation>fil esystem src/ nai n/ resources/db/ m gration</|ocation>

</l ocations>

</ configuration>

</ pl ugi n>

The above Flyway Maven plugin configuration will read and execute all database migration scripts
from src/main/resources/db/migration prior to compiling Java source code. While the official Flyway
documentation may suggest that migrations be done in the compile phase, the jOOQ code generator
relies on such migrations having been done prior to code generation.

After the Flyway plugin, we'll add the jJOOQ Maven Plugin. For more details, please refer to the manual's
section about the code generation configuration.

© 2009 - 2024 by Data Geekery™ GmbH. Page 49/1238

The jOOQ User Manual 3.5.2. Using jJOOQ with Flyway

<pl ugi n>
<!-- Use org.jooq for the Open Source Edition
org.joog. pro for comercial editions with Java 17 support,
org.joog. pro-java- 11 for comercial editions with Java 11 support,
org.jooq. pro-java-8 for commercial editions with Java 8 support,
org.joog.trial for the free trial edition with Java 17 support,

org.jooqg.trial-java-11 for the free trial edition with Java 11 support,
org.joog.trial-java-8 for the free trial edition with Java 8 support

Note: Only the Open Source Edition is hosted on Maven Central .
Install the others locally using the provided scripts, or access themfrom here: https://repo.jooqg.org -->
<gr oupl d>or g. j ooq</ gr oupl d>
<artifactl|d>j oog-codegen-maven</artifact|d>
<ver si on>${ or g. j 0oq. ver si on} </ ver si on>

<l-- The jOOQ code generation plugin is also executed in the generate-sources phase, prior to conpilation -->
<executions>
<execution>
<phase>gener at e- sour ces</ phase>
<goal s>
<goal >gener at e</ goal >
</ goal s>
</ executi on>
</ executi ons>

<l-- This is a minimal working configuration. See the manual's section about the code generator for nore details -->
<confi guration>
<j dbc>

<url>${db.url}</url>
<user >${ db. user nane} </ user >
</ j dbc>
<gener at or >
<dat abase>
<i ncl udes>. *</i ncl udes>
<i nput Schema>FLYWAY_TEST</ i nput Schenma>
</ dat abase>
<t arget >
<packageNanme>or g. j ooq. exanpl e. f | yway. db. h2</ packageNanme>
<di rect ory>t ar get/ gener at ed- sour ces/ j oog- h2</ di rect ory>
</target>
</ gener at or >
</ configuration>
</ pl ugi n>

This configuration will now read the FLYWAY_TEST schema and reverse-engineer it into the target/
generated-sources/joog-h2 directory, and within that, into the org.joog.example.flyway.db.h2 package.

1. Database increments

Now, when we start developing our database. For that, we'll create database increment scripts, which we
put into the src/main/resources/db/migration directory, as previously configured for the Flyway plugin.
We'll add these files:

- V1__initialise_database.sq|l
- V2__create_author_table.sql
- V3__create_book_table_and_records.sql

These three scripts model our schema versions 1-3 (note the capital V!). Here are the scripts' contents

- V1__initialise_database. sql
DROP SCHEMA flyway_test |F EXI STS;

CREATE SCHEMA f | yway_test;

- V2__create_author_table.sql
CREATE SEQUENCE flyway_test.s_author_id START WTH 1;

CREATE TABLE fl yway_test. author (
id INT NOT NULL,
first_name VARCHAR(50),
| ast _nanme VARCHAR(50) NOT NULL,
date_of _birth DATE,
year _of _birth | NT,
address VARCHAR(50),

CONSTRAI NT pk_aut hor PRI MARY KEY (I D)

© 2009 - 2024 by Data Geekery™ GmbH. Page 50/ 1238

The jOOQ User Manual

-- V3__create_book_tabl e_and_records. sql
CREATE TABLE flyway_test. book (

id INT NOT NULL,

author _id I NT NOT NULL,

title VARCHAR(400) NOT NULL,

CONSTRAI NT pk_book PRI MARY KEY (id),
CONSTRAI NT f k_book_aut hor _i d FOREI GN KEY (

| NSERT
| NSERT

I NTO fl yway_test.
I NTO fl yway_test.

aut hor VALUES (next
aut hor VALUES (next

| NSERT
| NSERT
| NSERT
| NSERT

I NTO fl yway_test.
INTO fl yway_test.
I NTO fl yway_test.
I NTO fl yway_test.

book VALUES (1,
book VALUES (2,
book VALUES (3,
book VALUES (4,

PP E

2. Database migration an

aut hor _i d) REFERENCES fl| yway_test. aut hor (i d)

value for flyway_test.s_author_id,
value for flyway_test.s_author_id,

‘Orwell',
' Coel ho' ,

' Ceorge',
' Paul o',

11984");
"Aninmal Farm);
'O Alquinista');
"Brida');

d 3. Code regeneration

3.5.2. Using jJOOQ with Flyway

' 1903- 06- 25",
' 1947-08- 24",

1903,
1947,

nul 1) ;
nul 1) ;

The above three scripts are picked up by Flyway and executed in the order of the versions. This can

be seen very simply by executing:

nmvn clean install

And then observing the log output from Flyway...

[INFQ ---
[INFO
[INFO
[INFO
[INFO

fl yway- maven-plugin:3.0: mgrate (

Creating Metadata table:
Current version of schema "PUBLIC":

default) @joog-flyway-exanple ---

Dat abase: jdbc: h2: ~/flyway-test (H2 1.4)

Validated 3 migrations (execution tine 00:00.004s)
"PUBLI C'. "schenma_ver si on"

<< Enpty Schena >>

[INFQ
[INFQ
[INFQ

M grating schema "PUBLIC' to version 1
M grating schema "PUBLIC' to version 2
M grating schema "PUBLIC' to version 3

[INFQ

Successfully applied 3 nmigrations to

..and from jOOQ on the console:

schema "PUBLI C' (execution tine 00:00.073s).

[INFQ --- joog-codegen-naven: 3.19.6: generate (default) @joog-flyway-exanple ---
[INFQ --- joog-codegen-naven: 3.19.6: generate (default) @joog-flyway-exanple ---
[INFQ Using this configuration:

[INFO Generating schemata : Total: 1

[INFQ Cenerating schema : FlywayTest.java

3

[....]

[I NFOl GENERATI ON FI NI SHED! : Total: 337.576ns, +4.299ns

4. Development

Note that all of the previous steps are executed automatically, every time someone adds new migration
scripts to the Maven module. For instance, a team member might have committed a new migration
script, you check it out, rebuild and get the latest jJOOQ-generated sources for your own development

or integration-test database.

Now, that these steps are done, you can proceed writing your database queries. Imagine the following

test case

© 2009 - 2024 by Data Geekery™ GmbH.

Page 51/1238

The jOOQ User Manual 3.5.2. Using jJOOQ with Flyway

import org.jooq.Result;
import org.jooq.inpl.DSL;
import org.junit.Test;

i mport java.sql.DriverManager;

inmport static java.util.Arrays.asList;
import static org.jooq.exanple.flyway.db. h2. Tables.*;
inmport static org.junit.Assert.assertEquals;

public class AfterM grationTest {

@est
public void testQueryingAfterMgration() throws Exception {
try (Connection ¢ = DriverManager. get Connection("jdbc: h2: ~/flyway-test", "sa", "")) {
Resul t<?> result =
DSL. usi ng(c)
.sel ect (
AUTHOR. FI RST_NAME,
AUTHOR. LAST_NAME,
BOCXK. | D,
BOOK. TI TLE

)

. fron{ AUTHOR)

. j 0i n(BOOK)

. on(AUTHOR. | D. eq(BOOK. AUTHOR I D))
. order By(BOOK. I D. asc())

.fetch();

assert Equal s(4, result.size());
assert Equal s(asList (1, 2, 3, 4), result.getVal ues(BOXK. ID));

Reiterate

The power of this approach becomes clear once you start performing database modifications this way.
Let's assume that the French guy on our team prefers to have things his way:

- V4__le_french. sql
ALTER TABLE fl yway_t est.book ALTER COLUW title RENAME TO le_titre;

They check it in, you check out the new database migration script, run

nvn clean install

And then observing the log output:

[INFQ --- flyway-nmaven-plugin:3.0:migrate (default) @joog-flyway-exanple ---

[INFQ --- flyway-maven-plugin:3.0:nmigrate (default) @joog-flyway-exanple ---

[INFQ Database: jdbc:h2:~/flyway-test (H2 1.4)

[INFQ Validated 4 migrations (execution time 00:00.005s)

[INFQ Current version of schema "PUBLIC': 3

[INFO Mgrating schena "PUBLIC' to version 4

[INFOQ Successfully applied 1 migration to schema "PUBLIC' (execution time 00:00.016s).

So far so good, but later on:

[ERROR] COWPI LATI ON ERRCR :

[R e e e
[ERROR] C:\...\jOOQflyway-exanple\src\test\javalAfterMgrationTest.java:[24,19] error: cannot find symbol
[INFO 1 error

When we go back to our Java integration test, we can immediately see that the TITLE column is still
being referenced, but it no longer exists:

© 2009 - 2024 by Data Geekery™ GmbH. Page 52/1238

The jOOQ User Manual 3.5.3. Using jOOQ with jbang

public class AfterM grationTest {

@est
public void testQueryingAfterMgration() throws Exception {
try (Connection ¢ = DriverManager. get Connection("jdbc: h2: ~/flyway-test”, "sa", "")) {
Resul t<?> result =
DSL. usi ng(c)
.sel ect(
AUTHOR. FI RST_NAME,
AUTHOR. LAST_NAME,
BOCK. | D,
BOOK. TI TLE
Il AANAN This columm no | onger exists. We'll have to rename it to LE TITRE
)
. from(AUTHOR)
. j 0i n(BOOK)
. on(AUTHOR. | D. eq(BOOK. AUTHOR_I D))
. order By(BOOK. I D. asc())
.fetch();
assert Equal s(4, result.size());
assert Equal s(asList(1, 2, 3, 4), result.getValues(BOXK. ID));
}
}
}
Automation

The above steps can be automated in your build using another third party called testcontainers. Please
look at this article here for examples on how to do that: https://blog.joog.org/using-testcontainers-to-
generate-joog-code/

Conclusion

This tutorial shows very easily how you can build a rock-solid development process using Flyway and
jOOQ to prevent SQL-related errors very early in your development lifecycle - immediately at compile
time, rather than in production!

Please, visit the Flyway website for more information about Flyway.

3.5.3. Using jJOOQ with jbang

ibang allows for quickly working with all sorts of Java libraries without the hassle of setting up
environments, dependencies, etc. This catalog allows for using jOOQ's code generator right away on
an existing database.

For more information on jbang, see:

- Installation
- Usage
An example

In a shell, type

git clone https://github. conmjOOQ j bang- exanpl e
cd j bang- exanpl e
j bang Exanpl e. j ava

© 2009 - 2024 by Data Geekery™ GmbH. Page 53/1238

https://www.testcontainers.org
https://blog.jooq.org/using-testcontainers-to-generate-jooq-code/
https://blog.jooq.org/using-testcontainers-to-generate-jooq-code/
https://flywaydb.org/
https://www.jbang.dev
https://www.jbang.dev/documentation/guide/latest/installation.html
https://www.jbang.dev/documentation/guide/latest/usage.html

The jOOQ User Manual 3.6.j00Q and Java 8

In order to re-generate the example code, e.g. when your schema changes, just type:
j bang codegen@ ooq db. xm

If you prefer working with a pre-existing database, just edit the db.xml file and point it to your database.
Add the JDBC driver dependency like this:

jbang --deps org. postgresql: postgresql : RELEASE codegen@ ooq db. xm

To override the jOOQ version from the default RELEASE to a specific version, use

j bang - Dj 0oq. ver si on=<ver si on> codegen@ ooq db. xni

3.6.]00Q and Java 8

Java 8 has introduced a great set of enhancements, among which lambda expressions and the new
java.util.stream.Stream. These new constructs align very well with jJOOQ's fluent APl as can be seen in
the following examples:

jO0Q and lambda expressions

jOOQ's RecordMapper APl is fully Java-8-ready, which basically means that it is a SAM (Single Abstract
Method) type, which can be instanciated using a lambda expression. Consider this example:

try (Connection ¢ = get Connection()) {
String sql = "select schema_nane, is_default " +
"frominformtion_schena.schemata " +
"order by schema_nane";

DSL. usi ng(c)
.fetch(sql)

// We can use | anbda expressions to map j OOQ Records
.map(rs -> new Schema(

rs. get Val ue(" SCHEMA_NAME", String.cl ass),

rs. getVal ue("l S_DEFAULT", bool ean. cl ass)
))

/1 ... and then profit fromthe new Col | ection nethods
.forEach(Systemout::println);

The above example shows how jOOQ's Result.map() method can receive a lambda expression that
implements RecordMapper to map from jOOQ Records to your custom types.

jO0Q and the Streams API

jOOQ's Result type extends java.util.List, which opens up access to a variety of new Java features
in Java 8. The following example shows how easy it is to transform a jOOQ Result containing
INFORMATION_SCHEMA meta data to produce DDL statements:

© 2009 - 2024 by Data Geekery™ GmbH. Page 54 /1238

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/stream/Stream.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Result.html#map()
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Record.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Result.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/List.html

The jOOQ User Manual 3.7.j00Q and JavaFx

DSL. usi ng(c)
.sel ect(
COLUWNS. TABLE_NAME,
COLUWNS. COLUVN_NAME,
COLUMNS. TYPE_NANVE

)

. f r om(COLUWNS)

. order By(
COLUWNS. TABLE_CATALOG,
COLUWNS. TABLE_SCHENA,
COLUWNS. TABLE_NAME,
COLUWNS. ORDI NAL_PCsI TI ON

)
.fetch() // jOOQ ends here
.stream() // JDK 8 Streans start here
. col | ect (groupi ngBy(
r -> r.getVal ue(COLUWS. TABLE_NAME) ,
Li nkedHashMap: : new,
mappi ng(
r -> new Col um(
r. get Val ue(COLUWNS. COLUMN_NAME) ,
r. get Val ue(COLUWS. TYPE_NAME)

),
toList()
)

))
. for Each(
(table, colums) -> {
/1 Just emt a CREATE TABLE statenent
System out. println(
"CREATE TABLE " + table + " (");

// Map each "Colum" type into a String
/1 containing the colum specification,
/1 and join them using conma and
/1l new ine. Done!
System out. println(
col umms. strean)
.map(col ->" " + col.nanme +
" + col.type)
.collect(Coll ectors.joining(",\n"))

)3

Systemout.printin(");");
}
)i

The above example is explained more in depth in this blog post: https://blog.joog.org/java-8-friday-no-
more-need-for-orms/. For more information about Java 8, consider these resources:

- Our Java 8 Friday blog series
- Agreat]ava 8 resources collection by the folks at Baeldung.com

3.7.]00Q and JavaFX

One of the major improvements of Java 8 is the introduction of JavaFX into the JavaSE. With jOOQ and
Java 8 Streams and lambdas, it is now very easy and idiomatic to transform SQL results into JavaFX
XYChart.Series or other, related objects:

Creating a bar chart from a JOOQ Result

As we've seen in the previous section about jOOQ and Java 8, jOOQ integrates seamlessly with Java 8's
Streams API. The fluent style can be maintained throughout the data transformation chain.

In this example, we're going to use Open Data from the world bank to show a comparison of countries
GDP and debts:

© 2009 - 2024 by Data Geekery™ GmbH. Page 55/1238

https://blog.jooq.org/java-8-friday-no-more-need-for-orms/
https://blog.jooq.org/java-8-friday-no-more-need-for-orms/
https://blog.jooq.org/tag/java-8/
https://www.baeldung.com/java-streams
https://docs.oracle.com/javafx/2/api/javafx/scene/chart/XYChart.Series.html
https://data.worldbank.org

The jOOQ User Manual

DROP SCHEMA | F EXI STS wor | d;

CREATE SCHEMA wor | d;

CREATE TABLE worl d.countries (

code CHAR(2) NOT NULL,

year | NT NOT NULL,
gdp_per _capi ta DECI MAL(10, 2) NOT NULL,
govt _debt DECI MAL(10, 2) NOT NULL

)i

I NSERT | NTO wor | d. countri es

VALUES ("

e e e e L e e i L L e T T T PPN

RRERRRR2Q

mmm
qqa

FR ,

, 2009,
. 2010,
. 2011,
., 2012,
, 2009,
. 2010,
. 2011,
., 2012,
, 2009,
. 2010,
. 2011,
2012,
, 2009,
. 2010,
. 2011,
., 2012,
, 2009,
. 2010,
. 2011,
., 2012,
, 2009,
. 2010,
. 2011,
., 2012,
, 2009,
. 2010,
. 2011,
., 2012,
, 2009,
. 2010,
. 2011,
., 2012,

40764,
47465,
51791,
52409,
40270,
40408,
44355,
42598,
40488,
39448,
42578,
39759,
35455,
36573,
38927,
38649,
35724,
34673,
36988,
33814,
39473,
43118,
46204,
46548,

8616,
10710,
13324,
14091,
46999,
48358,
49855,
51755,

3.7.j00Q and JavaFx

Once this data is set up (e.g. in an H2 or PostgreSQL database), we'll run jOOQ's code generator and

implement the following code to display our chart:

© 2009 - 2024 by Data Geekery™ GmbH.

Page 56 /1238

The jOOQ User Manual 3.7.j00Q and JavaFx

Cat egoryAxi s xAxi s = new Categor yAxis();
Nunber Axi s yAxi s = new Number Axi s();
XxAxi s. set Label (" Country");

yAXi s. set Label ("% of CDP");

Bar Chart <String, Nunmber> bc = new BarChart<String, Nunber>(xAxis, yAxis);
bc.setTitl e("Governnent Debt");
bc. get Dat a() . addAl | (

/1 SQ data transfornation, executed in the database
L e T T
DSL. usi ng(connect i on)
.sel ect(
COUNTRI ES. YEAR,
COUNTRI ES. CODE,
COUNTRI ES. GOVT_DEBT)
. f r on{ COUNTRI ES)
.join(
tabl e(
sel ect (COUNTRI ES. CODE, avg(COUNTRI ES. GOVT_DEBT) . as("avg"))
. f r on{ COUNTRI ES)
. gr oupBy(COUNTRI ES. CODE)
).as("cl")

)
. on(COUNTRI ES. CODE. eq(fi el d(name("cl1", COUNTRI ES. CODE. get Nane()), String.class)))

/1 order countries by their average projected val ue
. order By(

field(name("avg")),

COUNTRI ES. CODE,

COUNTRI ES. YEAR)

/1l The result produced by the above statenment |ooks |ike this:

I e R S +
/1l |year|code| govt_debt |
I e R S +
/1]2009| RU | 8. 70|
/1]12010| RU | 9. 10|
/1 12011 RU | 9. 30|
/112012 RU | 9. 40|
/1]2009| CA | 51. 30|
I e R S +

// Java data transformation, executed in application nenory
L e T T

I/l Goup results by year, keeping sort order in place
. f et chG oups(COUNTRI ES. YEAR)

/'l StreanxEntry<lnteger, Result<Record3<BigDecinal, String, |nteger>>>>
.entrySet ()
.strean()

// Map each entry into a { Year -> Projected value } series
.map(entry -> new XYChart. Seri es<>(

entry. getKey().toString(),

observabl eArraylLi st (

// Map each country record into a chart Data object
entry. get Val ue()
.map(country -> new XYChart.Data<String, Number>(
country. get Val ue(COUNTRI ES. CODE) ,
country. get Val ue(COUNTRI ES. GOVT_DEBT)
))
)

)
.col lect(toList())

The above example uses basic SQL-92 syntax where the countries are ordered using aggregate
information from a derived table, which is supported in all databases. If you're using a database that
supports window functions, e.g. PostgreSQL or any commercial database, you could have also written
a simpler query like this:00

DSL. usi ng(connect i on)
.sel ect(
COUNTRI ES. YEAR,
COUNTRI ES. CODE,
COUNTRI ES. GOVT_DEBT)
. f r om(COUNTRI ES)

/1 order countries by their average projected val ue

. order By(
DSL. avg(COUNTRI ES. GOVT_DEBT) . over (partiti onBy(COUNTRI ES. CODE)) ,
COUNTRI ES. CODE,
COUNTRI ES. YEAR)

.fetch()

return bc;

© 2009 - 2024 by Data Geekery™ GmbH. Page 57/1238

The jOOQ User Manual 3.8.j00Q and Nashorn

When executed, we'll get nice-looking bar charts like these:

The complete example can be downloaded and run from GitHub:
https://github.com/[O0Q/j00Q/tree/main/jO0Q-examples/{O0Q-javafx-example

3.8.]00Q and Nashorn

With Java 8 and the new built-in JavaScript engine Nashorn, a whole new ecosystem of software can
finally make easy use of jOOQ in server-side JavaScript. A very simple example can be seen here:

/] Let's assunme these objects were generated

/'l by the jOOQ source code generator

var Tabl es = Java.type("org.jooq.db. h2.information_schema. Tabl es");
var t = Tabl es. TABLES;

var ¢ = Tabl es. COLUWS;

/1 This is the equivalent of Java's static inports
var count = DSL.count;
var row = DSL.row,

/1 W can now execute the follow ng query:
print(
DSL. usi ng(conn)
. sel ect (
t. TABLE_SCHEMA,
t. TABLE_NAME,
c. COLUMN_NANE)
from(t)
.join(c)
.on(row(t. TABLE_SCHEMA, t.TABLE NAME)
.eq(c. TABLE_SCHEMA, c. TABLE NAME))
. order By(
t. TABLE_SCHEMA. asc(),
t. TABLE_NAME. asc(),
c. ORDI NAL_PGsI Tl ON. asc())
.fetch()

More details about how to use jO0Q, IDBC, and SQL with Nashorn can be seen here.

3.9.)00Q and Scala

As any other library, JOOQ can be easily used in Scala, taking advantage of the many Scala language
features such as for example:

- Optional "." to dereference methods from expressions

- Optional "("and ")" to delimit method argument lists

- Optional ";" at the end of a Scala statement

- Typeinference using "var" and "val" keywords

- Lambda expressions and for-comprehension syntax for record iteration and data type
conversion

But jOOQ also leverages other useful Scala features, such as

- implicit defs for operator overloading
- Scala Macros (soon to come)

All of the above heavily improve jOOQ's querying DSL API experience for Scala developers.

© 2009 - 2024 by Data Geekery™ GmbH. Page 58 /1238

https://github.com/jOOQ/jOOQ/tree/main/jOOQ-examples/jOOQ-javafx-example
https://blog.jooq.org/java-8-friday-javascript-goes-sql-with-nashorn-and-jooq/

The jOOQ User Manual 3.10.jO0OQ and Groovy

A short example jJOOQ application in Scala might look like this:

import collection.JavaConversions. _ // Inport inplicit defs for iteration over org.jooq.Result
Il
inport java.sql.DriverManager Il
Il
import org.jooq._ Il
inport org.jooq.inpl._ Il
inport org.jooq.inpl.DSL. _ Il
i mport org.jooq.exanpl es. scal a. h2. Tabl es. _ Il
i nport org.jooq.scal aext ensi ons. Conversi ons. _ /1 Inport inplicit defs for overloaded j OOQ SQL operators
Il
obj ect Test { Il
def main(args: Array[String]): Unit = { Il
val c¢ = DriverManager. get Connection("jdbc: h2: ~/test", "sa", ""); // Standard JDBC connection
val e = DSL.using(c, SQDialect.H2); Il
val x = AUTHOR as "x" /1l SQL-esque table aliasing
Il
for (r <- e Il lteration over Result. "r" is an org.jooq. Record3
sel ect (Il
BOOK. | D * BOOK. AUTHOR | D, /1l Using the overloaded "*" operator
BOOK. I D + BOOK. AUTHOR ID * 3 + 4, /1l Using the overloaded "+" operator
BOOK TITLE || " abc" || " xy" /'l Using the overloaded "||" operator
) Il
from BOOK /1 No need to use parentheses or "." here
leftQuterJoin (Il
sel ect (x.1D, x.YEAR OF BI RTH /'l Dereference fields fromaliased table
from x Il
limt 1 Il
asTabl e x. get Nane() X
) Il
on BOOK. AUTHOR I D === x.ID /1l Using the overloaded "===" oper ator
where (BOXK.ID <> 2) /'l Using the ol erloaded "<>" operator
or (BOOK. TITLE in ("O Al quinista", "Brida")) /1 Neat IN predicate expression
fetch X
) | 1
println(r) Il
Il
} Il

For more details about jOOQ's Scala integration, please refer to the manual's section about SQL building
with Scala.

3.10.j00Q and Groovy

As any other library, JOOQ can be easily used in Groovy, taking advantage of the many Groovy language
features such as for example:

- Optional ";" at the end of a Groovy statement
- Type inference for local variables

A short example jOOQ application in Groovy might look like this:

Note that while Groovy supports some means of operator overloading, we think that these means
should be avoided in ajOOQ integration. For instance, a + b in Groovy maps to a formal a.plus(b) method
invocation, and jOOQ provides the required synonyms in its API to help you write such expressions.
Nonetheless, Groovy only offers little typesafety, and as such, operator overloading can lead to many
runtime issues.

Another caveat of Groovy operator overloading is the fact that operators such as == or >= map to
a.equals(b), a.compareTo(b) == 0, a.compareTo(b) >= 0 respectively. This behaviour does not make sense
in a fluent APl such as jOOQ.

© 2009 - 2024 by Data Geekery™ GmbH. Page 59/1238

https://groovy-lang.org/operators.html#Operator-Overloading

The jOOQ User Manual 3.11.jO0Q and Kotlin

3.11.J00Q and Kotlin

As any other library, JOOQ can be easily used in Kotlin, taking advantage of the many Kotlin language
features such as for example:

- Optional ";" at the end of a Kotlin statement
- Type inference for local variables

A short example jOOQ application in Kotlin might look like this:

Note that Kotlin supports some means of operator overloading. For instance, a + b in Kotlin maps to
a formal a.plus(b) method invocation, and jOOQ provides the required synonyms in its API to help you
write such expressions.

One particularly nice language feature is the fact that [square brackets] allow for accessing any object's
contents via get() and set() methods. Instead of using the above value(), value2(), and value3() methods,
we could also iterate as such:

A caveat of Kotlin operator overloading is the fact that operators such as == or >= map to a.equals(b),
a.compareTo(b) == 0, a.compareTo(b) >= 0 respectively. This behaviour does not make sense in a fluent
APl such as jOOQ.

3.12.j00Q and NoSQL

jOOQ users often get excited about jOOQ's intuitive APl and would then wish for NoSQL support.

There are a variety of NoSQL databases that implement some sort of proprietary query language. Some
of these query languages even look like SQL. Examples are JCR-SQL2, CQL (Cassandra Query Language),
Cypher (Neo4j's Query Language), and many more.

Mapping the jOOQ API onto these alternative query languages would be a very poor fit and a leaky
abstraction. We believe in the power and expressivity of the SQL standard and its various dialects.
Databases that extend this standard too much, or implement it not thoroughly enough are often not
suitable targets for jOOQ. It would be better to build a new, dedicated API for just that one particular
query language.

jOOQ is about SQL, and about SQL alone. Read more about our visions in the manual's preface.

3.13.j00Q and JPA

Just because you're using JOOQ doesn't mean you have to use it for everything!

When introducing jOOQ into an existing application that uses JPA, the common question is always:
"Should we replace JPA by jJOOQ?" and "How do we proceed doing that?"

Beware that jOOQ is not a replacement for JPA. Think of jOOQ as a complement. JPA (and ORMs in
general) try to solve the object graph persistence problem. In short, this problem is about

© 2009 - 2024 by Data Geekery™ GmbH. Page 60/ 1238

https://kotlinlang.org/docs/reference/operator-overloading.html
https://www.h2database.com/jcr/grammar.html
https://cassandra.apache.org/doc/cql/CQL.html
https://neo4j.com/docs/cypher-manual/current/

The jOOQ User Manual 3.14. Build your own

- Loading an entity graph into client memory from a database
- Manipulating that graph in the client
Storing the modification back to the database

As the above graph gets more complex, a lot of tricky questions arise like:

- What's the optimal order of SQL DML operations for loading and storing entities?

- How can we batch the commands more efficiently?

- How can we keep the transaction footprint as low as possible without compromising on ACID?
- How can we implement optimistic locking?

JO0Q only has some of the answers.

While jOOQ does offer updatable records that help running simple CRUD, a batch AP, optimistic locking
capabilities, jJOOQ mainly focuses on executing actual SQL statements.

SQL is the preferred language of database interaction, when any of the following are given:

- You run reports and analytics on large data sets directly in the database
You import / export data using ETL
- You run complex business logic as SQL queries

Whenever SQL is a good fit, JOOQ is a good fit. Whenever you're persisting an object graph, JPA is a good
fit. Though note that starting with jJOOQ 3.15 you can also load trees with the MULTISET AGG function
and the MULTISET value constructor very easily.

And sometimes, it's best to combine both

3.14. Build your own

In order to build jOOQ (Open Source Edition) yourself, please download the sources from https://
github.com/[00Q/[00Q and use Maven to build jOOQ, preferably in Eclipse. The jOOQ Open Source
Edition requires Java 8+ to compile and run. The commercial jJOOQ Editions require Java 8+ or Java 6+
to compile and run, depending on the distribution.

Some useful hints to build JOOQ yourself:

© 2009 - 2024 by Data Geekery™ GmbH. Page 61/1238

https://github.com/jOOQ/jOOQ
https://github.com/jOOQ/jOOQ

The jOOQ User Manual 3.15.jO0Q and backwards-compatibility

- Get the latest version of Git or EGit

- Get the latest version of Maven or M2E

- Check out the jOOQ sources from https://github.com/[00Q/j0O0Q

- Optionally, import Maven artefacts into an Eclipse workspace using the following command (see
the maven-eclipse-plugin documentation for details):

* mvn eclipse:eclipse
- Build the joog-parent artefact by using any of these commands:

* mvn clean package

create .jar files in ${project.build.directory}
* mvn clean install

install the jar files in your local repository (e.g. ~/.m?2)
* mvn clean {goal} -Dmaven.test.skip=true

don't run unit tests when building artefacts

3.15.J00Q and backwards-compatibility

Semantic versioning

jOOQ's understanding of backwards compatibility is inspired by the rules of semantic versioning
according to https://semver.org. Those rules impose a versioning scheme [X].[Y].[Z] that can be
summarised as follows:

- If a patch release includes bugfixes, performance improvements and API-irrelevant new features,
[Z] is incremented by one.

- Ifaminor release includes backwards-compatible, API-relevant new features, [Y] is incremented
by one and [Z] is reset to zero.

- Ifamajor release includes backwards-incompatible, API-relevant new features, [X] is
incremented by one and [Y], [Z] are reset to zero.

jO0Q's understanding of backwards-compatibility

Backwards-compatibility is important to jOOQ. You've chosen jOOQ as a strategic SQL engine and you
don't want your SQL to break.

However, there are some elements of API evolution that would be considered backwards-incompatible
in other APIs, but not in jJOOQ. As discussed later on in the section about JOOQ's query DSL API, much
of JOOQ's APl is indeed an internal domain-specific language implemented mostly using Java interfaces.
Adding language elements to these interfaces means any of these actions:

© 2009 - 2024 by Data Geekery™ GmbH. Page 62 /1238

https://git-scm.com
https://www.eclipse.org/egit
https://maven.apache.org
https://eclipse.org/m2e
https://github.com/jOOQ/jOOQ
https://maven.apache.org/plugins/maven-eclipse-plugin/
https://semver.org

The jOOQ User Manual 3.15.jO0Q and backwards-compatibility

- Adding methods to the interface
- Overloading methods for convenience
- Changing the type hierarchy of interfaces (including raw type or binary compatibility implications)

It becomes obvious that it would be impossible to add new language elements (e.g. new SQL functions,
new SELECT clauses) to the API without breaking any client code that actually implements those
interfaces. Hence, the following rules should be observed:

- jOOQ's DSL interfaces should not be implemented by client code! Extend only those extension
points that are explicitly documented as "extendable" (e.g. custom QueryParts).

- Generated code implements such interfaces and extends internal classes, and as such is
recommended to be re-generated with a matching code generator version every time the
runtime library is upgraded.

- Binary compatibility can be expected from patch releases, but not from minor releases as it is
not practical to maintain binary compatibility in an internal DSL.

- Source compatibility can be expected from patch and minor releases, the exception being raw
type compatibility (see #11879), and rare exceptions where APl design is clearly lacking.

- Behavioural compatibility can be expected from patch and minor releases.

- AnyjOOQ SPI XYZ that is meant to be implemented ships with a DefaultXYZ or AbstractXYZ,
which can be used safely as a default implementation.

jO0Q-codegen and JO0OQ-meta

While a reasonable amount of care is spent to maintain these two modules under the rules of semantic
versioning, it may well be that minor releases introduce backwards-incompatible changes. This will be
announced in the respective release notes and should be the exception.

© 2009 - 2024 by Data Geekery™ GmbH. Page 63/1238

https://github.com/jOOQ/jOOQ/issues/11879

The jOOQ User Manual 4, SQL building

4. SQL building

SQL is a declarative language that is hard to integrate into procedural, object-oriented, functional or
any other type of programming languages. jJOOQ's philosophy is to give SQL the credit it deserves and
integrate SQL itself as an "internal domain specific language" directly into Java.

With this philosophy in mind, SQL building is the main feature of jOOQ. All other features (such as SOL
execution and code generation) are mere convenience built on top of JOOQ's SQL building capabilities.

This section explains all about the various syntax elements involved with jOOQ's SQL building
capabilities. For a complete overview of all syntax elements, please refer to the manual's sections about
SQL to DSL mapping rules.

4.7. The query DSL type

jOOQ exposes a lot of interfaces and hides most implementation facts from client code. The reasons
for this are:

- Interface-driven design. This allows for modelling queries in a fluent APl most efficiently

- Reduction of complexity for client code.

- APl guarantee. You only depend on the exposed interfaces, not concrete (potentially dialect-
specific) implementations.

The org.joog.impl.DSL class is the main class from where you will create all JOOQ objects. It serves as a
static factory for table expressions, column expressions (or "fields"), conditional expressions and many

other QueryParts.

The static query DSL API

With jOOQ 2.0, static factory methods have been introduced in order to make client code look more
like SQL. Ideally, when working with jOOQ), you will simply static import all methods from the DSL class:

import static org.jooq.inpl.DSL.*;

Note, that when working with Eclipse, you could also add the DSL to your favourites. This will allow to
access functions even more fluently:

concat (trim(FI RST_NAME), trin{LAST_NAME));

/1 ... which is in fact the same as:
DSL. concat (DSL. tri m(FI RST_NAME), DSL.tri nm(LAST_NAME));

© 2009 - 2024 by Data Geekery™ GmbH. Page 64 /1238

https://en.wikipedia.org/wiki/Domain_Specific_Language
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/impl/DSL.html

The jOOQ User Manual 4.1.1. DSL subclasses

4.7.7. DSL subclasses

There are a couple of subclasses for the general query DSL. Each SQL dialect has its own dialect-specific
DSL. For instance, if you're only using the MySQL dialect, you can choose to reference the MySQLDSL
instead of the standard DSL:

The advantage of referencing a dialect-specific DSL lies in the fact that you have access to more
proprietary RDMBS functionality. This may include:

- MySQLU's encryption functions
- PL/SQL constructs, pgplsql, or any other dialect's ROUTINE-language (maybe in the future)

4.2. The DSLContext API

DSLContext references a org.joog.Configuration, an object that configures jOOQ's behaviour when
executing queries (see SQL execution for more details). Unlike the static DSL, the DSLContext allow for
creating SQL statements that are already "configured" and ready for execution.

Fluent creation of a DSLContext object

The DSLContext object can be created fluently from the DSL type:

I/l Create it froma pre-existing configuration
DSLCont ext create = DSL.using(configuration);

I/l Create it from ad-hoc argunents
DSLCont ext create = DSL.using(connection, dialect);

If you do not have a reference to a pre-existing Configuration object (e.g. created from
org.joog.impl.DefaultConfiguration), the various overloaded DSL.using() methods will create one for
you.

Contents of a Configuration object

A Configuration can be supplied with these objects:

© 2009 - 2024 by Data Geekery™ GmbH. Page 65/1238

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Configuration.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/impl/DefaultConfiguration.html

The jOOQ User Manual 4.2.The DSLContext API

- org.jooq.SQLDialect : The dialect of your database. This may be any of the currently supported
database types (see SQL Dialect for more details)

- orgjoog.conf.Settings : An optional runtime configuration (see Custom Settings for more details)

- org.joog.ExecutelistenerProvider : To provide execution lifecycle listeners (see Executelisteners
for more details)

- org.jooqg.ParselistenerProvider : To provide custom parser extensions (see SQL Parser Listener
for more details)

- org.joog.RecordlistenerProvider : To provide record listeners for your CRUD operations (see
CRUD SPI: RecordListener for more details)

- org.joog.RecordMapperProvider : To provide an alternative default record mapper
implementation (see for more details)

- org.joog.FormattingProvider : To provide custom default data export formats (see
FormattingProvider for more details)

-]DBC access:

* java.sgl.Connection : An optional JDBC Connection that will be re-used for the whole
lifecycle of your Configuration (see Connection vs. DataSource for more details). For
simplicity, this is the use-case referenced from this manual, most of the time.

* java.sgl.DataSource : An optional JDBC DataSource that will be re-used for the whole
lifecycle of your Configuration. If you prefer using DataSources over Connections, jOOQ
will internally fetch new Connections from your DataSource, conveniently closing them
again after query execution. This is particularly useful in Java EE or Spring contexts (see
Connection vs. DataSource for more details)

* org.joog.ConnectionProvider : A custom abstraction that is used by jOOQ to "acquire"
and "release" connections. jJOOQ will internally "acquire" new Connections from your
ConnectionProvider, conveniently "releasing" them again after query execution. (see
Connection vs. DataSource for more details)

- R2DBC access:

* jo.r2dbc.spi.Connection : An optional R2DBC Connection that will be re-used for the
whole lifecycle of your Configuration (see Connection vs. DataSource for more details). For
simplicity, this is the use-case referenced from this manual, most of the time.

* jo.r2dbc.spi.ConnectionFactory : An optional R2DBC ConnectionFactory that will be re-used
for the whole lifecycle of your Configuration. If you prefer using ConnectionFactories over
Connections, jOOQ will internally fetch new Connections from your ConnectionFactory,
conveniently closing them again after query execution. This is particularly useful in Spring
contexts (see Connection vs. DataSource for more details)

Usage of DSLContext

Wrapping a Configuration object, a DSLContext can construct statements, for later execution. An
example is given here:

/1 The DSLContext is "configured" with a Connection and a SQLDi al ect
DSLCont ext create = DSL.using(connection, dialect);

/1l This select statement contains an internal reference to the DSLContext's Configuration:

Sel ect <?> sel ect = create. sel ectOne();
/1 Using the internally referenced Configuration, the select statenment can now be executed:
Resul t<?> result = select.fetch();

© 2009 - 2024 by Data Geekery™ GmbH. Page 66/ 1238

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/SQLDialect.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/conf/Settings.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/ExecuteListenerProvider.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/ParseListenerProvider.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/RecordListenerProvider.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/RecordMapperProvider.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/FormattingProvider.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Connection.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/DataSource.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/ConnectionProvider.html
https://r2dbc.io/spec/0.9.0.M2/api/io/r2dbc.spi/Connection.html
https://r2dbc.io/spec/0.9.0.M2/api/io/r2dbc.spi/ConnectionFactory.html

The jOOQ User Manual 4.2.1.SQL Dialect

Note that you do not need to keep a reference to a DSLContext. You may as well inline your local variable,
and fluently execute a SQL statement as such:

Il Execute a statenent froma single execution chain:
Resul t<?> result =
DSL. usi ng(connection, dialect)

.select()

. f r om(BOOK)

. wher e(BOOK. TI TLE. I i ke(" Ani mal %))

.fetch();

4.2.71.SQL Dialect

While jOOQ tries to represent the SQL standard as much as possible, many features are vendor-specific
to a given database and to its "SQL dialect". JOOQ models this using the org.jooq.SQLDialect enum type.

The SQL dialect is one of the main attributes of a Configuration. Queries created from DSLContexts will
assume dialect-specific behaviour when rendering SOL and binding bind values.

Some parts of the JOOQ API are officially supported only by a given subset of the supported SQL dialects.
For instance, the Oracle CONNECT BY clause, which is supported by the Oracle and Informix databases,
is annotated with a org.joog.Support annotation, as such:

/**
* Add an Oracl e-specific <code>CONNECT BY</code> cl ause to the query
*/

@upport ({ SQLDi al ect. | NFORM X, SQLDi al ect. ORACLE })

Sel ect Connect ByCondi ti onSt ep<R> connect By(Condi ti on condition);

jOOQ APl methods which are not annotated with the org.joog.Support annotation, or which are
annotated with the Support annotation, but without any SQL dialects can be safely used in all SQL
dialects. An example for this is the SELECT statement factory method:

[xx
* Create a new DSL sel ect statement.
*
/
@uppor t
Sel ect Sel ect St ep<R> sel ect (Fi el d<?>... fields);

jO0Q's SQL clause emulation capabilities

The aforementioned Support annotation does not only designate, which databases natively support a
feature. It also indicates that a feature is emulated by jOOQ for some databases lacking this feature. An
example of this is the DISTINCT predicate, a predicate syntax defined by SQL:1999 and implemented
only by H2, HSQLDB, and Postgres:

A 1S DI STINCT FROM B

Nevertheless, the IS DISTINCT FROM predicate is supported by jOOQ in all dialects, as its semantics can
be expressed with an equivalent CASE expression. For more details, see the manual's section about
the DISTINCT predicate.

© 2009 - 2024 by Data Geekery™ GmbH. Page 67 /1238

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/SQLDialect.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Support.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Support.html

The jOOQ User Manual 4.2.2. SQL Dialect Family

jO0Q and the Oracle SQL dialect

Oracle SQL is much more expressive than many other SQL dialects. It features many unique keywords,
clauses and functions that are out of scope for the SQL standard. Some examples for this are

- The CONNECT BY clause, for hierarchical queries

- The PIVOT keyword for creating PIVOT tables

- Packages, object-oriented user-defined types, member procedures as described in the section
about stored procedures and functions

- Advanced analytical functions as described in the section about window functions

jOOQ has a historic affinity to Oracle's SQL extensions. If something is supported in Oracle SQL, it has
a high probability of making it into the jJOOQ AP

4.2.2. SQL Dialect Family

In jJOOQ 3.1, the notion of a SQLDialect.family() was introduced, in order to group several similar SQL
dialects into a common family. An example for this is SQL Server, which is supported by jOOQ in various
versions:

- SQL Server: The "version-less" SQL Server version. This always maps to the latest supported
version of SQL Server

- SQL Server 2012: The SQL Server version 2012

- SQL Server 2008: The SQL Server version 2008

In the above list, SQLSERVER is both a dialect and a family of three dialects. This distinction is used
internally by jOOQ to distinguish whether to use the OFFSET .. FETCH clause (SQL Server 2012), or
whether to emulate it using ROW_NUMBER() OVER() (SQL Server 2008).

4.2.3. SQL Dialect Category

In jOOQ 3.18, the notion of a SQLDialect.category() was introduced, in order to group several similar
SQL dialect families into a common category. An example for this is T-SQL, which is supported by jOOQ
in various versions:

- SQL Data Warehouse
- SQL Server

- Sybase ASE
- Sybase SOL Anywhere

Categories are sets of families that often expose similar syntax, due to a common ancestor. Categories
include:

© 2009 - 2024 by Data Geekery™ GmbH. Page 68 /1238

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/SQLDialect.html#SQLSERVER
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/SQLDialect.html#SQLSERVER2012
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/SQLDialect.html#SQLSERVER2008
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/SQLDialect.html#SQLDATAWAREHOUSE
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/SQLDialect.html#SQLSERVER
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/SQLDialect.html#ASE
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/SQLDialect.html#SYBASE

The jOOQ User Manual 4.2.4. Connection vs. DataSource

- MYSQL
- POSTGRES
- TSQL

4.72.4. Connection vs. DataSource

Interact with JDBC Connections

While you can use jOOQ for SQL building only, you can also run queries against a JDBC
java.sgl.Connection. Internally, jOOQ creates java.sgl.Statement or java.sql.PreparedStatement objects
from such a Connection, in order to execute statements. The normal operation mode is to provide a
Configuration with a JDBC Connection, whose lifecycle you will control yourself. This means that jOOQ
will not actively close connections, rollback or commit transactions.

Note, in this case, jJOOQ will internally use a org.joog.impl.DefaultConnectionProvider, which you can
reference directly if you prefer that. The DefaultConnectionProvider exposes various transaction-
control methods, such as commit(), rollback(), etc.

Interact with JDBC DataSources

If you're in a Java EE or Spring context, however, you may wish to use a javax.sgl.DataSource instead.
Connections obtained from such a DataSource will be closed after query execution by jOOQ. The
semantics of such a close operation should be the returning of the connection into a connection pool,
not the actual closing of the underlying connection. Typically, this makes sense in an environment using
distributed JTA transactions.

Note, in this case, jOOQ will internally use a org.joog.impl.DataSourceConnectionProvider, which you
can reference directly if you prefer that.

Inject custom behaviour

If your specific environment works differently from any of the above approaches, you can inject your own
custom implementation of a ConnectionProvider into jOOQ. This is the API contract you have to fulfil:

public interface ConnectionProvider {

// Provide jOOQ with a connection
Connection acquire() throws DataAccessException;

I/ Get a connection back fromjOOQ
voi d rel ease(Connection connection) throws DataAccessException;

}

Reactive querying

If you wish to use an R2DBC driver, you do not have to supply a org.joog.ConnectionProvider to your
Configuration. Instead, jJOOQ can work with a io.r2dbc.spi.Connection (jOOQ will never close it) or
io.r2dbc.spi.ConnectionFactory (jOOQ will close all R2DBC Connections that it creates).

© 2009 - 2024 by Data Geekery™ GmbH. Page 69/1238

https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Connection.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Statement.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/PreparedStatement.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/impl/DefaultConnectionProvider.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/javax/sql/DataSource.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/impl/DataSourceConnectionProvider.html
https://r2dbc.io
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/ConnectionProvider.html
https://r2dbc.io/spec/0.9.0.M2/api/io/r2dbc.spi/Connection.html
https://r2dbc.io/spec/0.9.0.M2/api/io/r2dbc.spi/ConnectionFactory.html

The jOOQ User Manual 4.2.5. Custom data

4.2.5. Custom data

In advanced use cases of integrating your application with jJOOQ, you may want to put custom data into
your Configuration, which you can then access from your...

- Custom Executelisteners
- Custom QueryParts

Here is an example of how to use the custom data APl Let's assume that you have written an
Executelistener, that prevents INSERT statements, when a given flag is set to true:

public class NolnsertListener inplenents Executelistener {

@verride
public void start(ExecuteContext ctx) {

// This listener is active only, when your customflag is set to true
i f (Bool ean. TRUE. equal s(ctx. confi guration().data("com exanpl e. ny- nanespace. no-inserts"))) {

/1l 1f active, fail this execution, if an INSERT statenent is being executed
if (ctx.query() instanceof Insert) {

throw new Dat aAccessException("No | NSERT statenments al | owed");
}

}
}
}

See the manual's section about Executelisteners to learn more about how to implement an
Executelistener.

Now, the above listener can be added to your Configuration, but you will also need to pass the flag to
the Configuration, in order for the listener to work:

/1 Create your Configuration
Configuration configuration = new Defaul tConfiguration().set(connection).set(dialect);

/'l Set a new execute |listener provider onto the configuration:
configuration. set (new Defaul t Execut eLi st ener Provi der (new Nol nsertListener()));

/1 Use any String literal to identify your custom data
configuration. data("com exanpl e. ny- nanespace. no-i nserts", true);

/Il Try to execute an | NSERT st atenent
try {
DSL. usi ng(confi guration)
.insertlnto(AUTHOR, AUTHOR | D, AUTHOR LAST_NAME)
.values(1, "Owell")
.execute();

/'l You shouldn't get here

Assert.fail();
}
/'l Your NolnsertListener should be throwi ng this exception here:
catch (DataAccessException expected) {

Assert.assert Equal s("No | NSERT statenents al |l owed", expected. get Message());
}

Using the data() methods, you can store and retrieve custom data in your Configurations.

4.7.6. Custom ExecutelListeners

Executelisteners are a useful tool to...

© 2009 - 2024 by Data Geekery™ GmbH. Page 70/ 1238

The jOOQ User Manual 4.2.7. Custom Unwrappers

- implement custom logging
- apply triggers written in Java
- collect query execution statistics

Executelisteners are hooked into your Configuration by returning them from an
org.jooq.ExecuteListenerProvider:

I/ Create your Configuration
Configuration configuration = new Defaul t Configuration().set(connection).set(dialect);

/1 Hook your listener providers into the configuration:

configuration. set (
new Def aul t Execut eLi st ener Provi der (new MyFi rstListener()),
new Def aul t Execut eLi st ener Provi der (new Per f or nancelLoggi ngLi st ener()),
new Def aul t Execut eLi st ener Provi der (new Nol nsertLi stener())

See the manual's section about ExecutelListeners to see examples of such listener implementations.

4.2.7. Custom Unwrappers

JDBC knows the java.sgl.Wrapper API, which is implemented by all JDBC types in order to be able to
"unwrap" a native driver implementation for any given type. For example:

/1 This may be sonme proxy from a connection pool
Connection ¢ = getConnection();

// Sonetines, we want the native driver connection instance
O acl eConnection oc = c.unw ap(O acl eConnecti on. cl ass) ;
Array array = oc.creat eARRAY("ARRAY_TYPE", new Gbject[] { "a", "b" });

jOOQ internally makes similar calls occasionally. For this, it needs to unwrap the native
java.sgl.Connection or java.sgl.PreparedStatement instance. Unfortunately, not all third party
libraries correctly implement the Wrapper API contract, so this unwrapping might not work. The
org.joog.Unwrapper SPI is designed to allow for custom implementations to be injected into jOOQ
configurations:

/1 Your jOOQ configuration
Configuration cl = getConfiguration();
Configuration c2 = c.derive(new Unwr apper () {
@verride
public <T> T unw ap(W apper wrapper, C ass<T> iface) {
try {
i f (wrapper instanceof Connection)
1.
else if (wapper instanceof Statenent)
1.
cls@
wr apper . unw ap(i f ace) ;

}
catch (SQLException e) {

1.
}
}
IR
/1 Work with the derived configuration, where needed
DSL. using(c2).fetch("...");

© 2009 - 2024 by Data Geekery™ GmbH. Page 71/1238

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/ExecuteListenerProvider.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Wrapper.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Connection.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/PreparedStatement.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Unwrapper.html

The jOOQ User Manual 4.2.8. Custom Settings

4.2.8. Custom Settings

The jOOQ Configuration allows for some optional configuration elements to be used by advanced users.
The org.joog.conf.Settings class is a JAXB-annotated type, that can be provided to a Configuration in
several ways:

- In the DSLContext constructor (DSL.using()). This will override default settings below

- inthe orgjoog.impl.DefaultConfiguration constructor. This will override default settings below
- From a location specified by a JVM parameter: -Dorg.jooqg.settings

- From the classpath at /joog-settings.xml

- From the settings defaults, as specified in https://www.jooq.org/xsd/joog-runtime-3.19.0.xsd

The most specific settings for a given context will apply.

If you wish to configure your settings through XML, but explicitly load them for a given Configuration,
you can do so as well, using JAXB:

Settings settings = JAXB.unnarshal (new File("/path/to/settings.xm"), Settings.class);

Example

For example, if you want to indicate to jOOQ, that it should inline all bind variables, and execute static
java.sgl.Statement instead of binding its variables to java.sgl.PreparedStatement, you can do so by
creating the following DSLContext:

Settings settings = new Settings();
settings. set St at enent Type(St at ement Type. STATI C_STATEMENT) ;
DSLCont ext create = DSL.using(connection, dialect, settings);

More details

Please refer to the jJOOQ runtime configuration XSD for more details:
https://www.joog.org/xsd/joog-runtime-3.19.0.xsd

4.2.8.1. Auto-attach Records

By default, all records fetched through jOOQ are "attached" to the configuration that created them. This
allows for features like updatable records as can be seen here:

Aut hor Record aut hor =

DSL. usi ng(configuration) // This configuration will be attached to any record produced by the bel ow query.
. sel ect Fr on{ AUTHOR)
. wher e(AUTHOR. I D. eq(1))
.fetchOne();

aut hor . set Last Name("Smi th");
aut hor.store(); // This store call operates on the "attached" configuration.

© 2009 - 2024 by Data Geekery™ GmbH. Page 72 /1238

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/conf/Settings.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/impl/DefaultConfiguration.html
https://www.jooq.org/xsd/jooq-runtime-3.19.0.xsd
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Statement.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/PreparedStatement.html
https://www.jooq.org/xsd/jooq-runtime-3.19.0.xsd

The jOOQ User Manual 4.2.8.2. Auto-inline bind values

In some cases (e.g. when serialising records), it may be desirable not to attach the Configuration that
Created a record to the record. This can be achieved with the attachRecords setting:

Example configuration

Settings settings = new Settings()
.withAttachRecords(false); // Defaults to true

4.2.8.2. Auto-inline bind values

Bind values are an important concept in SQL, for performance reasons, as they simplify caching of
prepared statements in some RDBMS. jOOQ always creates bind values by default, when you write this:

- Normally, a bind paraneter marker is generated /1 This is the same as AUTHOR I D. eq(val (1, AUTHOR | D))
AUTHOR. I D = ? AUTHOR. | D. eq(1) ;

In some cases, however, it is better not to use a bind variable, but to create inline values, instead, so
the optimiser can better apply its statistics. This is useful mainly when:

- The column is a constant discriminator column in a view, for example
- The column has very skewed statistics and only few possible values (e.g. a BOOLEAN, an ENUM
type or a CHECK COL IN (1, 2, 3)) constraint.

In those cases, it can be useful to enable Settings.transformlinlineBindValuesForFieldComparisons and
implement a org.joog.TransformProvider as follows:

Configuration configuration = ...
configuration.settings().setTransform nlineBindVal uesForFi el dConpari sons(true);
configuration. set (new TransfornProvider() {

@verride
public bool ean inlineBindVal uesFor Fi el dConpari sons(Fi el d<?> field) {
return field.getType() == Bool ean. cl ass

|| field. getDataType().isEnum(); // O, perhaps, limt this only to certain enuns
}
IR

Now, all queries whose predicates match the above TransformProvider content will have their relevant
bind values inlined. For example:

- Inlining applies to some colums now, not all AUTHOR. I D. eq(1) . and(
AUTHOR. I D = ? AND AUTHOR STATUS = ' ACTI VE' AUTHOR. STATUS. eq(St at us. ACTI VE)) ;

Related settings include:

- Inline Threshold
- Statement Type

© 2009 - 2024 by Data Geekery™ GmbH. Page 73/1238

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/TransformProvider.html

The jOOQ User Manual 4.2.8.3. Backslash Escaping

4.2.8.3. Backslash Escaping

Some databases (mainly MySQL and MariaDB) unfortunately chose to go an alternative, non-SQL-
standard route when escaping string literals. Here's an example of how to escape a string containing
apostrophes in different dialects:

SELECT 'I'"msure this is OK AS val -- Standard SQL escaping of apostrophe by doubling it.
SELECT "I\'mcertain this causes trouble' AS val -- Vendor-specific escaping of apostrophe by using a backsl ash.

As most databases don't support backslash escaping (and MySQL also allows for turning it off!), jJOOQ
by default also doesn't support it when inlining bind variables. However, this can lead to SQL injection
vulnerabilities and syntax errors when not dealing with it carefully!

This feature is turned on by default and for historic reasons for MySQL and MariaDB.

- DEFAULT (the - surprise! - default): Turns the feature ON for MySQL and MariaDB and OFF for all
other dialects

- ON: Turn the feature on.

- OFF: Turn the feature off.

Example configuration

Settings settings = new Settings()
. wi t hBacksl ashEscapi ng(Backsl ashEscapi ng. OFF); // Default to DEFAULT

4.2.8.4. Batch size

jOOQ offers a transparent batching API, which can buffer all statements generated by jJOOQ and other
JDBC backed APIs transparently in order to batch them:

/1 Everything in the below | anbda will be buffered and batched
DSL. usi ng(confi guration). batched(c -> {

nodul el. i nsert Sonet hi ng(c);

nodul e2. i nsert Sonet hi ngEl se(c);

IO
Use the Settings.batchSize flag to govern the maximum batch statement size of this API:

Settings settings = new Settings()
.wi t hBat chSi ze(100); // Default |nteger. MAX VALUE

Starting from jOOQ 3.19, this Settings.batchSize flag also applies to most other batch API.

4.2.8.5. Computed column emulation

Server side computed columns are a useful feature of many RDBMS, where a synthetic column
expression is always computed based on other columns of the same row, either on read (VIRTUAL) or

© 2009 - 2024 by Data Geekery™ GmbH. Page 74 /1238

The jOOQ User Manual 4.2.8.6. Diagnostics Connection

on write (STORED). Recent versions of jJOOQ have added support for client side computed columns, i.e.
columns that are computed by JOOQ in the client rather than by the RDBMS on the server side. This can
be especially useful if the computational expression is dynamic, or uses some advanced jOOQ feature
like implicit JOIN, or if the RDBMS does not support the feature.

In the latter case, if the RDBMS does not support the feature, JOOQ can emulate it for you based on a
schema generated from an RDBMS that does support the feature. E.g. when the schema is generated
with H2 but the query is run on TRINO, jOOQ can run the computation directly in generated SQL, for
both (VIRTUAL) or (STORED) cases:

Example configuration

Settings settings = new Settings()
.wi t hEnul at eConput edCol unms(true); // Defaults to false

4.2.8.6. Diagnostics Connection

The diagnosticsConnection setting allows for turning on/off the diagnostics functionality within jOOQ.
It has 3 possible values:

- DEFAULT: By default, the diagnostics functionality is turned off, but can be used explicitly via
DSLContext.diagnosticsConnection() or DSLContext.diagnosticsDataSource(). This is ideal when
building custom diagnostics utilities on top of jJOOQ's SPIs.

- ON: The diagnostics connection is activated implicitly on any JDBC java.sgl.Connection that jOOQ
works with. This is ideal when quickly turning on diagnostics on a development or integration
test environment.

- OFF: The diagnostics connection is deactivated even when used explicitly.

Example configuration

Settings settings = new Settings()
.wi thDi agnost i csConnecti on(Di agnosti csConnection.ON); // Defaults to DEFAULT

4.2.8.7. Diagnostics Logging

The diagnosticsLogging setting turns off the default diagnostics logging implemented through
org.jooq.impl.LoggingDiagnosticsListener

Example configuration

Settings settings = new Settings()
.wi t hDi agnosti csLoggi ng(false); // Defaults to true

© 2009 - 2024 by Data Geekery™ GmbH. Page 75/1238

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/DSLContext.html#diagnosticsConnection()
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/DSLContext.html#diagnosticsDataSource()
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Connection.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/impl/LoggingDiagnosticsListener.html

The jOOQ User Manual 4.2.8.8. Dollar quoted string token

4.2.8.8. Dollar quoted string token

Occasionally, when using the SQLDialect.POSTGRES dialect, jJOOQ renders dollar quoted string literals,
in particular for anonymous blocks:

DO $$
BEG N

ENb&
$5

The point of these string literals is to avoid having to escape all ' characters in procedural content, or
elsewhere.

Sometimes, the $$ token may conflict with string contents, however, such as an identifier. In that case,
users can override the delimiter token between the $$ and provide their own, e.g. $token$.

Example configuration

Settings settings = new Settings()
.wi t hRender Dol | ar Quot edSt ri ngToken("t oken");

4.2.8.9. Execute Logging

The executelogging setting turns off the default loggin implemented through
org.joog.tools.Loggerlistener

Example configuration

Settings settings = new Settings()
.wi t hExecut eLoggi ng(false); // Defaults to true

4.2.8.10. Execute Logging SQL Exceptions

The executelLoggingSQLExceptions setting turns off the default logging of SQLExceptions.

Example configuration

Settings settings = new Settings()
.wi t hExecut eLoggi ngSQLExceptions(fal se); // Defaults to true

4.2.8.11. Fetch Warnings

Apart from JDBC exceptions, there is also the possibility to handle java.sgl.SQLWarning, which are made
available to jOOQ users through the java.sgl.Executelistener SPI and the log

© 2009 - 2024 by Data Geekery™ GmbH. Page 76 /1238

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/SQLDialect.html#POSTGRES
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/tools/LoggerListener.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/SQLWarning.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/ExecuteListener.html

The jOOQ User Manual 4.2.8.12. GROUP_CONCAT Configuration

Users who do not wish to get these notifications (e.g. for performance reasons), may turn off fetching
of warnings through the fetchWarnings setting:

Example configuration

Settings settings = new Settings()
.wi t hFet chWarni ngs(false); // Defaults to true

4.2.8.12. GROUP_CONCAT Configuration

The MySQL GROUP_CONCAT function suffers from a controversial design decision where results are
truncated after a certain length, the @@group_concat_max_len.

Whenever jOOQ generates a GROUP_CONCAT function, by default, that MySQL system variable is
increased to the maximum value for the scope of a single statement, e.g.

SET @ = @EBROUP_CONCAT_MAX_LEN;
SET @EBROUP_CONCAT_MAX_LEN = 4294967295;
SELECT GROUP_CONCAT(TI TLE SEPARATCR ', ')
FROM BOOK;

SET @EBROUP_CONCAT_MAX_LEN = @;

More details here. While this is a reasonable default behaviour (as opposed to the random truncation),
it may occasionally be undesired, e.g. if statement batches (; separated statements) aren't possible in
a single JDBC statement. The feature can be turned off with

Example configuration

Settings settings = new Settings()
. wi t hRender G- oupConcat MaxLenSessi onVari abl e(fal se); // Defaults to true

4.2.8.13. Identifier style

By default, JOOQ will always generate quoted names for all identifiers (even if this manual omits this
for readability). For instance:

SELECT "TABLE"."COLUW' FROM "TABLE" -- SQL standard style
SELECT " TABLE . COLUMWN FROM TABLE -- M/SQL style
SELECT [TABLE].[COLUMN] FROM [TABLE] -- SQL Server style

Quoting has the following effect on identifiers in most (but not all) databases:

- It allows for using reserved names as object names, e.g. a table called "FROM" is usually possible
only when quoted.

- It allows for using special characters in object names, e.g. a column called "FIRST NAME" can be
achieved only with quoting.

- ltturns what are mostly case-insensitive identifiers into case-sensitive ones, e.g. "name" and
"NAME" are different identifiers, whereas name and NAME are not. Please consider your
database manual to learn what the proper default case and default case sensitivity is.

© 2009 - 2024 by Data Geekery™ GmbH. Page 77 /1238

https://blog.jooq.org/mysqls-allowmultiqueries-flag-with-jdbc-and-jooq/

The jOOQ User Manual 4.2.8.14. Implicit join type

The renderQuotedNames and renderNameCase settings allow for overriding the name of all identifiers
in jOOQ to a consistent style. Possible options are:

RenderQuotedNames

- ALWAYS: This will quote all identifiers.

- EXPLICIT_DEFAULT_QUOTED: This will quote all identifiers, which are not explicitly unquoted
using DSL.unguotedName().

- EXPLICIT_DEFAULT_UNQUOTED: This will not quote any identifiers, unless they are explicitly
quoted using DSL.quotedName().

- NEVER: This will not quote any identifiers.

RenderNameCase

- AS_IS: This will generate all names in their proper case.

- LOWER: This will transform all names to lower case.

- LOWER_IF_UNQUQOTED: This will transform all names to lower case if the name is unquoted.
- UPPER: This will transform all names to upper case.

- UPPER_IF_UNQUOTED: This will transform all names to upper case if the name is unquoted.

The two flags are independent of one another. If your database supports quoted, case sensitive
identifiers, then using LOWER or UPPER on quoted identifiers may not work.

Example configuration

Settings settings = new Settings()
. wi t hRender Quot edNanes(Render Quot edNanes. EXPLI CI T_DEFAULT_UNQUOTED) // Defaults to EXPLICl T_DEFAULT_QUOTED
. wi t hRender NanmeCase(Render NaneCase. LOAER_| F_UNQUOTED) ; /| Defaults to AS_IS

The behaviour of this setting is influenced by the renderLocale setting.

4.2.8.14. Implicit join type

jOOQ's very useful implicit JOIN feature can be used to use a path notation to join tables on their actual,
or synthetic foreign keys. For example:

I/ Get all books, their authors, and their respective |anguage
create. sel ect (
BOOK. aut hor () . FI RST_NAME,
BOOK. aut hor () . LAST_NANE,
BOOK. Tl TLE,
BOCK. | anguage() . CD. as("| anguage"))
. f r om(BOOK)
.fetch();

By default, this produces:

© 2009 - 2024 by Data Geekery™ GmbH. Page 78 /1238

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/impl/DSL.html#unquotedName(String)
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/impl/DSL.html#quotedName(String)

The jOOQ User Manual 4.2.8.15. Inline Threshold

- An INNER_JOQIN if all columns of the foreign key are NOT NULL

- ALEFT_JOIN if the foreign key is nullable / optional

- ASCALAR_SUBQUERY if the implicit join path is in a DML statement
- Anexception if the path follows a to-many relationship

The above defaults are important to prevent implicit joins from filtering results when placed in clauses
that are not meant to filter, such as the SELECT clause or the ORDER BY clause, as well as to prevent
them from generating rows in such cases (in the case of to-many joins).

Users may prefer to enforce a different behaviour, including:

- Always produce a LEFT_JOIN, e.g. because this was the behaviour before jOOQ 3.14

- Always produce an INNER_JOIN, e.g. because they're migrating off Hibernate / JPA, and depend
on Hibernate's implicit joins producing inner joins

- Always produce a SCALAR_SUBQUERY, to keep scoping of a path local (producing duplicates for
shared path segments). This is also what's being done when an implicit join path is rendered in a
DML statement.

- Always THROW an exception.

This change of behaviour can be achieved with the following setting:

Example configuration

Settings settings = new Settings()
.wi thRender | nplicitJoi nType(Render | nplicitJoinType. | NNER_JO N)
.wi thRender | npl i citJoi nTypeToMany(Render | npli ci t Joi nType. LEFT_JO N) ;

4.2.8.15. Inline Threshold

Previous sections showed how the SQL generation of bind values can be controlled, e.g. by forcing them
to be inlined, or by running a static JDBC statement.

Sometimes, inlining needs to be enforced dynamically, depending on the query content. This is the case
when there are a great number of bind variables. Known vendor-specific limits are:

- Access : 768

- Ingres : 1024

- Oracle : 32767

- PostgreSQL : 32767
- SQLite : 999

- SQL Server: 2100

- Sybase ASE : 2000

By default, JOOQ will automatically inline all bind variables in any SQL statement, once these thresholds
have been reached. However, it is possible to override this default and provide a setting to re-define
a global threshold for all dialects.

Example configuration

Settings settings = new Settings()
.withlnlineThreshol d(100); // Defaults to 0, which neans the default thresholds are applied

© 2009 - 2024 by Data Geekery™ GmbH. Page 79/1238

The jOOQ User Manual 4.2.8.16. IN-list Padding

4.2.8.16. IN-list Padding

Databases that feature a cursor cache / statement cache (e.g. Oracle, SQL Server, DB2, etc.) are highly
optimised for prepared statement re-use. When a client sends a prepared statement to the server, the
server will go to the cache and look up whether there already exists a previously calculated execution
plan for the statement (i.e. the SQL string). This is called a "soft-parse" (in Oracle). If not, the execution
plan is calculated on the fly. This is called a "hard-parse" (in Oracle).

Preventing hard-parses is extremely important in high throughput OLTP systems where queries are
usually not very complex but are run millions of times in a short amount of time. Using bind variables,
this is usually not a problem, with the exception of the IN predicate, which generates different SQL
strings even when using bind variables:

-- Al of these are different SQL statenents:
SELECT * FROM AUTHOR WHERE I D IN (?)

SELECT * FROM AUTHOR WHERE ID IN (?, ?
SELECT * FROM AUTHOR WHERE ID IN (?, 2,
SELECT * FROM AUTHOR WHERE ID IN (?, 2,
SELECT * FROM AUTHOR WHERE ID IN (?, 2,

¥IY

?)

This problem may not be obvious to Java / jJOOQ developers, as they are always produced from the
same jOOQ statement:

/1 Al of these are the sane jOOQ statenent
DSL. usi ng(confi gurati on)
.select()
. f r om(AUTHOR)
. wher e(AUTHOR. I D.i n(col | ection))
.fetch();

Depending on the possible sizes of the collection, it may be worth exploring using arrays or temporary
tables as a workaround, or to reuse the original query that produced the set of IDs in the first place
(through a semi-join). But sometimes, this is not possible. In this case, users can opt in to a third
workaround: enabling the inListPadding setting. If enabled, jOOQ will "pad" the IN list to a length that is
a power of two (configurable with Settings.inListPadBase). So, the original queries would look like this
instead:

- Original -- Padded
SELECT * FROM AUTHOR WHERE ID IN (?) SELECT * FROM AUTHOR WHERE ID IN (?)
SELECT * FROM AUTHOR WHERE ID IN (?, ?) SELECT * FROM AUTHOR WHERE ID IN (?, ?)
SELECT * FROM AUTHOR WHERE ID IN (?, ?, ?) SELECT * FROM AUTHOR WHERE ID IN (?, ?, ?, ?)
SELECT * FROM AUTHOR WHERE ID IN (?, 2, ?, ?) SELECT * FROM AUTHOR WHERE ID IN (?, ?, 2, ?)
SELECT * FROM AUTHOR WHERE ID IN (?, 2, ?, ?, ?) SELECT * FROM AUTHOR WHERE ID IN (?, ?, 2, ?, 2, ?, 2, ?)
SELECT * FROM AUTHOR WHERE ID IN (?, 2, 2, ?2, 2, ?) SELECT * FROM AUTHOR WHERE ID IN (?, ?, 2, ?, 2, ?2, 2, ?)

This technique will drastically reduce the number of possible SQL strings without impairing too much
the usual cases where the IN list is small. When padding, the last bind variable will simply be repeated
many times.

Usually, there is a better way - use this as a last resort!

Example configuration

Settings settings = new Settings()
.withlnListPadding(true) // Default to false
.wi thlnLi st PadBase(4); I/ Default to 2

© 2009 - 2024 by Data Geekery™ GmbH. Page 80/ 1238

The jOOQ User Manual 4.2.8.17. Interpreter Configuration

4.2.8.17. Interpreter Configuration

The SOL Interpreter API ships with a variety of settings that govern its behaviour. These settings include:

- interpreterDialect: The interpreter input dialect. This dialect is used to decide whether DDL
interpretation should be done on an actual in-memory database of a specific type, or using
jOOQ's built in DDL interpretation.

- interpreterDelayForeignKeyDeclarations: Whether the interpreter should delay the application of
foreign key declarations (in case of which forward references are possible).

- interpreterLocale: The locale to use for things like case insensitive comparisons.

- interpreterNamelookupCaseSensitivity: The identifier case sensitivity that should be applied
when interpreting SQL, depending on whether identifiers are quoted or not.

- interpreterSearchPath: The search path for unqualified schema objects used by the interpreter.

Example configuration

Settings settings = new Settings()

.withlnterpreterDial ect (H2) I/ Defaults to DEFAULT
.withlnterpreterDel ayForei gnKeyDecl arati ons(true) Il Defaults to false
.withlnterpreterLocal e(Local e. f or LanguageTag("de")) /] Defaults to Locale.getDefault()
.wi thlnterpreterNaneLookupCaseSensi ti vity(NEVER) // Defaults to WHEN_QUOTED
.withlnterpreterSearchPath(...); I/ Defaults to an enpty |ist

4.2.8.18. JDBC Flags

JDBC statements feature a couple of flags that influence the execution of such a statement. Each of
these flags can be configured through jOOQ's org.joog.Query and org.joog.ResultQuery on a statement-
per-statement basis, but there's also the possibility to centrally specify a value for these flags. These
are the three flags:

- queryTimeout: The JDBC statement timeout in seconds. Corresponds to Query.queryTimeout()
or Statement.setQueryTimeout()

- maxRows: The maximum number of rows returned by the JDBC statement. Corresponds to
ResultQuery.maxRows() or Statement.setMaxRows()

- fetchSize: The number of rows to be buffered by the JDBC ResultSet. Corresponds to
ResultQuery.fetchSize() or Statement.setFetchSize()

All of these flags are JDBC-only features with no direct effect on jOOQ. JOOQ only passes them through
to the underlying statement.

Example configuration

Settings settings = new Settings()
.wi t hQuer yTi meout (5)
. wi t hQuer yPool abl e(DEFAULT)
. Wi t hMaxRows (1000)
. W t hFet chSi ze(20) ;

© 2009 - 2024 by Data Geekery™ GmbH. Page 81/1238

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Query.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/ResultQuery.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Query.html#queryTimeout(int)
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Statement.html#setQueryTimeout(int)
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/ResultQuery.html#maxRows(int)
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Statement.html#setMaxRows(int)
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/ResultQuery.html#fetchSize(int)
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Statement.html#setFetchSize(int)

The jOOQ User Manual 4.2.8.19. Keyword style

4.2.8.19. Keyword style

In all SQL dialects, keywords are case insensitive, and this is also the default in jJOOQ, which mostly
generates lower-case keywords.

Users may wish to adapt this and they have these options for the renderKeywordCase setting:

- AS_IS (the default): Generate keywords as they are defined in the codebase (mostly lower case).
- LOWER: Generate keywords in lower case.

- UPPER: Generate keywords in upper case.

- PASCAL: Generate keywords in pascal case.

Example configuration

Settings settings = new Settings()
. wi t hRender Keywor dCase(Render Keywor dCase. UPPER); // Defaults to AS_IS

4.7.8.20. Listener Invocation Order

jOOQ offers a variety of SPIs in the Configuration object. Some of those SPIs are event listeners, that
can listen to "start" and "end" events, such as for example the Executelistener that listens to the query
execution lifecycle.

When registering multiple listeners of a type, the invocation order may be relevant as custom listeners
might communicate with each other. In such a case, the following settings allow for overriding the
invocation order of "start" and "end" events for each type of listener:

Example configuration

Settings settings = new Settings()
.wi thTransactionLi stenerStart|nvocati onOr der (DEFAULT) // Defaults to DEFAULT
. Wi thTransacti onLi st ener Endl nvocat i onOr der (REVERSE) /| Defaults to DEFAULT

Wi thVisitListenerStartl|nvocati onO der (DEFAULT) /| Defaults to DEFAULT
. Wi thVisitListener Endl nvocati onOr der (REVERSE) /| Defaults to DEFAULT
. Wi thRecordLi stener Start | nvocati onO der (DEFAULT) /| Defaults to DEFAULT
. Wi t hRecor dLi st ener Endl nvocat i onOr der (REVERSE) /| Defaults to DEFAULT
. Wi thExecut eLi stener Start | nvocati onO der (DEFAULT) /| Defaults to DEFAULT
. Wi t hExecut eLi st ener Endl nvocat i onOr der (REVERSE) ; /| Defaults to DEFAULT

4.2.8.21. Locales

When doing locale sensitive operations, such as upper casing or lower casing a name (see Name styles),
then it may be important in some areas to be able to specify the java.util.Locale for the operation.

Example configuration

© 2009 - 2024 by Data Geekery™ GmbH. Page 82 /1238

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Locale.html

The jOOQ User Manual 4.2.8.22. Map JPA Annotations

/1 Al of these default to Locale.getDefault(), if not specified explicitly
Settings settings = new Settings()

.wi thLocal e(Local e. f or LanguageTag("de")) /1 The default locale if no nore specific |ocales are specified
.wi t hRender Local e(Local e. f or LanguageTag("de")) I/ The | ocal e used when rendering SQL
.wi t hPar seLocal e(Local e. f or LanguageTag("de")) /1 The |l ocal e used when parsing SQL

.withlnterpreterLocal e(Local e. for LanguageTag(“de")); // The |ocal e used when interpreting SQL

4.2.8.22. Map JPA Annotations

The org.joog.impl.DefaultRecordMapper supports basic JPA mapping (mostly @Table and @Column
annotations). Looking up these annotations costs a slight extra overhead (mostly taken care of through
reflection caching). It can be turned off using the mapJPAAnnotations setting:

Example configuration

Settings settings = new Settings()
.wi t hMapJPAAnnot ations(fal se); // Defaults to true

4.2.8.23. Object qualification

By default, jOOQ fully qualifies all objects with their catalog and schema names, if such qualification
is made available by the code generator. For instance, the following SQL statement containing full
qualification may be produced by jOOQ code with seemingly no qualification:

- Full qualification on columms and tables DSL. usi ng(confi gurati on)
SELECT cat al og. schens. t abl e. col um .sel ect (TABLE. COLUMN) // Columm only qualified with table
FROM cat al og. schens. t abl e . fron{ TABLE) /1 No qualification on table

While the jJOOQ code is also implicitly fully qualified (see implied imports), it may not be desireable to
use fully qualified object names in SQL. The renderCatalog and renderSchema settings are used for this.

Example configuration

new Settings()
.wi t hRender Catal og(false) // Defaults to true
.wi t hRender Schema(fal se); // Defaults to true

More sophisticated multitenancy approaches are available through the render mapping feature.

4.2.8.24. Object qualification for columns

By default, jOOQ fully qualifies all columns with their table names (and the tables might themselves be
qualified). This is a reasonable default, as any JOIN operation may produce ambiguous column names,
such as the ubiquitous names ID or CREATED_AT.

- Columms al ways qualified with table nane. DSL. usi ng(confi gurati on)
SELECT tabl e. col um . sel ect (TABLE. COLUWN)
FROM t abl e . fron(TABLE) ;

© 2009 - 2024 by Data Geekery™ GmbH. Page 83/1238

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/impl/DefaultRecordMapper.html

The jOOQ User Manual 4.2.8.25. Optimistic Locking

In rare cases, it may be desirable to drop this qualification, keeping it only either:

- ALWAYS: This is the default. Columns are always qualified with their table.

- WHEN_MULTIPLE_TABLES: When the FROM clause has multiple tables.

- WHEN_AMBIGUOUS_COLUMNS: When the FROM clause produces ambiguous columns.

- NEVER: Qualification is always dropped. This may produce semantically wrong SQL and is
intended only to be used on a query by query basis, if any of the above does not implement
requirements as desired.

Example configuration

new Settings()
.wi t hRender Tabl e(Render Tabl e. WHEN_MULTI PLE_TABLES) // Defaults to ALWAYS

4.2.8.25. Optimistic Locking

There are two settings governing the behaviour of the jOOQ optimistic locking feature:

- updateRecordVersion: Whether UpdatableRecord instances should modify the record version
prior to storing the record. This feature is independent of, but related to optimistic locking.

- updateRecordTimestamp: Whether UpdatableRecord instances should modify the record
timestamp prior to storing the record. This feature is independent of, but related to optimistic
locking.

- executeWithOptimisticLocking: This allows for turning off the feature entirely.

- executeWithOptimisticLockingExcludeUnversioned: This allows for turning off the feature for
updatable records who are not explicitly versioned.

Example configuration

Settings settings = new Settings()

. wi t hUpdat eRecor dVer si on(true) /1 Defaults to true
.wi t hUpdat eRecor dTi nest anp(true) Il Defaults to true
.wi t hExecut eW t hOpti mi sti cLocki ng(true) Il Defaults to fal se

.wi t hExecut eW t hOpti mi sti cLocki ngExcl udeUnver si oned(fal se); // Defaults to false

For more details, please refer to the manual's section about the optimistic locking feature.

4.2.8.26. Parameter name prefix

When choosing a ParameterType.NAMED to produce named parameters, the default is to use a colon
as a prefix to the parameter name, for example:

- NAMED
SELECT FI RST_NAME || :1 FROM AUTHOR WHERE ID = :x

Depending on how the named parameters are interpreted, this default is not optimal. A better character
might be the $ sign, e.g. in PostgreSQL or R2DBC. For this, the renderNamedParamPrefix setting can
be used:

Example configuration

© 2009 - 2024 by Data Geekery™ GmbH. Page 84 /1238

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/UpdatableRecord.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/UpdatableRecord.html

The jOOQ User Manual 4.2.8.27. Parameter types

Settings settings = new Settings()
.wi t hRender NanedPar anPrefi x("$"); // Defaults to ":"

4.2.8.27. Parameter types

Bind values or bind parameters come in different flavours in different SQL databases. JDBC standardises
on their syntax by allowing only ? (question mark) characters as placeholders for bind variables. Thus,
jOOQ, by default, generates ? placeholders for JDBC consumptions.

Users who wish to use jOOQ with a different backend than JDBC can specify that all JOOQ bind values,
including indexed parameters and named parameters generate alternative strings, other than ?. These
are the current options:

- INDEXED (the default): Generates indexed parameter placeholders using ?.

- NAMED: Generates named parameter placeholders, such as :param for parameters that are
named explicitly or :1 for unnamed, indexed parameters.

- NAMED_OR_INLINED: Generates named parameter placeholders for parameters that are named
explicitly and inlines all unnamed parameters.

- INLINED: Inlines all parameters.

An example:
-- | NDEXED ParanxString> x = val ("x");
SELECT FI RST_NAME || ? FROM AUTHOR WHERE ID = ? Par anxl nteger> i = paran("x", 42);
-- NAMED
SELECT FI RST_NAME || :1 FROM AUTHOR WHERE ID = :x DSL. usi ng(confi gurati on)
- NAMED_OR_| NLI NED . sel ect (FI RST_NAME. concat (X))
SELECT FIRST_NAME || 'x' FROM AUTHOR WHERE ID = :x . f r on{ AUTHOR)
- | NLI NED .where(ID.eq(i))
SELECT FIRST_NAME || 'x' FROM AUTHOR WHERE ID = 42 .fetch();

Example configuration

Settings settings = new Settings()
. wi t hPar anilype(Par aniType. NAMED) ; // Defaults to | NDEXED

The following setting statementType may override this setting.

4.2.8.28. Parser Configuration

The SQL Parser API ships with a variety of settings that govern its behaviour. These settings include:

© 2009 - 2024 by Data Geekery™ GmbH. Page 85/1238

The jOOQ User Manual

4.2.8.28. Parser Configuration

- parseDialect: The parser input dialect. This dialect is used to decide what vendor specific
grammar should be applied in case of ambiguities that cannot be resolved from the context.
- parseDateFormat: The date format that is applied automatically when parsing date formatting

functions without an explicit format.

- parselgnoreComments: Using this flag, the parser can ignore certain sections that would
otherwise be executed by RDBMS. Everything between an parselgnoreCommentStart and the
parselgnoreCommentStop token will be ignored.

- parselgnoreCommentStart: The token that delimits the beginning of a section to be ignored by
jOOQ. Ideally, this token is placed inside of a SQL comment.

- parselgnoreCommentStop: The token that delimits the end of a section to be ignored by jOOQ.
Ideally, this token is placed inside of a SQL comment.

- parseRetainCommentsBetweenQueries: Whether comments in between statements from
Parser.parse() are retained and parsed as ignored queries. Comments inside of statements
(including procedural statements) currently aren't supported by jOOQ.

- parseSearchPath: The search path to look up unqualified identifiers to be used when using
parseWithMetalLookups. Most dialects support a single schema on their search path (the
CURRENT_SCHEMA). PostgreSQL supports a 'search_path', which allows for listing multiple
schemata to use to look up unqualified tables, procedures, etc. in.

- parseTimestampFormat: The timestamp format that is applied automatically when parsing
timestamp formatting functions without an explicit format.

- parseUnsupportedSyntax: The parser can parse some syntax that jOOQ does not support. By
default, such syntax is ignored. Use this flag if you want to fail in such cases.

- parseUnknownFunctions: The parser only parses "known" (to jOOQ) built in functions, and fails
otherwise. This flag allows for parsing any built in function using a standard func_name(arg1,

arg2, ...) syntax.

- parseWithMetal.ookups: Whether org.joog.Meta should be used to look up meta information
such as schemas, tables, columns, column types, etc.

An example of using the parselgnoreComments feature:

- What you execute

/* [jooq ignore start] */
CREATE SCHEMA s1;

SET SCHEMA s1;

/* [jooq ignore stop] */

/* [jooq ignore start] */ -- /* [jooq ignore stop] */ CREATE

- What the jOOQ parser sees
/*

*/

| *

SCHEMA s2; SCHEMA s2;

/* [jooq ignore start] */ -- /* [jooq ignore stop] */ SET SCHEMA /*

s2; s2;

CREATE TABLE t (i | NTEGER); CREATE TABLE t (i | NTEGER);

Example configuration

Settings settings = new Settings()

. Wi thPar seDi al ect (SQLSERVER)

. Wi t hPar seW t hMet aLookups(THRON ON_FAI LURE)

. Wi t hPar seSear chPat h(
new Par seSear chSchemat a() . wi t hSchema(" PUBLI C"),
new Par seSear chSchemat a() . wi t hSchema(" TEST"))

. Wi t hPar seUnsuppor t edSynt ax(FAI L)

. Wi t hPar seUnknownFunct i ons(| GNORE)

. Wi t hPar sel gnor eConment s(t rue)

. Wi t hPar sel gnor eConment St art (" <i gnor e>")

.wi t hPar sel gnor eComment St op(" </ i gnor e>")

Il
Il

Il
Il
Il
Il
Il

Defaults to DEFAULT
Defaults to OFF

Defaults to | GNORE

Defaults to FAIL

Defaults to fal se

Defaults to “[jooq ignore start]"
Defaults to "[jooq ignore stop]"

In addition to the above settings, there is also a powerful parser listener

org.jooq.ParselListener.

© 2009 - 2024 by Data Geekery™ GmbH.

*/ CREATE

*/ SET SCHENMA

SPI called the

Page 86/ 1238

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Parser.html#parse--
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Meta.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/ParseListener.html

The jOOQ User Manual 4.2.8.29. Reflection caching

4.2.8.29. Reflection caching

All operations of the DefaultRecordMapper are cached in the Configuration by default for improved
mapping and reflection speed. Users who prefer to override this cache, or work with their own custom
record mapper provider may wish to turn off the out-of-the-box caching feature.

Example configuration

Settings settings = new Settings()
.withRefl ectionCaching(false); // Defaults to true

4.2.8.30. Return all columns on store

When using the updatable records feature, JOOQ always fetches the generated identity value, if such a
value is available and if the return identity on store feature is enabled (it is, by default).

The identity value is not the only value that is generated by default. Specifically, there may be triggers
that are used for auditing or other reasons, which generate LAST_UPDATE or LAST_UPDATE_BY values
in a record. Users who wish to also automatically fetch these values after all store(), insert(), or update()
calls may do so by specifying the returnAllOnUpdatableRecord setting. This setting depends on the
availability of INSERT .. RETURNING, UPDATE .. RETURNING, and DELETE .. RETURNING statements,
which are not available from all databases, in case of which a refresh() call may be issued, creating a
separate round trip to the server.

Example configuration

Settings settings = new Settings()
.wi t hRet ur nAl | OnUpdat abl eRecord(true); // Defaults to false

4.2.8.31. Return computed columns on store

When using the updatable records feature, JOOQ always fetches the generated identity value, if such a
value is available and if the return identity on store feature is enabled (it is, by default).

The identity value is not the only value that is generated by default. Specifically, there may be different
types of computed columns. Users who wish to also automatically fetch these values after all store(),
insert(), or update() calls may do so by specifying the returnDefaultOnUpdatableRecord setting. This
setting depends on the availability of INSERT .. RETURNING, UPDATE .. RETURNING, and DELETE ..
RETURNING statements, which are not available from all databases, in case of which a refresh() call may
be issued, creating a separate round trip to the server.

Example configuration

Settings settings = new Settings()
. Wi t hRet ur nConput edOnUpdat abl eRecord(true); // Defaults to false

© 2009 - 2024 by Data Geekery™ GmbH. Page 87 /1238

The jOOQ User Manual 4.2.8.32. Return DEFAULT columns on store

4.2.8.32. Return DEFAULT columns on store

When using the updatable records feature, JOOQ always fetches the generated identity value, if such a
value is available and if the return identity on store feature is enabled (it is, by default).

The identity value is not the only value that is generated by default. Specifically, there may
be other defaulted values, such as creation timestamps and users. Users who wish to also
automatically fetch these values after all store(), insert(), or update() calls may do so by specifying
the returnDefaultOnUpdatableRecord setting. This setting depends on the availability of INSERT ..
RETURNING, UPDATE .. RETURNING, and DELETE .. RETURNING statements, which are not available
from all databases, in case of which a refresh() call may be issued, creating a separate round trip to
the server.

Example configuration

Settings settings = new Settings()
.wi t hRet ur nDef aul t OnUpdat abl eRecord(true); // Defaults to false

4.2.8.33. Return Identity Value On Store

When using the updatable records feature, jOOQ by default fetches the generated identity value.

In some situations, it is desirable for this feature to be turned off using the following flag:

Example configuration

Settings settings = new Settings()
.wi t hReturnl dentityOnUpdat abl eRecord(false); // Defaults to true

4.2.8.34. Runtime catalog, schema and table
mapping

Mapping your DEV schema to a productive environment

You may wish to design your database in a way that you have several instances of your schema. This
is useful when you want to cleanly separate data belonging to several customers / organisation units /
branches / users and put each of those entities' data in a separate database or schema.

In our AUTHOR example this would mean that you provide a book reference database to several
companies, such as My Book World and Books R Us. In that case, you'll probably have a schema setup
like this:

© 2009 - 2024 by Data Geekery™ GmbH. Page 88 /1238

The jOOQ User Manual 4.2.8.34. Runtime catalog, schema and table mapping

- DEV: Your development schema. This will be the schema that you base code generation upon,
with jOOQ

- MY_BOOK_WORLD: The schema instance for My Book World

- BOOKS_R_US: The schema instance for Books R Us

Mapping DEV to MY_BOOK_WORLD with jOOQ

When a user from My Book World logs in, you want them to access the MY_BOOK_WORLD schema
using classes generated from DEV. This can be achieved with the org.joog.conf.RenderMapping class,
that you can equip your Configuration's settings with. Take the following example:

Example configuration

Settings settings = new Settings()
.wi t hRender Mappi ng(new Render Mappi ng()
.wi t hSchemat a(
new MappedSchema(). wi t hl nput (" DEV")
. Wit hQut put (" MY_BOOK_WORLD') ,
new MappedSchema(). withl nput ("LOG")
. Wi t hQut put (" MY_BOOK_WORLD LOG')));

The query executed with a Configuration equipped with the above mapping will in fact produce this
SQL statement:

SELECT * DSL. usi ng(connection, dialect, settings)
FROM MY_BOOK_WORLD. AUTHOR . sel ect Fr on{ DEV. AUTHOR)

This works because AUTHOR was generated from the DEV schema, which is mapped to the
MY_BOOK_WORLD schema by the above settings.

Mapping of tables

Not only schemata can be mapped, but also tables. If you are not the owner of the database
your application connects to, you might need to install your schema with some sort of prefix to
every table. In our examples, this might mean that you will have to map DEV.AUTHOR to something
MY_BOOK_WORLD.MY_APP__AUTHOR, where MY_APP__is a prefix applied to all of your tables. This can
be achieved by creating the following mapping:

Example configuration

Settings settings = new Settings()
. wi t hRender Mappi ng(new Render Mappi ng()
.wi t hSchemat a(
new MappedSchema(). wi t hl nput (" DEV")
.wi t hTabl es(
new MappedTabl e(). wi t hl nput (" AUTHOR")
. Wi t hQut put (" MY_APP__AUTHOR'))));

The query executed with a Configuration equipped with the above mapping will in fact produce this
SQL statement:

SELECT * FROM DEV. Mv_APP__AUTHOR

Table mapping and schema mapping can be applied independently, by specifying several
MappedSchema entries in the above configuration. jJOOQ will process them in order of appearance and

© 2009 - 2024 by Data Geekery™ GmbH. Page 89/1238

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/conf/RenderMapping.html

The jOOQ User Manual 4.2.8.34. Runtime catalog, schema and table mapping

map at first match. Note that you can always omit a MappedSchema's output value, in case of which,
only the table mapping is applied.

Mapping of UDTs

Not only schemata can be mapped, but also UDTs. If you are not the owner of the database your
application connects to, you might need to install your schema with some sort of prefix to every
UDT. In our examples, this might mean that you will have to map DEV.AUTHOR_TYPE to something
MY_BOOK_WORLD.MY_APP__AUTHOR_TYPE, where MY_APP__ is a prefix applied to all of your UDTs.
This can be achieved by creating the following mapping:

Example configuration

Settings settings = new Settings()
. wi t hRender Mappi ng(new Render Mappi ng()
.wi t hSchemat a(
new MappedSchema() . wi t hl nput (" DEV")
Wi thudt s(
new MappedUDT() . wi t hl nput (" AUTHOR _TYPE")
. wi t hQut put (" MY_APP__AUTHOR TYPE"))));

The query executed with a Configuration equipped with the above mapping will in fact produce this
SQL statement:

SELECT CAST(ROW(' John', 'Doe') AS DEV. \Y_APP__AUTHOR TYPE)

UDT mapping and schema mapping can be applied independently, by specifying several
MappedSchema entries in the above configuration. jJOOQ will process them in order of appearance and
map at first match. Note that you can always omit a MappedSchema's output value, in case of which,
only the UDT mapping is applied.

Mapping of catalogs

For databases like SQL Server, it is also possible to map catalogs in addition to schemata. The
mechanism is exactly the same. So let's assume that we generated code for a table [dev].[dbo].[author]
and want to map it to [my_book_world].[dbo].[author] at runtime. This can be achieved as follows:

Example configuration

Settings settings = new Settings()
. Wi t hRender Mappi ng(new Render Mappi ng()
. Wi thCat al ogs(
new MappedCat al og().w t hl nput (" DEV")
. W t hQut put (" MY_BOOK_WORLD")));

To give you full control of how each and every table gets mapped, a MappedCatalog object can contain
MappedSchema (and thus also MappedTable) definitions.

Using regular expressions

All of the above examples were using 1:1 constant name mappings where the input and output schema
or table names are fixed by the configuration. With jOOQ 3.8, regular expression can be used as well
for mapping, for example:

Example configuration

© 2009 - 2024 by Data Geekery™ GmbH. Page 90/ 1238

The jOOQ User Manual 4.2.8.35. Scalar subqueries for stored functions

Settings settings = new Settings()
. wi t hRender Mappi ng(new Render Mappi ng()
.wi t hSchemat a(
new MappedSchema() . wi t hl nput Expressi on(Pattern. conpile("DEV_(.*)"))
. wi t hQut put (" PROD_$1")
.wi t hTabl es(
new MappedTabl e().w t hl nput Expressi on(Pattern. conpile("DEV_(.*)"))
. Wit hQut put ("PROD_$1"))));

The only difference to the constant version is that the input field is replaced by the inputExpression field
of type java.util.regex.Pattern, in case of which the meaning of the output field is a pattern replacement,
not a constant replacement.

Hard-wiring mappings at code-generation time

Note that the manual's section about code generation schema mapping explains how you can hard-
wire your catalog, schema and table mappings at code generation time.

Limitations

Mapped objects need to be known to the jOOQ org.joog.RenderContext, which means that for example
plain SQL templates and their contents cannot be mapped. See also features requiring code generation
for more details.

4.2.8.35. Scalar subqgueries for stored functions

This setting is useful mostly for the Oracle database, which implements a feature called scalar subguery
caching, which is a good tool to avoid the expensive PL/SQL-to-SQL context switch when predicates
make use of stored function calls.

With this setting in place, all stored function calls embedded in SQL statements will be wrapped in a
scalar subquery:

SELECT DSL. usi ng(confi gurati on)
(SELECT ny_package. f or mat (LANGUAGE | D) FROM dual) . sel ect (MyPackage. f or mat (BOOK. LANGUAGE_| D))
FROM BOOK . f rom(BOOK)

If our table contains thousands of books, but only a dozen of LANGUAGE_ID values, then with scalar
subquery caching, we can avoid most of the function calls and cache the result per LANGUAGE_ID.

Example configuration

Settings settings = new Settings()
. Wi t hRender Scal ar Subquer i esFor St or edFuncti ons(true);

4.2.8.36. SEEK clause implementation

The SEEK clause is a powerful alternative to the OFFSET clause for pagination. By default, the SEEK
clause is transformed into an equivalent ROW predicate as follows:

© 2009 - 2024 by Data Geekery™ GmbH. Page 91/1238

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Pattern.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/RenderContext.html
https://blog.jooq.org/oracle-scalar-subquery-caching/
https://blog.jooq.org/oracle-scalar-subquery-caching/

The jOOQ User Manual 4.2.8.37. Statement Type

create.select(T.1D, T.VALUE)

SELECT id, value .from(T)

FROM t .orderBy(T.VALUE, T.1D)
WHERE (value, id) > (2, 533) . seek(|l ast Val ue, |astld)
ORDER BY val ue, id limt(5)

LIMT 5 .fetch();

That ROW predicate is optimal, syntactically, but may not be optimised optimally by a dialect's underlying
optimiser. As such, there are two ways to influence the generation of this predicate in away to possibly
help the optimiser choose the right index:

- Settings.render RowCondi ti onFor SeekCl ause = false to turn off using the RONsyntax
WHERE value > 2 OR value = 2 AND id > 533

- Settings.render Redundant Condi ti onFor SeekCl ause = true to add an additional redundant predicate

WHERE val ue >= 2 AND (value, id) > (2, 533)
WHERE val ue >= 2 AND (value > 2 OR value = 2 AND id > 533)

The default in jOOQ is to not do the above, but users can opt into the manual expansion of syntax to
benefit performance.

Note that if the ROW syntax isn't supported natively, then jOOQ will expand that to the equivalent OR
predicate anyway.

Example configuration
Settings settings = new Settings()

. Wi t hRender RowCondi t i onFor SeekC ause(fal se) /| Default to true
. wi t hRender Redundant Condi t i onFor SeekCl ause(true); // Default to fal se

4.2.8.37. Statement Type

JDBC knows two types of statements:

- java.sqgl.PreparedStatement: This allows for sending bind variables to the server. jOOQ uses
prepared statements by default.

- java.sgl.Statement: Also "static statement”. These do not support bind variables and may be
useful for one-shot commands like DDL statements.

The statementType setting allows for overriding the default of using prepared statements internally.
There are two possible options for this setting:

- PREPARED_STATEMENT (the default): Use prepared statements.
- STATIC_STATEMENT: Use static statements. This enforces the paramType == INLINED. See
parameter types

Example configuration

Settings settings = new Settings()
. Wi thSt at enent Type(St at enent Type. STATI C_STATEVENT) ; // Defaults to PREPARED STATEMENT

© 2009 - 2024 by Data Geekery™ GmbH. Page 92/1238

https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/PreparedStatement.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Statement.html

The jOOQ User Manual 4.2.8.38. Updatable Primary Keys

4.2.8.38. Updatable Primary Keys

In most database design guidelines, primary key values are expected to never change - an assumption
that is essential to a normalised database.

As always, there are exceptions to these rules, and users may wish to allow for updatable primary
key values in the updatable records feature (note: any value can always be updated through ordinary
update statements). An example:

Aut hor Record aut hor =

DSL. usi ng(configuration) // This configuration will be attached to any record produced by the bel ow query.
. sel ect Fr on{ AUTHOR)
. wher e(AUTHOR. | D. eq(1))
.fetchOne();

aut hor . set1d(2);
aut hor.store(); // The behaviour of this store call is governed by the updatabl ePrimaryKeys fl ag

The above store call depends on the value of the updatablePrimaryKeys flag:

- false (the default): Since immutability of primary keys is assumed, the store call will create a new
record (a copy) with the new primary key value.

- true: Since mutablity of primary keys is allowed, the store call will change the primary key value
from 1 to 2.

Example configuration

Settings settings = new Settings()
. Wi t hUpdat abl ePri maryKeys(true); // Defaults to fal se

4.2.9. Thread safety

org.joog.Configuration, and by consequence org.joog.DSLContext, make no thread safety guarantees,
but by carefully observing a few rules, they can be shared in a thread safe way. We encourage sharing
Configuration instances, because they contain caches for work not worth repeating, such as reflection
field and method lookups for org.joog.impl.DefaultRecordMapper. If you're using Spring or CDI for
dependency injection, you will want to be able to inject a DSLContext instance everywhere you use it.

The following needs to be considered when attempting to share Configuration and DSLContext among
threads:

© 2009 - 2024 by Data Geekery™ GmbH. Page 93/1238

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Configuration.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/DSLContext.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/impl/DefaultRecordMapper.html

The jOOQ User Manual 4.3.The DSL API

- Configuration is mutable for historic reasons. Calls to various Configuration.set() methods must
be avoided after initialisation, should a Configuration (and by consequence DSLContext) instance
be shared among threads. If you wish to modify some elements of a Configuration for single use,
use the Configuration.derive() methods instead, which create a copy.

- Configuration components, such as org.joog.conf.Settings are mutable as well. The same rules
for modification apply here.

- Configuration allows for supplying user-defined SPI implementations (see above for examples).
All of these must be thread safe as well, for their wrapping Configuration to be thread safe. If you
are using a org.joog.impl.DataSourceConnectionProvider, for instance, you must make sure that
your javax.sgl.DataSource is thread safe as well. This is usually the case when you use a third
party connection pool.

As can be seen above, Configuration was designed to work in a thread safe way, despite it not making
any such guarantee.

4.3. The DSL AP

The DSL APl is the primary way to construct queries or query parts in jOOQ. See the model API for an
alternative way to interact with the jOOQ query object model.

jOOQ ships with its own DSL (or Domain Specific Language) that emulates SQL in Java. This means,
that you can write SQL statements almost as if Java natively supported it, just like NET's C# does with
LINQ to SQL.

Here is an example to illustrate what that means:

- Select all books by authors born after 1920, Resul t <Record> result =
- naned "Paul 0" from a catal ogue: create.select()
SELECT * .from AUTHOR as("a"))
FROM aut hor a .join(BOXK. as("b")).on(a.ID.eq(bh. AUTHOR I D))
JO N book b ON a.id = b.author_id . wher e(a. YEAR_OF_BI RTH. gt (1920)
WHERE a.year_of _birth > 1920 .and(a. FI RST_NAME. eq(" Paul 0")))
AND a. first_name = ' Paul o' .orderBy(b. TI TLE)
ORDER BY b.title .fetch();

We'll see how the aliasing works later in the section about aliased tables

Many other frameworks have similar APIs with similar feature sets. Yet, what makes jOOQ special is its
informal BNF notation modelling a unified SQL dialect suitable for many vendor-specific dialects, and
implementing that BNF notation as a hierarchy of interfaces in Java. This concept is extremely powerful,
when using JOOQ with IDE syntax auto completion. Not only can you code much faster, your SQL code
will be compile-checked to a certain extent. An example of a DSL query equivalent to the previous one
is given here:

DSLCont ext create = DSL. using(connection, dialect);

Resul t<?> result = create.select()
. from(AUTHOR)
. j 0i n(BOOK) . on(BOOK. AUTHOR | D. eq(AUTHOR. | D))
.fetch();

Unlike other, simpler frameworks that use "fluent APIs" or "method chaining", jOOQ's BNF-based
interface hierarchy will not allow bad query syntax. The following will not compile, for instance:

© 2009 - 2024 by Data Geekery™ GmbH. Page 94/1238

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/conf/Settings.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/impl/DataSourceConnectionProvider.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/javax/sql/DataSource.html
https://en.wikipedia.org/wiki/Domain-specific_language
https://msdn.microsoft.com/en-us/library/bb425822.aspx
https://blog.jooq.org/the-java-fluent-api-designer-crash-course/
https://blog.jooq.org/why-you-should-use-jooq-with-code-generation/
https://en.wikipedia.org/wiki/Fluent_interface
https://en.wikipedia.org/wiki/Method_chaining

The jOOQ User Manual 4.3.1. Mutability (historic)

DSLCont ext create = DSL.using(connection, dialect);
Resul t<?> result = create. sel ect()
. j 0i n(BOXK) . on(BOOK. AUTHOR | D. eq(AUTHOR. | D))
[l AMAAN tjoin" is not possible here
. f rom(AUTHOR)
.fetch();

Resul t<?> result = create. sel ect()
. from(AUTHOR)
. j 0i n(BOOK)
.fetch();
/[ANAAAN ton" is missing here

Resul t<?> result = create. sel ect (rowNunber())

Il SeaanassaSlove @GNl sEmissilngBhee
. f rom(AUTHOR)
.fetch();

Resul t<?> result = create. sel ect()

. f rom(AUTHOR)
. wher e(AUTHOR. | D. i n(sel ect (BOOK. TI TLE) . f r om(BOCK)))

// AANANANNNANANNNNNNN

// AUTHOR ID is of type Field<lnteger> but subselect returns Recordl<String>
.fetch();

Resul t<?> result = create. sel ect()

. fr om(AUTHOR)
. wher e(AUTHOR. | D. i n(sel ect (BOOK. AUTHOR I D, BOCK. I D). f rom(BOOK)))

// AANANANANNANANANNNNANANNANNANNANNNNNNN

// AUTHOR ID is of degree 1 but subselect returns Record2<lnteger, |nteger>
.fetch();

4.3.7. Mutability (historic)

For historic reasons, the DSL APl mixes mutable and immutable behaviour with respect to the internal
representation of the QueryPart being constructed. While creating conditional expressions, column
expressions (such as functions) assumes immutable behaviour, creating SQL statements does not. In
other words, the following can be said:

// Conditional expressions (inmmutable)

L e
Condi tion a = BOOK. TI TLE. eq("1984");
Condi tion b = BOOK. TI TLE. eq(" Ani mal Farni');

/1 The follow ng can be said
a = a.or(b); // or() does not nodify a
a.or(b) !'=a.or(b); // or() always creates new objects

/]l Statenments (nutable)

R T

Sel ect FronBt ep<?> s1 = select();

Sel ect Joi nSt ep<?> s2 = s1. from BOXK);
Sel ect Joi nSt ep<?> s3 = sl. fronm AUTHOR) ;
/1 The follow ng can be said

sl == s2; // The internal object is always the sane
s2 == s3; // The internal object is always the sane

On the other hand, beware that you can always extract and modify bind values from any QueryPart.

4.4. The model API

The model APl is the secondary way to interact with queries or query parts in jOOQ. See the DSL AP
for the main way to interact with the jJOOQ query object model.

© 2009 - 2024 by Data Geekery™ GmbH. Page 95/1238

The jOOQ User Manual 4.4.1. Design

4.4.1. Design

This is experinmental functionality, and as such subject to change. Use at your own risk!

The model API (Query Object Model or org.jooq.impl.QOM) is an auxiliary APl implemented by each and
every org.joog.QueryPart allowing for users to get public access to jJOOQ's internal query object model
structure. For example:

I/ Create an expression using the DSL API:
Fiel d<String> field = substring(BOOXK. TI TLE, 2, 4);
Il Access the expression's internals using the nodel API
if (field instanceof QOM Substring substring) {
Field<String> string = substring.$string();
Fi el d<? extends Nunber> startingPosition = substring.$startingPosition();

Fi el d<? extends Nunber> | ength = substring. $l ength();
}

Every argument passed to the DSL API'has a $ prefixed accessor method on the model API, exposing the
wrapped argument. Using these accessor methods, users can traverse the expression tree manually or
via the model API traversal API. More recent Java language features like pattern matching can be very
helpful for such operations, especially as we're planning to seal the entire query object model API.

All of the model APl is immutable, but new expressions can still be created using equivalent $ prefixed
setter methods, which don't mutate the original expression but return a copy:

/'l Produces a substring(BOOK. TI TLE, 2, 4) columm expression
QOM Substring substring = (QOM Substring) substring(BOOK. TI TLE, 2, 4);

/'l Produces a substring(BOOK. TI TLE, 3, 5) columm expression
substring. $startingPosition(val (3)).$l ength(val (5));

These basic operations allow for powerful SQL transformations on expression trees created with the
DSL API but also with the SQL parser.

4.4.72. Traversal

This is experinmental functionality, and as such subject to change. Use at your own risk!

While the accessor methods from the model API allow for traversing the expression tree manually,
a more generic way to traverse the expression tree is using the org.joog.Traverser API, which
can traverse a org.joog.QueryPart in a similar fashion as a java.util.stream.Collector can iterate a
java.util.stream.Stream, collecting and aggregating data about the expression tree. A Traverser consists
of this API:

© 2009 - 2024 by Data Geekery™ GmbH. Page 96/ 1238

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/impl/QOM.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/QueryPart.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Traverser.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/QueryPart.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/stream/Collector.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/stream/Stream.html

The jOOQ User Manual 4.4.2. Traversal

public interface Traverser<A, R> {

/**

* A supplier for a tenporary data structure to accunulate {@ink QueryPart}
* objects into during traversal.

*/

Suppl i er<A> supplier();

/**

* An optional traversal abort condition to short circuit traversal e.g.
* when the searched object has been found.

*/

Pr edi cat e<A> abort();

/**

* An optional recursion condition to prevent entering a specific

* {@ink QueryPart}, e.g. when it is undesired to enter any subqueries.
*/

Predi cat e<QueryPart> recurse();

/**

* An optional recursion condition to prevent entering a specific

* {@ink QueryPart}'s children, e.g. when it is desired to traverse only
* into certain operators.

*/

Pr edi cat e<QueryPart > recurseChildren();

**
* A call back that is invoked before recursing into a subtree.
*/

Bi Functi on<A, QueryPart, A> before();

**

* A callback that is invoked after recursing into a subtree.
*/

Bi Function<A, QueryPart, A> after();

J**
* An optional transformation function to turn the tenporary data structure
* supplied by {@ink #supplier()} into the final data structure.

*/
Function<A, R> finisher();

Some elements are similar to that of a java.util.stream.Collector, others are specific to tree traversal.

A simple illustration shows what can be done:

/1 Any ordinary QueryPart:
Condi tion condition = BOOK. |D.eq(1);
int count = condition.$traverse(

/1l Supplier of the initial data structure: an int
() ->0,

/1l Print all traversed QueryParts and increment the counter
(r. @ ->{
Systemout.println("Part " +r +
returnr + 1;

+0);
}

Systemout. println("Count : " + count);

The above will print:

Part 0: "BOX'."ID' =1
Part 1: "BOOK'."|D"

Part 2: 1

Count : 3

Using the same traverser on a slightly more complex QueryPart

Condi tion condition = BOOXK. ID.eq(1).or(BOX ID. eq(2));

Il

Part 0: ("BOXK'."ID' =1 or "BOX"'."ID'" = 2)
Part 1: "BOX'."ID' =1

Part 2: "BOX'."ID

Part 3: 1

Part 4: "BOX"'."ID' = 2

Part 5: "BOX'."ID

Part 6: 2

Count : 7

© 2009 - 2024 by Data Geekery™ GmbH. Page 97/1238

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/stream/Collector.html

The jOOQ User Manual 4.4.3. Replacement

Re-using your JDK collectors

Any Collector can be turned into a Traverser using Traversers.collecting(Collector). For example, if you
want to count all QueryPart items in an expression, instead of the above hand-written traverser, just
use the JDK Collectors.counting():

// Contains 3 query parts
long countl = BOXK. ID.eq(1)

. $traverse(Traversers.col | ecting(Col |l ectors.counting());
// Contains 7 query parts

I ong count2 = BOXK. I D.eq(1).or(BOX ID. eq(2))
. $traverse(Traversers.col |l ecting(Coll ectors.counting());

Limitations

Just like model APl replacement, traversers cannot traverse into "opaque" org.joog.QueryPart instances,
including custom QueryParts or plain SQL templates. See also features requiring code generation for
more details.

4.4.3. Replacement

This is experinmental functionality, and as such subject to change. Use at your own risk!

A very powerful way to transform your SQL is to replace specific orgjoog.QueryPart elements in any
expression tree by something else using the QueryPart.replace() API. This API treats the expression tree
as a persistent data structure, i.e. the resulting tree may consist of parts of the existing tree, but the
existing tree is not modified.

Let's assume you wish to implement an optimisation engine that removes redundant SQL clauses. For
example, an expression NOT(NOT(p)) can be replaced by p in standard SQL (it may not be the exact
same thing in some "clever" dialects without standard BOOLEAN type support):

/'l Contains redundant operators
Condition ¢ = not(not(BOXK.1D.eq(1)));
System out. println(c);
Systemout. println(c. $replace(q ->
q instanceof QOM Not nl && nl.$argl() instanceof QOM Not n2
? n2. $argl()
©q

The above prints:

not (not ("BOOK'."ID' = 1))
PEEEE . P o A

The replacement algorithm will attempt to run the replacement function recursively on your tree until
it no longer affects the tree. This means two things:

© 2009 - 2024 by Data Geekery™ GmbH. Page 98 /1238

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Traversers.html#collecting(java.util.stream.Collector)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/stream/Collectors.html#counting()
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/QueryPart.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/QueryPart.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/QueryPart.html#replace(org.jooq.Function1)
https://en.wikipedia.org/wiki/Persistent_data_structure

The jOOQ User Manual 4.4.3. Replacement

- You canimplement all of your replacement logic in a single function, for various rules. The order
of application of the rules is the one you define in your function.

- The algorithm stops only when no more rules apply. If two rules turn A> B and B > A, then the
algorithm may never stop.

Here's a more complex example that logs the replacements with printin() calls:

/1 Contains redundant operators
Condi tion ¢ = not(not(not(BOXK. ID.ne(1))));
QueryPart result = c.$replace(q -> {
if (q instanceof QOM Not nl && nl.$argl() instanceof QOM Not n2) {
System out . println("Replacing NOT(NOT(p)) by NOT(p): " + q);
return n2. $argl();

else if (g instanceof QOM Not nl && nl.$argl() instanceof QOM Ne<?> n2) {
Systemout. println("Replacing NOT(x !=y) by x =y: " + q);
return n2. $argl().eq((Field) n2. $arg2());

}

return g;

1)

Systemout.println("Result: " + result);

The output is:

Replacing NOT(x !=vy) by x = y: not ("BOX"'."ID' <> 1)
Repl aci ng NOT(NOT(p)) by NOT(p): not (not ("BOOXK'."ID' = 1))
Result: "BOXK'."ID' =1

As you can see:

- The replacement function is invoked several times.

- The second invocation can work on the result of the first invocation, where the NOT (x =)
predicate has already been improved.

- The replacement works recursively, depth first, and bottom up.

- It stops when no more replacements take place.

This obviously also works when you use jOOQ's parser, and is extremely useful when used via the
parsing connection, e.g. to optimise any type of JDBC or R2DBC based application!

// Contains redundant operators
Condition c = create. parser().parseCondition("not not not book.id != 1");
QueryPart result = c.$replace(q -> {
if (q instanceof QOM Not nl && nl.$argl() instanceof QOM Not n2) {
System out . println("Replacing NOT(NOT(p)) by NOT(p): " + q);
return n2. $argl();

else if (q instanceof QOM Not nl && nl.$argl() instanceof QOM Ne<?> n2) {
Systemout. println("Replacing NOT(x !=y) by x =y: " + q);
return n2. $argl().eq((Field) n2. $arg2());

}

return q;

1)

Systemout.println("Result: " + result);

The result is exactly the same:

Repl acing NOT(x !=1y) by x = y: not (book.id <> 1)
Repl aci ng NOT(NOT(p)) by NOT(p): not (not (book.id = 1))
Result: book.id =1

(1) Sarting from jOOQ 3.17, this logging can also be achieved using a listening replacer.

© 2009 - 2024 by Data Geekery™ GmbH. Page 99/1238

The jOOQ User Manual 4.4.3.1. Pattern transformation Replacer

Built-in replacers

The following sections show a few examples of built-in replacers.

Limitations

Just like model API traversal, replacers cannot traverse into "opaque" org.joog.QueryPart instances,
including custom QueryParts or plain SQL templates. See also features requiring code generation for
more details.

4.4.3.1. Pattern transformation Replacer

This is experinmental functionality, and as such subject to change. Use at your own risk!

jOOQ offers a lot of out-of-the-box pattern based replacements like the above examples from the
previous section. Please look at the sections about pattern based transformation for more details about
individual patterns.

In order to apply pattern transformation explicitly to a org.joog.QueryPart, just call:

Condi tion input = BOOK. I D.eq(1).or(BOOK. ID.eq(2));
Condi tion output = (Condition) input.$replace(Replacers.transfornPatterns(configuration));

By default, this will apply the OR to IN transformation, and produce the following output:

BOK. ID IN (1, 2) BOOK. ID.in(1, 2)

4.4.3.2. Table mapping Replacer

This is experinmental functionality, and as such subject to change. Use at your own risk!

jOOQ has a powerful runtime catalog, schema, and table mapping feature, which can be used to
implement multi tenancy use-cases, etc. This mapping functionality is meant as a global configuration
for the entirety of your application. Very often, however, you need to map just a single table, or a small
set of tables for a specific purpose, for example:

- I nput
SELECT t.id, t.value FROMt

- CQut put
SELECT u.id, u.value FROMu

In order to achieve this, just apply the following replacement:

© 2009 - 2024 by Data Geekery™ GmbH. Page 100/ 1238

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/QueryPart.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/QueryPart.html

The jOOQ User Manual 4.4.3.3. Listening Replacer

Sel ect<?> input = select(T.ID, T.VALUE).from(T);
Sel ect <?> output = (Sel ect<?>) input.$replace(Repl acers. mappi ngTabl e(T, U));

Or, if the decision what to map is more elaborate, use a lambda:

Sel ect <?> input = select(T.ID, T.VALUE).from(T);
Sel ect <?> out put = (Sel ect<?>) input.$replace(Replacers. mappi ngTable(t -> T.equals(t) ? U: t));

4.4 3.3. Listening Replacer

This is experinental functionality, and as such subject to change. Use at your own risk!

This replacer doesn't replace anything on its own, but helps debug things from other replacers. For
example, a Replacer that removes redundant NOT(NOT(x)) expressions:

// The input condition
Condition c = ctx.parser().parseCondition("not not not book.id != 1");

/1 The replacer doing the replacenent
Repl acer r = Replacer.of (q -> {
if (g instanceof QOM Not nl &% nl.$argl() instanceof QOM Not n2)
return n2. $argi();
else if (g instanceof QOM Not nl && nl.$argl() instanceof QOM Ne<?> n2)
return n2. $argl().eq((Field) n2. $arg2());
clse
return q;
IR

Il A proxy to the above replacer, doing some |ogging
r = Replacers.listening(r, (pl, p2) -> Systemout.println("Replacing: " + pl + " =>" + p2));
I/ The application of the replacenent

QueryPart result = c.$replace(r);
Systemout.println("Result: " + result);

The above now prints each replacement that the depth first replacement algorithm applies to your
expression tree, bottom-up:

Repl aci ng: not (book.id <> 1) => book.id = 1
Repl acing: not (not (book.id = 1)) => book.id = 1
Resul t: book.id = 1

4.4.3.4. Decomposing Replacer

This is experinental functionality, and as such subject to change. Use at your own risk!

This replacer decomposes compound queries into their component queries. Some DDL statements
are compound statements, such as e.g.

ALTER TABLE t
ADD col 1 | NT,
ADD col 2 | NT;

© 2009 - 2024 by Data Geekery™ GmbH. Page 101 /1238

The jOOQ User Manual 4.4.4. The historic model API

The above single compound statement can be decomposed into its component statements:

ALTER TABLE t ADD col 1 | NT;
ALTER TABLE t ADD col 2 | NT;

Some use-cases, including DDL interpretation may be better served by component statements rather
than the compound version.

As this org.joog.Replacer has to adhere to the contract imposed on replacers, it can only operate
on org.joog.Queries and other org.joog.Query wrapping elements, such as org.jooqg.Block and other
procedural scope statements.

4.4.4. The historic model API

Historically, JOOQ started out as an object-oriented SQL builder library like any other. This meant that
all queries and their syntactic components were modeled as so-called QueryParts, which delegate SQL
rendering and variable binding to child components. This part of the APl will be referred to as the
model API (or non-DSL API), which is still maintained and used internally by jJOOQ for incremental query
building. An example of incremental query building is given here:

DSLCont ext create = DSL.using(connection, dialect);
Sel ect Query<Record> query = create. sel ect Query();
query. addFr om(AUTHOR) ;
/1 Join books only under certain circunmstances
if (join) {

query. addJoi n(BOOK, BOOK. AUTHOR | D. eq(AUTHOR. I D)) ;
}

Resul t<?> result = query.fetch();

This query is equivalent to the one shown before using the DSL syntax. In fact, internally, the DSL AP
constructs precisely this SelectQuery object. Note, that you can always access the SelectQuery object
to switch between DSL and model APIs:

DSLCont ext create = DSL. using(connection, dialect);
Sel ect Fi nal St ep<?> sel ect = create.select().fronm AUTHOR);

/1 Add the JO N clause on the internal QueryQbject representation

Sel ect Query<?> query = sel ect.get Query();
query. addJoi n(BOOK, BOOK. AUTHOR | D. eq(AUTHOR. I D)) ;

This APl is completely mutable, and for historic reasons, early DSL API elements have inherited this
mutability.

4.5. SQL Statements (DML)

jOOQ currently supports 5 types of SQL statements. All of these statements are constructed from a
DSLContext instance with an optional JDBC Connection or DataSource. If supplied with a Connection or
DataSource, they can be executed. Depending on the query type, executed queries can return results.

© 2009 - 2024 by Data Geekery™ GmbH. Page 102 /1238

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Replacer.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Queries.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Query.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Block.html

The jOOQ User Manual 4.5.1. The WITH clause

4.517. The WITH clause

The SQL:1999 standard specifies the WITH clause to be an optional clause for the SELECT statement, in
order to specify common table expressions (also: CTE). Many other databases (such as PostgreSQL, SQL
Server) also allow for using common table expressions also in other DML clauses, such as the INSERT
statement, UPDATE statement, DELETE statement, or MERGE statement.

When using common table expressions with jOOQ, there are essentially two approaches:

- Declaring and assigning common table expressions explicitly to names
- Inlining common table expressions into a SELECT statement

Explicit common table expressions

The following example makes use of names to construct common table expressions, which can then
be supplied to a WITH clause or a FROM clause of a SELECT statement:

- Pseudo-SQL for a common tabl e expression specification /1 Code for creating a CormonTabl eExpression instance
"t1® (“f1°, "f2") AS (SELECT 1, 'a') name("t1"). fields("f1", "f2"). as(select(val (1), val("a")));

The above expression can be assigned to a variable in Java and then be used to create a full SELECT
statement:

CommonTabl eExpr essi on<Record2<Integer, String>> tl =
nane("t1").fields("f1", "f2").as(select(val (1), val("a")));

CommonTabl eExpr essi on<Recor d2<Integer, String>> t2 =
name("t2").fields("f3", "f4").as(select(val(2), val("b")));

Resul t<?> result2 =
create.with(t1l)

WTH "t1" (“f1", "f2") AS (SELECT 1, 'a'), Wi th(t2)
“t2" ("f3", "f4") AS (SELECT 2, 'b') _sel ect (

SELECT t1.field("f1").add(t2.fiel d("f3")).as("add"),
DR, DAY @ OGN, Ve AS Vel t1.field("f2").concat(t2.field("f4")).as("concat"))
“t1t.ef2" || "t2"."f4" AS "concat" from(tl, t2)

FROM "t 1", "t2 fetch();

Note that the org.joog.CommonTableExpression type extends the commonly used org.joog.Table type,
and can thus be used wherever a table can be used.

Inlined common table expressions

If you're just operating on plain SOL, you may not need to keep intermediate references to such
common table expressions. An example of such usage would be this:

create.with("a").as(sel ect (

WTH "a" AS (SELECT val (1).as("x"),
1 AS "x", val ("a").as("y")
a AS 'y)
) .sel ect ()
SELECT .fron(tabl e(name("a")))

FROM " a" .fetch();

© 2009 - 2024 by Data Geekery™ GmbH. Page 103 /1238

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/CommonTableExpression.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Table.html

The jOOQ User Manual 4.5.2. The WITH RECURSIVE clause

4.5.2. The WITH RECURSIVE clause

The various SQL dialects do not agree on the use of RECURSIVE when writing recursive common
table expressions. When using jJOOQ, always use the DSLContext.withRecursive() or DSL.withRecursive()

methods, and jJOOQ will render the RECURSIVE keyword, if needed.

Assuming a table like this:

CREATE TABLE directory (

id I NT NOT NULL,
parent _id I NT,

- In PostgreSQ., use TEXT instead,
| abel VARCHAR(50) ,

CONSTRAI NT pk_directory PRI MARY KEY (id),

)i

I NSERT I NTO directory VALUES (1, null, 'C"');

I NSERT | NTO directory VALUES (2 1, "eclipse');

I NSERT | NTO directory VALUES (3 2, 'configuration');

I NSERT | NTO directory VALUES (4 2, 'dropins');

I NSERT | NTO directory VALUES (5, 2, 'features');

I NSERT | NTO directory VALUES (7 2, 'plugins');

I NSERT | NTO directory VALUES (8 2, 'readne');

I NSERT | NTO directory VALUES (9 8, 'readne_eclipse.htm');
I NSERT | NTO directory VALUES (10, 2, 'src');

I NSERT | NTO directory VALUES (11, 2, 'eclipse.exe');

to work around https://github.confjOO0Q jOOQ i ssues/ 12067

CONSTRAI NT fk_directory FOREI GN KEY (parent_id) REFERENCES directory (id)

Using WITH RECURSIVE, you can now query the structure of this directory as follows:

W TH RECURSI VE t (
id,
nane,
pat h
) AS (
SELECT
DI RECTCRY. | D,
DI RECTORY. LABEL,
DI RECTORY. LABEL
FROM
DI RECTORY
WHERE
DI RECTORY. PARENT_I D IS NULL
UNI ON ALL
SELECT
DI RECTCRY. | D,
DI RECTORY. LABEL,
t.path
[\
|| DI RECTORY. LABEL
FROM
t
JON
DI RECTORY
ON t.id = DI RECTORY. PARENT_| D
)
SELECT *
FROM
{5

The output would look like this:

+ +
| id | name | path
Femem e meee e me e e e
|1 | C | C
| 2 | eclipse | C\eclipse
| 3 | configuration | C\eclipse\configuration
| 4 | dropins | C:\eclipse\dropins
| 11 | eclipse.exe | C:\eclipseleclipse.exe
| 5 | features | C\eclipse\features
| 7 | plugins | C:\eclipse\plugins
| 8 | readne | C:\eclipse\readne
| 9 | readne_eclipse.htm | C\eclipse\readne\readne_eclipse. htni
| 10 | src | C\eclipse\src
Femem e meee e me e e e

© 2009 - 2024 by Data Geekery™ GmbH.

a

CommonTabl eExpr essi on<?> cte = name("t").fiel ds(
i
"name",
" pat h"
) - as(
sel ect (
DI RECTCRY. | D,
DI RECTORY. LABEL,
DI RECTORY. LABEL)
. f ron(DI RECTORY)
. wher e(DI RECTORY. PARENT_I D.i sNul I ())
. uni onAl | (
sel ect (
DI RECTCRY. | D,
DI RECTORY. LABEL,
field(name("t",
.concat ("\\")
. concat (DI RECTORY. LABEL))
.fron(tabl e(name("t")))
.j oi n(DI RECTORY)
.on(field(nanme("t", “id"), |NTEGER)
. eq(DI RECTORY. PARENT_I D)))
DE

System out. print| n(
create. withRecursive(cte)
.sel ect Fron{cte)
.fetch()

“path"), VARCHAR)

Page 104 /1238

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/DSLContext.html#withRecursive(org.jooq.CommonTableExpression...)
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/impl/DSL.html#withRecursive(org.jooq.CommonTableExpression...)

The jOOQ User Manual 4.5.3. The SELECT statement

Caveats

The SQL language expresses the recursion syntactically, meaning the table t in the above example is
being referenced from within the declaration of t. This isn't possible in a language like Java. Hence, we
must use the identifier API to construct identifier references for tables and columns. This technique
usually appears a bit more verbose than ordinary jJOOQ API usage that is based on generated code
for your schema.

4.5.3. The SELECT statement

When you don't just perform CRUD (i.e. SELECT * FROM your_table WHERE ID = ?), you're usually
generating new record types using custom projections. With jOOQ, this is as intuitive, as if using SQL
directly. A more or less complete example of the "standard" SQL syntax, plus some extensions, is
provided by a query like this:

SELECT from a complex table expression

- get all authors' first and |ast nanes, and the nunber /1 And with jOOQ ..
- of books they've witten in Gernan, if they have witten

- nore than five books in German in the |ast three years

- (from 2011), and sort those authors by |ast nanes

- limting results to the second and third row, | ocking DSLCont ext create = DSL.using(connection, dialect);
- the rows for a subsequent update... whew
create. sel ect (AUTHOR FI RST_NAME, AUTHOR. LAST_NAME, count())
SELECT AUTHOR. FI RST_NAME, AUTHOR LAST_NAME, COUNT(*) . f ron{ AUTHOR)
FROM AUTHOR . j 0i n(BOOK) . on(BOOK. AUTHOR_| D. eq(AUTHOR. | D))
JO N BOOK ON AUTHOR. | D = BOOK. AUTHOR_I D . wher e(BOOK. LANGUAGE. eq(" DE"))
WHERE BOOK. LANGUAGE = ' DE' . and(BOOK. PUBLI SHED | N. gt (2008))
AND BOOK. PUBLI SHED | N > 2008 . groupBy(AUTHOR. FI RST_NAME, AUTHOR. LAST_NANE)
GROUP BY AUTHOR. FI RST_NAME, AUTHOR. LAST_NAME . havi ng(count (). gt (5))
HAVI NG COUNT(*) > 5 . order By(AUTHOR. LAST_NAME. asc(). nul | sFirst())
ORDER BY AUTHOR. LAST_NAME ASC NULLS FI RST dimt(2)
LIMT 2 .of fset(1)
OFFSET 1 . forUpdat e()
FOR UPDATE .fetch();

Details about the various clauses of this query will be provided in subsequent sections.

SELECT from single tables

A very similar, but limited APl is available, if you want to select from single tables in order to retrieve
TableRecords or even UpdatableRecords. The decision, which type of select to create is already made
at the very first step, when you create the SELECT statement with the DSL or DSLContext types:

public <R extends Record> Sel ect Wier eSt ep<R> sel ect Fr on(Tabl e<R> t abl e) ;

As you can see, there is no way to further restrict/project the selected fields. This just selects all known
TableFields in the supplied Table, and it also binds <R extends Record> to your Table's associated
Record. An example of such a Query would then be:

BookRecord book = create. sel ect Fr om(BOOK)
. wher e(BOOK. LANGUAGE. eq(" DE"))
. or der By(BOOXK. Tl TLE)
.fetchAny();

The "reduced" SELECT APl is limited in the way that it skips DSL access to any of these clauses:

© 2009 - 2024 by Data Geekery™ GmbH. Page 105/ 1238

The jOOQ User Manual 4.5.3.1. SELECT clause

- SELECT clause
- OIN operator

In most parts of this manual, it is assumed that you do not use the "reduced" SELECT API. For more
information about the simple SELECT API, see the manual's section about fetching strongly or weakly

typed records.

4.5.3.7. SELECT clause

The SELECT clause lets you project your own record types, referencing table fields, functions, arithmetic
expressions, etc. The DSL type provides several methods for expressing a SELECT clause:

- The SELECT cl ause /Il Provide a varargs Fields |ist to the SELECT cl ause:
SELECT BOCK. | D, BOOK. TI TLE Sel ect <?> s1 = create. sel ect (BOK. | D, BOOK. Tl TLE);
SELECT BOCK. | D, TRI M BOXK. Tl TLE) Sel ect<?> s2 = create.sel ect (BOK. I D, trim BOX. TITLE));

The following sections illustrate various features and subclauses of the SELECT clause.

4.5.3.1.71. Projection type safety

Since jOOQ 3.0, records and row value expressions up to degree 22 are now generically typesafe. This is
reflected by an overloaded SELECT (and SELECT DISTINCT) APl in both DSL and DSLContext. An extract
from the DSL type:

/'l Non-typesafe sel ect nethods:
public static Sel ectSel ect St ep<Record> sel ect (Col | ecti on<? extends Sel ectFi el d<?>> fields);
public static Sel ectSel ect St ep<Record> sel ect (Sel ectFi el d<?>... fields);

/'l Typesafe sel ect nethods:
public static <T1> Sel ect Sel ect St ep<Recor d1<T1>> sel ect (Sel ect Fi el d<T1> fieldl);

public static <T1, T2> Sel ect Sel ect St ep<Recor d2<T1, T2>> sel ect (Sel ect Fi el d<T1> fiel d1l, SelectField<T2> field2);
I[...]

The type that is being projected is the org.joog.SelectField, see also the next section about SelectField.
Since the generic R type is bound to some Record[N], the associated T type information can be used in
various other contexts, e.g. the IN predicate. Such a SELECT statement can be assigned typesafely:

Sel ect <Record2<lnteger, String>> sl = create.sel ect(BOOK. | D, BOX TITLE);
Sel ect <Record2<lnteger, String>> s2 = create.select(BOXK. ID, trin{BOXK TITLE));

/1 Alternatively, just use var to infer the type:
var s3 = create.sel ect(BOOK. ID, trinm(BOOK. TITLE));

For more information about typesafe record types with degree up to 22, see the manual's section about
Record1 to Record22.

4.5.3.1.2. SelectField

The orgjoog.SelectField type is used by any projection of the SELECT clause and the INSERT ..
RETURNING clause. It has numerous subtypes, which are allowed as projections in jJOOQ:

© 2009 - 2024 by Data Geekery™ GmbH. Page 106 /1238

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/SelectField.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/SelectField.html

The jOOQ User Manual 4.5.3.1.3. Tables as SelectField

- orgjooq.Field: Every column expression can automatically be projected in SELECT as you would
expect.

- org.joog.Row: nested records can be projected in SELECT

- orgjoog.Table: tables can be projected as type safe nested records in SELECT

- MULTISET and other means of projecting nested collections can be projected as well

4.5.3.1.3. Tables as SelectField

An org.joog.Table expression extends the org.joog.SelectField type, and as such, can be used in the
SELECT clause directly, as well as everywhere else a SelectField is accepted, e.g. in nested records.
This is specifically useful for (generated) table references. The following shows how to project a nested
org.joog.TableRecord:

Resul t <Recor d2<Aut hor Record, BookRecord>> result =
create. sel ect (AUTHOR, BOCK)
. f r om(AUTHOR)
.j 0i n(BOOK) . on(AUTHOR. | D. eq(BOOK. AUTHOR | D))
.fetch();

This plays very well together with implicit joins:

Resul t <Recor d2<Aut hor Record, BookRecord>> result =
create. sel ect (BOOK. aut hor (), BOOK)

. f rom(BOOK)

.fetch();

Behind the scenes, the implementation may either be native in dialects that support this kind of
projection (e.g. PostgreSQL), or emulated using the usual nested records emulations.

4.53.1.4 SELECT *

jOOQ supports the asterisk operator in projections both as a qualified asterisk (through Table.asterisk())
and as an unqualified asterisk (through DSL.asterisk()). It is also possible to omit the projection entirely,
in case of which an asterisk may appear in generated SQL, if not all column names are known to jOOQ.

Whenever jOOQ generates an asterisk (explicitly, or because jOOQ doesn't know the exact projection),
the column order, and the column set are defined by the database server, not jOOQ. If you're using
generated code, this may lead to problems as there might be a different column order than expected,
as well as too many or too few columns might be projected.

/1l Explicitly selects all colums available fromBOXK - No asterisk
create.select().fron(BOX).fetch();

/1l Explicitly selects all colums available from BOXK and AUTHOR - No asterisk
create.sel ect().fron(BOOXK, AUTHOR).fetch();
create. sel ect().from BOOK). crossJoi n(AUTHOR) . fetch();

I/ Renders a SELECT * statenment, as colums are unknown to jOOQ - Inplicit unqualified asterisk
create.select().fron(tabl e(name("BOOK"))).fetch();

/'l Renders a SELECT * statement - Explicit unqualified asterisk
create. sel ect(asterisk()).from BOX).fetch();

/1 Renders a SELECT BOOK.* statement - Explicit qualified asterisk

create. sel ect (BOOK. asterisk()).fromBOX).fetch();
create. sel ect (BOOK. asterisk(), AUTHOR asterisk()).fron(BOXK, AUTHOR).fetch();

© 2009 - 2024 by Data Geekery™ GmbH. Page 107 /1238

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Field.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Row.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Table.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Table.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/SelectField.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/TableRecord.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Table.html#asterisk()
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/impl/DSL.html#asterisk()

The jOOQ User Manual 453.1.5. SELECT * EXCEPT (...)

With all of the above syntaxes, the row type (as discussed below) is unknown to jOOQ and to the Java
compiler.

It is worth mentioning that in many cases, using an asterisk is a sign of an inefficient query because if
not all columns are needed, too much data is transferred between client and server, plus some joins
that could be eliminated otherwise, cannot.

4.5.3.1.5. SELECT * EXCEPT (...)

A useful extension to the previously mentioned standard SQL SELECT * syntax is the BigQuery inspired
* EXCEPT (columns) syntax, which takes all of a projection's columns, except some columns. Just like
the asterisk itself, this is mainly useful for ad-hoc querying, but it can also be useful for an occasional
jOOQ query.

/1l Renders a SELECT * statement - Explicit unqualified asterisk
create. sel ect (asterisk().except(BOX. ID)).from BOX).fetch();

/1 Renders a SELECT BOOK.* statement - Explicit qualified asterisk
create. sel ect (BOOK. ast eri sk().except (BOX. | D))

. f r om(BOOK)

.fetch();

create. sel ect (BOOK. asteri sk().except(BOOK. I D), AUTHOR asterisk().except(AUTHOR | D))
. from(BOOK, AUTHOR)
.fetch();

If a dialect doesn't support this syntax natively, JOOQ will just expand the syntax for you, explicitly, given
the knowledge about meta data in generated code.

Dialect support
This example using jOOQ:
sel ect (asterisk().except (LANGUAGE. | D)) . f r om(LANGUAGE)

Translates to the following dialect specific expressions:

ASE, Access, Aurora MySQL, Aurora Postgres, ClickHouse, CockroachDB, DB2, Derby,
DuckDB, Exasol, Firebird, HSQLDB, Hana, Informix, MariaDB, MemSQL, MySQL, Oracle,
Postgres, Redshift, SQLDataWarehouse, SQLServer, SQLite, Sybase, Teradata, Trino,
Vertica, YugabyteDB

SELECT LANGUAGE. CD, LANGUAGE. DESCRI PTI ON
FROM LANGUAGE

BigQuery

SELECT * EXCEPT (ID)
FROM LANGUAGE

© 2009 - 2024 by Data Geekery™ GmbH. Page 108 /1238

The jOOQ User Manual 4.5.3.1.6. SELECT DISTINCT

H2

SELECT * EXCEPT (LANGUAGE. | D)
FROVI LANGUAGE

Snowflake

SELECT * EXCLUDE (I D)
FROM LANGUAGE

4.5.3.1.6. SELECT DISTINCT

The DISTINCT keyword can be included in the method name, when constructing a SELECT clause, to
remove duplicate tuples from the projection.

SELECT DI STI NCT BOOK. TI TLE FROM BOOK create. sel ect Di stinct(BOOK. TI TLE). f rom(BOXK) . f et ch();

Dialect support
This example using jO0Q:

sel ect Di stinct (BOOK. TI TLE) . f r om(BOOK)

Translates to the following dialect specific expressions:

All dialects

SELECT DI STI NCT BOCK. TI TLE
FROVI BOOK

4.5.3.1.7. SELECT DISTINCT ON

A useful, though perhaps a bit esoteric PostgreSQL specific extension to SELECT DISTINCT is the ON
clause. Using this clause, PostgreSQL users can specify a distinctness criteria, but then produce other
columns per distinct group from one of the group's tuples. This is normally not possible in SQL, but
with ON, the first tuple in the group according to the ORDER BY clause can be accessed nonetheless.
An example:

© 2009 - 2024 by Data Geekery™ GmbH. Page 109 /1238

The jOOQ User Manual 4.53.1.7. SELECT DISTINCT ON

SELECT DI STINCT ON (BOCK. LANGUAGE_I D) Sel ect<?> sel ect1 = create. sel ect (BOOK. LANGUAGE_| D, BOOK. TI TLE)
BOOK. LANGUAGE_| D, BOOK. TI TLE . di sti nct On(BOOK. LANGUAGE_| D)

FROM BOCK . f r on{ BOCK)

ORDER BY BOOK. LANGUAGE_| D, BOOK. TI TLE . or der By(BOOK. LANGUAGE_I D, BOCK. TI TLE). f et ch() ;

For syntactic reasons, the order of keywords had to be inversed as the PostgreSQL syntax cannot
be easily reproduced in jOOQ's internal DSL. Quite likely, you might find jOOQ's syntax a bit more
intuitive, though, as it more clearly separates the SELECT parts and the DISTINCT ON parts. Arguably,
the DISTINCT ON clause should be positioned after ORDER BY, where it logically belongs.

Standard SQL equivalence

The PostgreSQL extension isn't really necessary as there is a standard SQL equivalence using
ROW_NUMBER filtering. In the below example, we're using an extension to the standard, the QUALIFY
clause, to illustrate:

SELECT BOOK. LANGUAGE_| D, BOOK. TI TLE Sel ect <?> sel ect1 = create. sel ect (BOOK. LANGUAGE_| D, BOOK. Tl TLE)
FROM BOOK . f rom(BOOK)
QUALI FY ROW NUMBER() OVER (PARTI TI ON BY BOOK. LANGUAGE | D ORDER BY
BOOK. TITLE) = 1 .qual i fy(rowNunber (). over(partitionBy(BOOK. LANGUAGE | D). order By(BOOK. TI TLE)) . eq(
ORDER BY BOOK. LANGUAGE_| D, BOCK. TI TLE . or der By(BOOK. LANGUAGE_| D, BOOK. TI TLE) . fetch();

Dialect support
This example using jO0Q:

sel ect (BOOK. LANGUAGE_| D, BOOK. TI TLE) . di sti nct On(BOOK. LANGUAGE_I D) . f r on{ BOOK) . or der By (BOOK. LANGUAGE_| D, BOCK. Tl TLE)

Translates to the following dialect specific expressions:

Aurora Postgres, CockroachDB, H2, Postgres, YugabyteDB

SELECT DI STI NCT ON (BOOK. LANGUAGE | D) BOOK. LANGUAGE_|I D, BOOK. TI TLE
FROVI BOOK
ORDER BY BOOK. LANGUAGE_|I D, BOCK. TI TLE

DB2, Exasol, Firebird, Hana, Informix, MariaDB, MemSQL, MySQL, Oracle, Redshift,
SQLDataWarehouse, SQLServer, SQLite, Snowflake, Sybase, Teradata, Trino, Vertica

SELECT t.LANGUAGE ID, t.TITLE
FROM (
SELECT
BOOK. LANGUAGE_I D,
BOOK. TI TLE,
row_nunber () OVER (
PARTI TI ON BY BOOK. LANGUAGE | D
ORDER BY BOOK. LANGUAGE_| D, BOCOK. TI TLE
) rn
FROM BOOK
) t
WHERE rn = 1
ORDER BY LANGUAGE_I D, TITLE

© 2009 - 2024 by Data Geekery™ GmbH. Page 110/ 1238

https://blog.jooq.org/a-beginners-guide-to-the-true-order-of-sql-operations/

The jOOQ User Manual 4.5.3.1.8. Convenience methods

ASE, Access, Aurora MySQL, BigQuery, ClickHouse, Derby, DuckDB, HSQLDB

/* UNSUPPORTED */

4.5.3.1.8. Convenience methods

Some commonly used projections can be easily created using convenience methods:

-- Sinple SELECTs /'l Sel ect commonly used val ues

SELECT COUNT(*) Resul t<?> resultl = create.sel ect Count (). fetch();
SELECT 0 -- Not a bind variable Resul t<?> result2 = create.sel ectZero().fetch();
SELECT 1 -- Not a bind variable Resul t<?> result3 = create.sel ectOne().fetch();

Which are short forms for creating Column expressions from the org.joog.impl.DSL API

- Sinple SELECTs /'l Sel ect comonly used val ues
SELECT COUNT(*) Resul t<?> result1l = create. sel ect(count()).fetch();
SELECT 0 -- Not a bind variable Resul t<?> result2 = create.select(inline(0)).fetch();

SELECT ? -- A bind variable Resul t<?> result3 = create.select(val (1)).fetch();

4.5.3.2. FROM clause

The SQL FROM clause allows for specifying any number of table expressions to select data from. The
following are examples of how to form normal FROM clauses:

SELECT 1 FROM BOOK create. sel ectOne().fron(BOX).fetch();
SELECT 1 FROM BOOK, AUTHOR create.sel ect One().fron(BOOK, AUTHOR).fetch();
SELECT 1 FROM BOOK "b", AUTHOR "a" create.sel ectOne().fron(BOXK. as("b"), AUTHOR as("a")).fetch();

Read more about aliasing in the manual's section about aliased tables.

More advanced table expressions

Apart from simple tables, you can pass any arbitrary table expression to the jOOQ FROM clause. This
may include unnested cursors in Oracle:

SELECT * create. sel ect ()
FROM TABLE(.fron(tabl e(
DBMS_XPLAN. DI SPLAY_CURSOR(nul |, null, " ALLSTATS') DbnsXpl an. di spl ayCursor (null, null, "ALLSTATS")

):).fetch();

Note, in order to access the DbmsXplan package, you can use the code generator to generate Oracle's
SYS schema.

© 2009 - 2024 by Data Geekery™ GmbH. Page 111/1238

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/impl/DSL.html

The jOOQ User Manual 4.5.3.3. JOIN operator

Selecting FROM DUAL with jJO0Q

In many SQL dialects, FROM is a mandatory clause, in some it isn't. JOOQ allows you to omit the FROM
clause, returning just one record. An example:

SELECT 1 FROM DUAL DSL. usi ng(SQLDi al ect. ORACLE) . sel ect One().fetch();
SELECT 1 DSL. usi ng(SQLDi al ect . POSTGRES) . sel ect One().fetch();

Read more about dual or dummy tables in the manual's section about the DUAL table. The following
are examples of how to form normal FROM clauses:

4.5.3.3. JOIN operator

jOOQ supports many different types of standard and non-standard SQL JOIN operations. All of these
JOIN methods can be called on org.joog.Table types the (more info in joined tables section), or directly
after the FROM clause for convenience. The following example joins AUTHOR and BOOK

DSLCont ext create = DSL.using(connection, dialect);

// Call "join" directly on the AUTHOR tabl e
Resul t<?> result = create. sel ect()
. from(AUTHOR. j oi n(BOOK)
. on(BOOK. AUTHOR | D. eq(AUTHOR. | D)))
.fetch();

// Call "join" on the type returned by "front
Resul t<?> result = create. sel ect()

. f r om(AUTHOR)

. j oi n(BOOK)

. on(BOOK. AUTHOR | D. eq(AUTHOR. | D))
.fetch();

The two syntaxes will produce the same SQL statement. However, calling "join" on org.jooq.Table objects
allows for more powerful, nested JOIN expressions (if you can handle the parentheses):

SELECT * /'l Nest joins and provide JON conditions only at the end
FROM AUTHOR create. sel ect ()
LEFT OUTER JOI N (. f r on{ AUTHOR
BOOK JO N BOOK_TO_BOOK_STORE .l eft Qut er Joi n(BOOK
ON BOOK_TO_BOOK_STORE. BOOK_I D = BOOK. | D .j oi n(BOOK_TO_BOOK_STORE)
) . on(BOOK_TO_BOOK_STORE. BOOK_| D. eq(BOXK. 1 D)))
ON BOOK. AUTHOR | D = AUTHOR. | D . on(BOOK. AUTHOR | D. eq(AUTHOR. 1 D)))
.fetch();

- See the section about conditional expressions to learn more about the many ways to create
org.joog.Condition objects in jOOQ.

- See the section about table expressions to learn about the various ways of referencing
org.joog.Table objects in jOOQ

For more information about the different types of join, please refer to the joined tables section.

4.5.3.4. Implicit path JOIN

In SQL, a lot of explicit JOIN clauses are written simply to retrieve a parent table's column from a given
child table. For example, we'll write:

© 2009 - 2024 by Data Geekery™ GmbH. Page 112 /1238

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Table.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Table.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Condition.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Table.html

The jOOQ User Manual 4.5.3.4. Implicit path JOIN

- Get all books, their authors, and their respective |anguage
SELECT
a.first_nane,
a. |l ast _nane,
b.title,
| .cd AS | anguage
FROM book b
JO N author a ON b.author_id = a.id
JO N | anguage | ON b.language_id = |.id;

- Count the nunber of books by author and | anguage
SELECT
a.first_nane,
a. |l ast _nane,
| .cd AS | anguage,

COUNT(*)
FROM book
JO N author a ON b.author_id = a.id
JO N | anguage | ON b.language_id = |.id
GROUP BY a.id, a.first_nanme, a.last_nane, |.cd
ORDER BY a.first_nane, a.last_nane, |.cd

There is quite a bit of syntactic ceremony (or we could even call it "noise") to get a relatively simple job
done. A much simpler notation would be using implicit joins:

- Get all books, their authors, and their respective |anguage
SELECT
b. aut hor. first_nane,
b. aut hor. | ast _nane,
b.title,
b. | anguage. cd AS | anguage
FROM book b;

- Count the nunber of books by author and | anguage
SELECT
b. aut hor. first_nane,
b. aut hor. | ast _nane,
b. | anguage. cd AS | anguage,
COUNT(*)
FROM book b
GROUP BY
b. aut hor _id,
b. aut hor. first_nane,
b. aut hor. | ast _nane,
b. | anguage. cd
ORDER BY
b. aut hor. first_nane,
b. aut hor. | ast _nane,
b. | anguage. cd

Notice how this alternative notation (depending on your taste) may look more tidy and straightforward,
as the semantics of accessing a table's parent table (or an entity's parent entity) is straightforward.

From jOOQ 3.11 onwards, this syntax is supported for to-one relationship navigation, and from
jO0OQ 3.19 also for to-many relationship navigation. The code generator produces relevant navigation
methods on generated tables, which can be used in a type safe way. The navigation method names are:

- The parent table name (or child table name, respectively), if there is only one foreign key
between child table and parent table

- The foreign key name, if there are more than one foreign keys between child table and parent
table

This default behaviour can be overridden by using a Code Generator Strategy.

The jOOQ version of the previous queries looks like this:

© 2009 - 2024 by Data Geekery™ GmbH. Page 11371238

The jOOQ User Manual 4.5.3.4. Implicit path JOIN

I/ Get all books, their authors, and their respective |anguage
create. sel ect (
BOOK. aut hor () . FI RST_NAME,
BOOK. aut hor () . LAST_NANE,
BOOK. Tl TLE,
BOCK. | anguage() . CD. as("| anguage"))
. f r om(BOOK)
.fetch();

// Count the nunber of books by author and | anguage
create. sel ect (
BOOK. aut hor () . FI RST_NAME,
BOOK. aut hor () . LAST_NANE,
BOCK. | anguage() . CD. as("| anguage"),
count ())
. f r om(BOOK)
. groupBy(
BOOK. AUTHOR_I D,
BOOK. aut hor () . FI RST_NAME,
BOOK. aut hor () . LAST_NAME,
BOCK. | anguage() . CD)
. order By(
BOOK. aut hor () . FI RST_NAME,
BOOK. aut hor () . LAST_NANE,
BOCK. | anguage() . CD)
.fetch();

The generated SQL is almost identical to the original one - there is no performance penalty to this
syntax.

Default JOIN type

The default type of join that is generated is:

- INNER JOIN for to-one path segments with non-nullable parent
- LEFTJOIN for to-one path segments with nullable parent
- Ascalar subquery for to-many path segments (see also implicit to-many path joins for details)

These defaults can be overridden with Settings.renderimplicitjoinTypeor
Settings.renderimplicitjoinToManyType, respectively, or by specifying an explicit path join

How it works

During the SQL generation phase, implicit join paths are replaced by generated aliases for the path's
last table. The paths are translated to a join graph, which is always LEFT JOINed to the path's "root table".
If two paths share a common prefix, that prefix is also shared in the join graph.

Known limitations

- Implicit JOINs can currently only be used to access columns, not to produce joins. l.e. it is not
possible to write things like FROM book IMPLICIT JOIN book.author

- Implicit JOINs are added to the SQL string after the entire SQL statement is available, for
performance reasons. This means, that VisitListener SPI implementations cannot observe
implicitly joined tables

© 2009 - 2024 by Data Geekery™ GmbH. Page 114 /1238

The jOOQ User Manual 4.5.3.5. Implicit to-many path JOIN

4.5.3.5. Implicit to-many path JOIN

Support for to-many paths (implicit or explicit) has been added in 3.19. While explicit to-many paths
are very powerful, users may want the convenience of the implicit to-many paths just like the implicit
to-one paths. However, jJOOQ doesn't support these out of the box like other ORMs might do, and as
users might expect in case of simple examples. Take the following "obvious" example, for instance:

Il Get all authors and count their books

create. sel ect (AUTHOR FI RST_NAME, AUTHOR. LAST_NAME, count (AUTHOR. book(). D))
. f rom(AUTHOR)
. gr oupBy(AUTHOR. | D)
.fetch();

It reads nicely: "Get all authors and count their books.". The expected query produced by this is:

SELECT AUTHOR. FI RST_NAME, AUTHOR. LAST_NAME, COUNT(BOCXK. | D)
FROM AUTHOR

LEFT JO N BOOK ON BOOK. AUTHOR I D = AUTHOR. | D

GROUP BY AUTHOR. | D

Another cool example is this clever ANTI JOIN:

/1 Get all authors without any book SELECT AUTHOR. FI RST_NAME, AUTHOR. LAST_NAME
create. sel ect (AUTHOR FI RST_NAME, AUTHOR. LAST_NANE) FROM AUTHOR

. f r on{ AUTHOR) LEFT JO N BOOK

. wher e(AUTHOR. book(). I D.isNul'l()) ON BOOK. AUTHOR | D = AUTHOR. | D

.fetch(); WHERE BOOK. I D |'S NULL

But if the above is possible, then the following counter example would produce very surprising results!
One would expect the inverse of an ANTI JOIN to produce a SEMI JOIN, but that wouldn't be what
happens:

I/ Get all authors w th books SELECT AUTHOR. FI RST_NAME, AUTHOR. LAST_NAME
create. sel ect (AUTHOR. FI RST_NAME, AUTHOR LAST_NAME) FROM AUTHOR

. f r om(AUTHOR) LEFT JO N BOOK

. wher e(AUTHOR. book(). 1 D.isNotNull()) ON BOOK. AUTHOR | D = AUTHOR. | D

.fetch(); WHERE BOCK. I D |'S NOT NULL

Now, we get duplicate authors. One per book they've written, due to the cartesian product created by
the LEFT JOIN.

(1) Accidental duplicate objectsisn't the main problem that such implicit to-many path joins would
cause. The main problem s that an implicit to-many path placed in the SELECT clause or WHERE
clause (and other clauses) would be able to generate rows, when in fact SELECT only transforms
rows (like Sream.map()) and WHERE only filters rows (like Stream.filter()). It would be very SQL-
unidiomatic and confusing for these clauses to be able to effectively produce rows.

To prevent this, the default behaviour when encountering an implicit to-many join path expression an
exception that is thrown.

To prevent this, users have 2 options:

© 2009 - 2024 by Data Geekery™ GmbH. Page 11571238

The jOOQ User Manual 4.5.3.6. Explicit path JOIN

- Override the default with Settings.renderimplicitjoinToManyType. This applies to all queries and
removes the above scalar subquery protection for power users who know what they're doing.

- Use explicit path joins to specify that indeed, a LEFT JOIN (or any other type of JOIN) is indeed
desired, see example below:

Il Get all authors with books
create. sel ect (AUTHOR. FI RST_NAME, AUTHOR. LAST_NAME)
. f r om(AUTHOR)
.| ef t Joi n(AUTHOR. book()) // Now, the LEFT JON is explicit and cartesian products aren't accidental .
. wher e(AUTHOR. book(). 1 D.isNotNull())
.fetch();

4.5.3.6. Explicit path JOIN

Starting from jOOQ 3.19, it is possible to make path joins (as introduced with implicit path JOIN) explicit
in the FROM clause:

/1 Path joins are created inplicitly:
create. sel ect (
BOCK. aut hor () . FI RST_NAME,
BOCK. aut hor () . LAST_NAME,
BOOK. TI TLE,
BOCK. | anguage() . CD. as("| anguage"))
. f r om(BOOK)
.fetch();

/1 Path joins are created explicitly (e.g. using table lists):
create. sel ect (
BOCK. aut hor () . FI RST_NAME,
BOOK. aut hor () . LAST_NAME,
BOOK. TI TLE,
BOCK. | anguage() . CD. as("| anguage"))
.from(BOOK, BOXK.|anguage(), BOOK. author())
.fetch();

/1 Path joins are created explicitly (e.g. using inner joins, with optional ON clause):
create. sel ect (
BOCK. aut hor () . FI RST_NAME,
BOCK. aut hor () . LAST_NAME,
BOOK. TI TLE,
BOCK. | anguage() . CD. as("| anguage"))
. f r om(BOOK)
.j oi n(BOX. | anguage())
.j oi n(BOOK. aut hor ())
.fetch();

This has a few benefits:

- The exact JOIN type can be specified on a per path basis, including more esoteric JOIN types,
such as for example SEMIJOIN, ANTI JOIN, or APPLY.

- It may improve the clarity of the query.

- It allows for correlating subqueries based on join paths

A special case of the putting path expressions in the FROM clause is the implicit path correlation, where
a path establishes a correlation to an outer query, rather than a join to a previous table from the FROM
clause.

© 2009 - 2024 by Data Geekery™ GmbH. Page 116/ 1238

The jOOQ User Manual 4.5.3.7. Implicit path correlation

4.5.3.7. Implicit path correlation

A special case of the putting path expressions in the FROM clause is the implicit path correlation, where
a path establishes a correlation to an outer query, rather than a join to a previous table from the FROM
clause. This correlated subquery case is very powerful, e.g. to count books per author:

SELECT /1 Count the nunber of books per author
AUTHOR. I D, (create. sel ect (
SELECT COUNT(*) FROM BOOK AUTHOR. | D,
WHERE BOOK. AUTHOR | D = AUTHOR. | D field(sel ectCount().fron AUTHOR book())))
) . f r o AUTHOR)
FROM AUTHOR .fetch();

Or as a way to simplify a correlate a MULTISET subqguery:

Il Get all books by author
create. sel ect (
AUTHOR. | D,
nul tiset (sel ect Fron{ AUTHOR. book())))
. f r om(AUTHOR)
.fetch();

4.5.3.8. WHERE clause

The WHERE clause can be used for JOIN or filter predicates, in order to restrict the data returned by the
table expressions supplied to the previously specified from clause and join clause. Here is an example:

SELECT * create. sel ect ()

FROM BOOK . f r om(BOOK)

VHERE AUTHOR ID = 1 . wher e(BOOK. AUTHOR | D. eq(1))

AND TI TLE = ' 1984’ . and(BOOK. TI TLE. eq(" 1984"))
.fetch();

The above syntax is convenience provided by jOOQ, allowing you to connect the org.joog.Condition
supplied in the WHERE clause with another condition using an AND operator. You can of course also
Create a more complex condition and supply that to the WHERE clause directly (observe the different
placing of parentheses). The results will be the same:

SELECT * create.sel ect()

FROM BOOK . f rom(BOOK)

WHERE AUTHOR ID = 1 . wher e(BOOK. AUTHOR | D. eq(1) . and(

AND TITLE = ' 1984’ BOOK. TI TLE. eq("1984")))
.fetch();

You will find more information about creating conditional expressions later in the manual.

4.5.3.9. CONNECT BY clause

The Oracle database knows a very succinct syntax for creating hierarchical queries: the CONNECT BY
clause, which is fully supported by jOOQ, including all related functions and pseudo-columns. A more
or less formal definition of this clause is given here:

© 2009 - 2024 by Data Geekery™ GmbH. Page 117/1238

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Condition.html

The jOOQ User Manual

SELECT ..
FROM . .
WHERE . .

CONNECT BY [NOCYCLE] condition [AND condition, ...

- GROWP BY ..
- ORDER [SIBLINGS] BY ..

4.5.3.9. CONNECT BY clause

] [START WTH condition]

An example for an iterative query, iterating through values between 1 and 5 is this:

SELECT LEVEL
FROVI DUAL
CONNECT BY LEVEL <= 5

Il Get a table with elenents 1, 2, 3, 4, 5
create.sel ect(level())

.connect By(l evel ().le(5))

.fetch();

Here's a more complex example where you can recursively fetch directories in your database, and

concatenate them to a path:

SELECT
SUBSTR(SYS_CONNECT_BY_PATH(DI RECTCRY. NANE, ' /'), 2)
FROM DI RECTORY
CONNECT BY
PRI OR DI RECTCRY. | D = DI RECTORY. PARENT_| D
START W TH DI RECTCRY. PARENT_ID |'S NULL
ORDER BY 1

The output might then look like this

s +
| substring |
s +
| C

| C:/eclipse

| C:/ ecli pse/ dropi ns

|
|
| C:/eclipsel/configuration |
|
| C:/eclipseleclipse. exe |

|...21 record(s) truncated...

.sel ect(

substring(sysConnect ByPat h(DIl RECTORY. NAMVE, "/"), 2))
. fr on(DI RECTCRY)
. connect By/(

pri or (DI RECTORY. | D). eq(DI RECTORY. PARENT_I D))
.start Wt h(Dl RECTORY. PARENT_I D.i sNul | ())
.orderBy(1)
.fetch();

Some of the supported functions and pseudo-columns are these (available from the DSL):

- LEVEL

- CONNECT_BY_IS_CYCLE
- CONNECT_BY_IS_LEAF

- CONNECT_BY_ROQOT

- SYS_CONNECT_BY_PATH
- PRIOR

ORDER SIBLINGS

The Oracle database allows for specifying a SIBLINGS keyword in the ORDER BY clause. Instead of
ordering the overall result, this will only order siblings among each other, keeping the hierarchy intact.

An example is given here:

SELECT DI RECTORY. NAMVE
FROM DI RECTORY
CONNECT BY

PRI OR DI RECTORY. | D = DI RECTORY. PARENT_I D
START W TH DI RECTORY. PARENT_I D IS NULL
ORDER SI BLI NGS BY 1

© 2009 - 2024 by Data Geekery™ GmbH.

. sel ect (DI RECTORY. NAME)
. fron(DI RECTCRY)
. connect By/(

pri or (DI RECTORY. | D). eq(DI RECTORY. PARENT_I D))
.start Wt h(Dl RECTORY. PARENT_I D.i sNul | ())
.order Si bl i ngsBy(1)
.fetch();

Page 118 /1238

The jOOQ User Manual 4.5.3.10. GROUP BY clause

4.5.3.10. GROUP BY clause

GROUP BY can be used to create unigue groups of data, to form aggregations, to remove duplicates
and for other reasons. It will transform your previously defined set of table expressions, and return only
one record per unigue group as specified in this clause.

4.5.3.10.7. GROUP BY columns

The GROUP BY columns list specifies the columns whose values are used to form groups. The group
columns can then be projected, whereas all the non-group columns can be aggregated. An example of
such a grouped aggregation is this query:

SELECT AUTHOR | D, COUNT(*) create. sel ect (BOOK. AUTHOR | D, count())
FROM BOOK . f r on(BOOK)
GROUP BY AUTHOR_I D . gr oupBy(BOOK. AUTHOR | D)

.fetch();

The above example counts all books per author.

(") Note: a different and more powerful way of grouping data is to use the WINDOW clause and
window functions.

Dialect support
This example using jO0Q:

sel ect (BOOK. AUTHOR | D, count ()). fron(BOOXK) . gr oupBy(BOOK. AUTHOR | D)

Translates to the following dialect specific expressions:

All dialects

SELECT
BOOK. AUTHOR_I D,
count (*)
FROM BOOK
GROUP BY BOOK. AUTHOR | D

4.5.3.10.2. GROUP BY column index

To work against some of SQL's verbosity, some SQL dialects support grouping by column index (starting
from 1):

© 2009 - 2024 by Data Geekery™ GmbH. Page 119/1238

The jOOQ User Manual 4.5.3.10.3. GROUP BY tables

(1) It is not recommended to use this feature in JOOQ as indexes tend to shift without developers
noticing. The feature is supported mainly so jOOQ's SQL parser can parse and transate it. If you
want to avoid redundancy in jOOQ, better resort to using a dynamic SQL style.

Dialect support
This example using jOOQ:

sel ect (BOOK. AUTHOR | D, count ()). fron{BOOK). groupBy(inline(1))

Translates to the following dialect specific expressions:

ASE, Access, BigQuery, DB2, Derby, Exasol, H2, HSQLDB, Hana, Oracle,
SQLDataWarehouse, SQLServer, Sybase

SELECT
BOOK. AUTHOR I D,
count (*)
FROM BOOK
GROUP BY BOOK. AUTHOR I D

Aurora MySQL, Aurora Postgres, ClickHouse, CockroachDB, DuckDB, Firebird, Informix,
MariaDB, MemSQL, MySQL, Postgres, Redshift, SQLite, Snowflake, Teradata, Trino,
Vertica, YugabyteDB

SELECT
BOOK. AUTHOR I D,
count (*)

FROM BOOK

GROUP BY 1

4.5.3.10.3. GROUP BY tables

An org.joog.Table expression extends the org.jooq.GroupField type, and as such, can be used in the
GROUP BY clause directly. This is specifically useful for (generated) table references. The following two
statements are equivalent, although their generated SQL may differ, depending on native support:

/1 Ordinary grouping
create. sel ect (AUTHOR I D, count())
. from(AUTHOR)
.j 0i n(BOOK) . on(AUTHOR. | D. eq(BOOK. AUTHCOR | D))
. gr oupBy(AUTHOR. | D)
.fetch();

/1 Conveni ent grouping by the entire table
create. sel ect (AUTHOR I D, count())
. f rom(AUTHOR)
.j 0i n(BOOK) . on(AUTHCR. | D. eq(BOOK. AUTHCOR | D))
. gr oupBy (AUTHOR)
.fetch();

© 2009 - 2024 by Data Geekery™ GmbH. Page 120/ 1238

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Table.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/GroupField.html

The jOOQ User Manual 4.53.10.4. GROUP BY ROLLUP

4.5.3.10.4. GROUP BY ROLLUP

In reports, it may be useful to run multiple aggregations across multiple dimensions of the data in one
g0. ROLLUP is one way to do this.

S