The jOOQ™ User Manual

SQL was never meant to be abstracted. To be confined in the narrow
boundaries of heavy mappers, hiding the beauty and simplicity of relational
data. SQL was never meant to be object-oriented. SQL was never meant to
be anything other than... SQL!

The jOOQ User Manual

Overview

This manual is divided into six main sections:

Getting started with JOOQ

This section will get you started with jOOQ quickly. It contains simple explanations about what
jO0Q is, what jOOQ isn't and how to set it up for the first time

SQL building

This section explains all about the jOOQ syntax used for building queries through the query DSL
and the query model API. It explains the central factories, the supported SQL statements and
various other syntax elements

Code generation

This section explains how to configure and use the built-in source code generator

SQL execution

This section will get you through the specifics of what can be done with jJOOQ at runtime, in order
to execute queries, perform CRUD operations, import and export data, and hook into the jOOQ
execution lifecycle for debugging

Tools

This section is dedicated to tools that ship with jOOQ.

Reference

This section is a reference for elements in this manual

© 2009 - 2024 by Data Geekery™ GmbH. Page 2/720

#Overview

The jOOQ User Manual

Table of contents

L P B AT ettt

2. Copyright, LICENSE, @Nd Trad@mMArKS........c.oiuiiiiiiiiieieie b
3. Getting Started WIth JOOQ i
3.1. How to read this manual........cccooeiviininni.

3.2. The sample database used in this manual
3.3. Different use €Cases fOr JOOQ . ..ot
3.3.1.jO0Q as a SQL builder without code generation

3.3.2.jO0Q as a SQL builder With COAE SENEIATION.oiiieiee s
3.3.3. JOOQ @S 3 SQL EXECULON .ttt bbbt
3.3.4 JOOQ TOF CRUD ...ttt et
3.3.5. JOOQ FOF PROS.....ooieiiit et
3.4, GELEING JOOQ ..ttt
35 TUBOTIIS bbb
3.5.7. JOOQ TN 7 CASY SEOPS. ettt
3 51T SEEP 1o PIEPAIATION ..ttt
3.5.7.2. SEEP 21 YOUT QALADASE. ...
3.5.7.3. STEP 3 COUE GENEIATION......viiiieiei i
3.5.1.4. Step 4: Connect to your database
3.5.1.5. Step 5:
3.5.1.6. Step 6:
3.5.1.7. Step 7:
3.5.2. Using jOOQ with Flyway
3.5.3. USING JOOQ WITN JDBNG ...ttt
3.6, JOOQ QNG JAVA B.oiiiiiiiiiii bbb
3.7, JOOQ @NA JAVAFX ...ttt
3.8, JOOQ AN NASNOIM. .ot
3.9. JOOQ @NA SCAIA. 1.t
310, JOOQ ANA GIOOVY...ooiiiiiiiiiiii a2
31T, JOOQ NG KON ettt 51
312, JOOQ @NA NOSQL .ttt 51
313 JOOQ GNG JPA e
3.14. Build your own
3.15. jO0OQ and backwards-compatibility
A SQL DUITAING s
4.1. The query DSL type
A1 DSL SUDCIASSES. ..o
4.2. The DSLContext API
2.1, SQL DIAIECE. ..t
4.2.2. SQL DIAIECT FAMUIY. 1ot
4.2.3. CONNECLION VS, DATASOUITE.eiiiiiiiei ettt ettt
A28, CUSTOM GBEA. it
A.2.5. CUSTOM EXOCULELISTENEIS. ...ttt 61
4.2.6. CUSTOM SEELINES. 1.ttt 8ottt 61
4.2.6.7. AULO-GTEACH RECOIAS ...ttt 62
4.2.6.2. BACKSIASN ESCAPING. ..ttt 62
4.2.6.3. Execute Logging
420,24 FEECN WaITHNES. 11 et
42,05, TABNTIIET STYIE. ..
4.2.6.6. IN-list Padding
.2.6.7. JDBC FIAZS .ttt

© 2009 - 2024 by Data Geekery™ GmbH. Page 3/720

The jOOQ User Manual

4.2.6.8. KEYWOTT STV, .o
4.2.6.9. Map JPA Annotations
4.2.6.10. Object qualification
42,617, OPLMUSTIC LOCKING ...ttt
4.2.0.1 2. PaATAMIELET LY PES ettt
4.2.6.13. REFIECHION CATNING ..ttt
4.2.6.14. Return All COIUMNS ON STOTE.....uiiiiiiiiiiei s 69
4.2.6.15. Runtime schema and table MaPPING.o 70

4.2.6.16. Scalar subqueries fOr STOred fUNCLIONS. 72
A.2.0.17. STATEIMENT TY Dttt 8 s
4.2.6.18. UPAALabIE PriMmary KOYS. i
A.2.7. TRFEAA SAFETY ...
4.3, SQL STATEMENTS (DML, ettt ettt ettt s sttt ettt
4.3.7. JOOQ'S DSL @NA MOAEI AP
4.3.2. TNE WITH CIBUSE ..ottt
4.3.3. The WITH RECURSIVE clause
4.3.4. TNE SELECT STATEIMENT.....uiiiiiiiiei e
4.3 4.7 SELECT ClAUSE ..ot
4.3.4.7.7. PrOJECLION TYPE SATRLY ...t
434702, SEIECEFIRIA. ..o
347030 SELECT s
43414, SELECT DISTINCT oottt
4.3.4.1.5. SELECT DISTINCT ONuiiiiiiiiitiiieiieeiesiseiesie ettt
4.3.4.7.6. CONVENIENCE METNOUS ...t bbb
A.34.2. FROM ClAUSE ...
A.34.3. JOIN OP O ATON .ttt b8t
4.3 4.4, IMPLCIE PATN JOIN oo
A.3.4.5. WHERE CIAUSE ...ttt
4.3.4.6. CONNECT BY clause....
A.3.4.7. GROUP BY ClAUSE.....cooiiiiiii bbb
4.3.4.7.7. GROUP BY COIUMNS....ouiiiiiiitiiiei e
4.3.4.7.2. GROUP BY ROLLUP......cootitiii et
4.3.4.7.3. GROUP BY CUBE......iiiiiiiiticieteet e
4.3.4.7.4. GROUP BY GROUPING SETS ...ttt 5 92
4.3.4.7.5. GROUP BY €MPLY BrOUDPING ST ...ttt 93
A.3.4.8. HAVING ClAUSE......ioieiii kbbb 95
A.3.4.9. WINDOW CIAUSE. ...ttt 95
4.34.10. ORDER BY ClAUSE ..ottt 96
A3 40T, LIMIT o0 OFFSET ClAUSE ...ttt 98
434712 WITH TIES ClAUSE .o
A.3A7030 SEEK ClAUSE ..o
4.3.4.14. FOR UPDATE clause
A3 415, SEE OPEIATIONS. .. vttt

A3 4051, TYPE SAFETY ..o
4.3.4.15.2. Projection rowtype.......cccoevevrnne TSP RPTTRO 103
4.3.4.15.3. DIfferences t0 SEANAAIT SQL.....o. oo e ettt ettt 103
A3AT5.4 UNION. . 107
34155, INTERSECT .. 108
A3 5.0, EXCEPT s 110
4.3.4.16. Lexical and 10gical SELECT ClaUSE OFAOI ... 111
4.3.5. TNE INSERT STATEMIENT ..ottt 112
43510 INSERT 0 VALUES. ..o 113
4.3.5.2. INSERT .. DEFAULT VALUES ..ottt 113
23,530 INSERT Lo SET it 114
© 2009 - 2024 by Data Geekery™ GmbH. Page 4/720

The jOOQ User Manual

4354 INSERT L SELECT .o
4.3.5.5. INSERT .. ON DUPLICATE KEY UPDATE
4.3.5.6. INSERT .. ON DUPLICATE KEY IGNORE

4.3.5.7. INSERT .. ON CONFLICT ..ottt
4.3.5.8. INSERT .. RETURNINGoitttiietetettieiee ettt bbbt
4.3.6. THE UPDATE STALEMIENE.....cviiiieiieee ettt sttt
A.3.6.7T. UPDATE Lo SET i
4.3.6.2. UPDATE .. SET ROWS ..ottt
4.3.6.3. UPDATE .. FROM ..ottt s
A.3.6.4. UPDATE .. WHERE ...ttt
4.3.6.5. UPDATE .. RETURNING . ..ottt
4.3.7. TRE DELETE SEAEMIENT......oiveiees ettt
43771, DELETE © WHERE ..t
4.3.7.2. DELETE .. RETURNINGc.itiit ettt
4.3.8. TNE MERGE STATEIMENT. ...iiviiiiieiiiii et

4.4, SQL Statements (DDL).......

4.4.1. The ALTER statement

AAT T ALTER INDEX .ot s
AA70.2. ALTER SCHEMA ..ot 5
44730 ALTER SEQUENCE ..ottt
AT A ALTER TABLE ... s s
AAT5. ALTER VIEW ..ottt
44757, ALTER VIEW .. COMMENT ..ottt bbb

44752, ALTER VIEW .. RENAMEoiiiiiiseeee ettt
447530 ALTER VIEW TF EXISTS oottt
4.4.2. ThE COMMENT SEAEEIMENT. ...t ettt ettt ettt 149new)
4427, COMMENT ON TABLE ...ttt bbb bbb 149new)
4.4.2.2. COMMENT ON VIEW.....ooiiiiiieieteee ettt 150 new)
4.4.2.3. COMMENT ON COLUMN ... 152new)
4.4.3. TRE CREATE SLATEMIEBNT....ouoiitiiveceet ettt ettt ettt 153
44371, CREATE INDEX .ottt s s bbbt 153
4.4.3.2. CREATE SCHEMA ..ottt 154
4.4.3.3. CREATE SEQUENCE ..ottt bbb 155
4.4.33.7. CREATE SEQUENCE IF NOT EXISTS ..ottt 156
4434, CREATE TABLE ...ttt s bbb 157
LA B4, COIUMNS ottt 157
AA.34.2. INUIADIITTY .o 159
L4343, DEIAUILS ..ottt 161
B34, IABNTITIES ..ot b4+t 163
A 4.3.4.5. PIIMANY KEY ..ot 166
44346, UNIGUE CONSTIAINTS. co. ittt 28ttt 169
4.4.3.4.7. Foreign keys................

4.4.3.4.8. Check constraints

44349, FTOM @ SELECT .o oot
4.4.3.4.10. Temporary tables............... e 178
44,35, CREATE VIEW ...ttt 179
44351, OR REPLACE ... 180new)
4.4.3.5.2. WITH CHECK OPTION. oottt ettt 182
4.4.3.5.3. WITH READ ONLY ..ottt bbb 183
A.4.4, THE DROP SEALEMENT.iiiceiet ettt 187
B4, DROP INDEX ..ottt 211 187
44477, DROP INDEX IF EXISTS ..ottt 188
AAA4.2. DROP SCHEMA ... oottt e+ 190
44427, DROP SCHEMA TF EXISTS ..ottt et 191

© 2009 - 2024 by Data Geekery™ GmbH. Page 5/720

The jOOQ User Manual

4.4.4.3. DROP SEQUENGCE ..ottt 193
4.4.4.3.7. DROP SEQUENCE IF EXISTS. ..ottt 193
4.4.4.4, DROP TABLE.......cccooovvviiririnnnn,

4.4.4.4.1. DROP TABLE IF EXISTS
445, DROP VIEW......oooiiiiiiiieeee ettt
AA4.5.7. DROP VIEW TF EXISTS oottt
445, TNE GRANT STATEIMENT. i.. ittt bbbt

4.4.6. The REVOKE STATEMIENT.......iiieieieee ettt e

A7, THE SET STATEIMENT. .ottt bbb bbb bbb bbb
A AT 0. SET CATALOG . ..ottt
B.4.7.2. SET SCHEMA ..ottt
4.4.8. The TRUNCATE statement
4.4.9. GeNErating DDL fTOM ODJECES ...t 204
4.5. Catalog and SCREMA EXPIESSIONS. ..ot 205
4.0, TADIE EXPIESSIONS. ...
4.6.1. Generated Tables
.62, AlIASEA TADIES ...t bbb
4.6.2.7. AlIaSed GENEIaAteA TADIES.o 206
4.6.2.2. AlIaSEA TADIE EXPIOSSIONS. ..ottt 207
4.6.2.3. DEIIVEA COIUMMN TISTS.....iiiiiiieiie ettt 207
4.6.2.4. UNNAMEA AEIMVEA TADIES......cviiviieiiiie bbb 211
A.0.3. JOINEA LADIES ...
4.6.3.T. CROSS JOIN ..ottt bbb
2.6.3.2. INNER JOIN ..ottt
4.6.3.3. OUTER JOIN. ...ttt
4,634 SEMI JOIN ..ottt
4.6.3.5. ANTI JOIN ..ottt
.6.3.6. ON ClAUSE.....eceoeeeeeee et
4.6.3.7. ON KEY clause
4.6.3.8. USING ClAUSE.......ooiiiiviceeieeeeee ettt
£.6.3.9. NATURAL ClAUSE ..ottt s s 221
.6.3.10. LATERAL ...ttt 222
46,3171 APPLY oo 223
4.6.3.12. PARTITION BY ...ttt 225
4.6.4. TRE VALUES() T8I0 CONSIIUCTON ...ttt ettt ettt ettt ettt ettt ettt ettt 225
4.6.5. DEIVEA LADIES.....coooiieeeeeeee ettt 229
4.6.6. THE Oracle TG PIVOT ClAUSE. ...ttt 229
4.6.7. JOOQ'S relational diVISION SYNMEAX ..ot 230
4.6.8. AITAY ANA CUMSOT UNNMESTING. 1. voieiierieciseiseieteise ettt 8 2t 230
4.6.9. TABIE-VAIUEA FUNCHIONS. ...ttt 231
4.6.10. GENERATE_SERIES ..ottt 232
4.6.11. The DUAL table..........

4.7. Column expressions
470, TABIE COIUMNS ...ttt

4.7.1.1. Generated table columns.........
4.7.1.2. Dereferenced table columns
4.7.1.3. NAME TADIE COIUMINS. ...t
A.7.2. AlIBSEA COIUMNS ...ttt et
47,3, CAST OXPIESSIONS ettt ettt e bbbt
A7 4. DALATYPE COBITIONS. 1ottt ettt e 8t E e h b8 e st h et s bbbttt eees
7.5, COMATIONS ...t bbb

A.7.6. ATTENIMETIC EXPIESSIONS
A.7.7. STING CONCATENATION ...ttt s bbbt

4.7.8. CaSe SENSITIVITY WITN SEINES. ...t
© 2009 - 2024 by Data Geekery™ GmbH. Page 6/720

The jOOQ User Manual

4.7.9. GENETAI TUNCHIONS ...ttt bbb bbb 245
A.7.9.7. CHOOSE ...ttt

4.7.9.2. COALESCE
A.7.9.3. DECODE. ...ttt
L7940 TIF oo
A.7.9.5, INULLIF ..ottt
4,796, INVLu.oooooiiiiteeeee et
A.7.9.7. NVL2 oottt

4.7.10.1.
4.7.10.2.
4.7.10.3.
4.7.10.4.
4.7.10.5.
4.7.10.6.
4.7.10.7.
4.7.10.8.
4.7.10.9.
A7 70,70, COTH ettt st s a3 12 sk 4 s s s b1 bbbttt
A7 0007 DEG e
A7 10T 2 Bt h LAt
A.7.00.03 EXPocee e
A7 .70 T4 FLOOR et h et
4.7.10.15.
A7 00,70, LEAST et h LRttt
A7 0007, LN e e
A7 .70 T8, LOG ot e ALk ettt
470019, NEG .ot
4.7.10.20.
4.7.10.21.
4.7.10.22.
4.7.10.23.
4.7.10.24.
A7 .00.25. SIGN. ..o e
A7 10,26, SIN Lotk AL h bRkttt
A7 0027, SINH. oot e
A7 10,28, SORT etttk h LSSttt
A.7.00.29. TAN oot e
A7 70,30, TANH etttk b b s st bR h bbb
A7 0037 TRUNGC ot a2t
A.7.70.32. WIDTH_BUGCKET ...ttt ekttt 287
4.7.11. Bitwise functions
A7 0000 BIT_AND . ettt
A.7.07.2. BIT_COUNT oottt ettt
4.7.11.3. BIT_NAND
A 7074 BIT_NOR oo e
A7 005, BIT_NOT e+ o s 8Lt
A 7070, BIT_OR oo e
AT 007 BIT_XNOR etttk s s 812ttt
A7 0780 BIT_XOR .o
70129, SHL e s h S h bbb
A 707000 SHR et et
47120 SEIING TUNCHIONS. oot
AT 020 ASTU et e
© 2009 - 2024 by Data Geekery™ GmbH. Page 7/720

The jOOQ User Manual

47122,
4.7.12.3.
4.7.12.4.
4.7.12.5.
4.7.12.6.
4.7.12.7.
4.7.12.8.
4.7.12.9.
470200, MID oo 316
A 70207 OCTET_LENGTH. oottt 316
470202, POSITION ..ottt 317
A 70203, REPEAT ..ottt 319
.7 0204, REPLACE ..ottt 320
A 70205, REVERSE ..ottt 321
470206, RIGHT oot 322
471217, RPAD.....ocoe.

4.7.12.18. RTRIM
A 70209 SPACE ..ot 326
4.7.12.20. SUBSTRING........ooiiiiiiiiieieis e 327
A 70227 TRANSLATE ...ttt 328
B.7.702.22. TRIM oo 329
A 70223 UPPER ..ottt 330
4.7.13. DATETIME TUNCLIONS. .. ctvieiiiiitsie et bbb 331
A 7037, CURRENT_DATE ..ottt 331
4.7.13.2. CURRENT_LOCALDATE ...ttt ettt ettt 332
4.7.13.3. CURRENT_LOCALDATETIME .. .ottt 334
4.7.13.4, CURRENT_LOCALTIME ...ttt 335
4.7.13.5. CURRENT_OFFSETDATETIMEottt 336
4.7.13.6. CURRENT_OFFSETTIME
A.7703.7. CURRENT_TIME ..ottt
4.7.13.8. CURRENT_TIMESTAMPcomiiittttte ettt
4.7.13.9. DATE

4.7.13.10.
4.7.13.11.
4.7.13.12.
4.7.13.13.
4.7.13.14.
4.7.13.15.
4.7.13.16.
4.7.13.17.
4.7.13.18.
4.7.13.19.
4.7.13.20.
4.7.13.21.
4.7.13.22.
4.7.13.23.
4.7.13.24.
4.7.13.25.
4.7.13.26.
4.7.13.27.
4.7.13.28.
4.7.13.29.
4.7.713.30. TO_DATE ...t

470337, TO_LOCALDATE ...tttk h stttk bttt
© 2009 - 2024 by Data Geekery™ GmbH. Page 8/720

The jOOQ User Manual

4.7.13.32. TO_LOCALDATETIME ...ttt 388
4.7.713.33. TO_TIMESTAMPttt 389
4.7.13.34. TRUNC

71335, YEAR s

A7 T4 ARRAY TUNCEIONS. oottt 393
A7 047 ARRAY CONSTEIUCTON ..ttt 393
4715, SYSTEIM TUNCUIONS. ... 394
47757, CURRENT_SCHEMA. ..ottt 394
A.7.705.2. CURRENT_USER ..ot 396
A.7.716. ABEIEEATE TUNCLIONS ...tk 397
710,71 GIOUPINE 1.ttt E bbb 397
A7 .06.2. DISTINCINESS. .81ttt 399
A7 1603 FIIERIING oo 399
A7 10,4, OFAEIING bbb 401
4.7.76.5. 0Ordering WITHIN GROUP. ...ttt 402
4.7.16.6. Keeping..........

4.7.16.7. ARRAY_AGG

7108, AVG .o
4.7.16.9. BOOL_AND ...ttt
A.7.76.T0. BOOL_OR. ...ttt
A7.06. 17T COLLECT ottt
71012, COUNT oot
A.7.16.13. CUMELDIST oo 409
477074, DENSE _RANK ...t 410
A7.16.15. EVERY oo 411
4.7.76.76. GROUP _CONCAT ...ttt 413
A7.06.17. LISTAGG. oo 415
4.7.16.18.

4.7.16.19.

4.7.16.20.

4.7.16.21.

A.7.76.22. PERCENT _RANK ..ottt 420
4.7.16.23. PERCENTILE_CONT ..ottt s 421
A.7.76.24. PERCENTILE _DISC ..ottt 422
A.7.76.25. PRODUCT ..ottt 423
A.7.70.26. RANK . 425
A7.06.27. SUM.oi e 426
A 7707, WINAOW FUNCUIONS ..o 427
A.T7.07.70. PARTITION BY it 428
A.7.707.2. ORDER BY oot 429
4.7.17.3. ROWS, RANGE, GROUPS (fram@ ClAUSE) ... e oottt ettt ettt ettt 430
477174 EXCLUDE. ...

4.7.17.5. NULL treatment

4.7.17.6. FROM FIRST, FROM LAST ...ttt
4.7.17.7. Nested aggregate functions

A.7.77.8. WINAOW QGEIEEATION.cuuieiiiiiiieii it
4.7.17.9. WINAOW OFAEIEA @8EIEEALE ... cvuiviiiiiiei e
477770, ROW_NUMBER.....oocttttt e

AT 0707 RANK s
47707720 DENSE _RANK ..
47707703 PERCENT_RANK ...t
A.7.07. 74 CUME DIST oot

A7 0705 INTILE s
70776, LEAD .ot

© 2009 - 2024 by Data Geekery™ GmbH. Page 9/720

The jOOQ User Manual
AT 0707 LAG ettt ettt

4.7.17.18. FIRST_VALUE
4.7.17.19. LAST_VALUE

47707200 NTH_VALUE ...
4.7.718. GIOUPDING TUNCLIONS. ...ttt 447
4.7.19. USEr-AefiNEA FUNCIIONS ... 449
4.7.20. User-defined aggregate TUNCLIONS.ottt 450
A.7.27. THE CASE EXPIOSSION...ooiiiieiiiiieieie bbb
4.7.22. SEQUENCES ANA SEITAIS ..o
A.7.23. SCAIAT SUDGUETIES. ...t
4.7.24. Tuples or row value expressions

4.8, CONAILIONAI EXPIESSIONS.ottt
4.8.7. CONAILION DUIAING ..ttt
4.8.2. TRUE QN FALSE CONQITION. ...ttt
4.8.3. BOOLEAN COMUMMNS. ...ttt
4.8.4. AND, OR, NOT boolean operators

4.8.5. COMPATISON PIOAICATE ...ttt
4.8.6. BOOIEAN OPEIatOr PrECEARNCTE. ...t
4.8.7. COMPAriSON PrediCate (AEEMEE >). it 459
4.8.8. Quantified COMPATISON PrEAICATEttt 460
4.8.9. INULL PrOOICATE. ... et 461
4.8.10. NULL PrediCate (AREIMEE >).ttt 462
48171, DISTINCT PrOAICALEttt 463
4.8.712. BETWEEN PIOAICATE ... 465
4.8.13. BETWEEN PrediCate (AT >). i 467
A8 14, LIKE PIrEAICATO. ... 469
A8 15, IN PIOAICATE .. 470
4.8.16. IN PrediCate (AEEIE >). 471
4.8.17. EXISTS predicate.........cc.......

4.8.18. OVERLAPS predicate

4.8.19. QUETY BY EXAMPIE (QBE)... ..ttt 475
4.9, OPEIATON PrECEAENCE ... 475
470, SYNTNETIC SQL ClAUSES. 476
AT, DYNAMIC SOttt et h Rt 477
4.171.1. Optional CONAILIONAl EXPIESSIONS. ..o 478new)
T2 PLAINT SQL s 478
4.73. Plain SQL TEMPIATING LANGUAEE ... v ittt 481
LT HINTES et E R h Rt
ATAT . IMYSQL NTINTS 8
A4 INAEX NINES o2
AT4.7.2. STRAIGHT _JOIN. oottt
4.14.1.3. Oracle style hints in MySQL

A2, OTBCIE NINES. it
L0243, SOL SOV NINES .o ettt ettt ettt

4.14.3.1. WITH
4.14.3.2. OPTION
0D, S P Al oottt ettt

AT DT SO PSSO AP oot
A.05.2. SQL PAISEE CLl ittt ettt ettt ettt ettt

4053, SOL ATANS GO e e ettt
4054, SOL PaArSEI GIAMIMIGI ... iieieiieee ettt ettt ettt ettt ettt ettt et et e ettt et ettt
4,16, NAMES AN IAENTITIEIS. ..ottt
477, BINA VAIUES GNA PAraMETETS. ...
AN7.7. INAEXEA PATAMETEIS ..o

© 2009 - 2024 by Data Geekery™ GmbH. Page 10/720

The jOOQ User Manual

407,22, NAMEA PATAMETETS . ..ottt s bbb 491
A.17.3. INIINEA PArAMIETEIS. ... 492
4.17.4. SQL injection

AT 8. QUETYPAITS ..ttt E R
08T, SQL TENAIING ettt s8££ 493
4.18.2. DECIAratioN VS MEIEIENCEo 495
4.18.3. Pretly PriNTING SQL . ettt 495
A08.4. VAriabIE DINAING. ...t 496
4.718.5. CUSLOM dALa TYPE DINAINGS. ov.veieieieiseei s 497
4.18.6. CUSTOM SYNTAX ElEMIENTS ...tttk 500
4.78.7. Plain SQL QUETYPAITS. ...t 501
A.18.8. SEIIANZADIIITY ... 503
4.18.9. Custom SQL transformation WIth VIS LISTONME . ..ottt 503
4.18.9.1. Example: Logging abbreviated DINA VAIUES...........cooiiiii s 503
4.19. Zr0-based VS ONE-DASEA APIS. ... 505
4.20. SQL building in Scala...

D SQL BXECULION ..ottt ettt ettt ettt r ettt ettt ettt

5.1. Comparison between jOOQ N JDBC 509
5.2, QUETY VS, RESUITQUETY ...ttt 509
D3 FECNING e 510
5.3.1. RECOTA VS, TADIERECONT. ...t 512
5.3.2. RECOMAT O RECOMTZ22 ..o 513
5.3.3. AITAYS, MAPS @NA LISTS .t 513
5,304 RECOIAHANAIET ...t 514
5,35, RECOTAMAPDPE ..o 514
5,310, POJOS. it 515
5.3.7. The RECOTAMAaPPEIPIOVIAEE SPl......iiiiiiiie s 518
5,308, LAZY FEECIINEG .o
5.3.9. Lazy fetching with Streams

5,310, MANY TEECNING ot
53T LATEE FOUCIING. .
5,312, RESUIESEE TEECNING ..ot
5.3.13. AULO daLA TYPE COMVEISION. vttt
5.3.14. CUSTOM daATA TYPE CONVEISION. ...ttt

5.4. Static Statements VS. Prepared STATEIMENTS.i i

5.5. Reusing a QUEry'S Prepar@dSTateMIENT.ot

5.0, JDBC TlAZS. .ttt

5.7. USING JDBC DALCN OPIATIONS. .. .o

5.8, SEOUENCE EXECULION. ..ttt e h et f bbbttt

5.9. Stored procedures aNd fUNCHIONS. ...
5.9.T. OrACIE PACKAZES. ..

5.9.2. Oracle member procedures .
5.10. Exporting to XML, CSV, JSON, HTML, Text, Charts
5,101, EXPOITING XMLttt
5.10.2. Exporting CSV
5.10.3. Exporting JSON
5,704, EXPOTTING HTIML ittt
5.10.5. EXPOITING TOXE. ...ttt b2t
57060, EXPOTTING CNaITS. oottt
5T IMNPOITING GATA. .ttt
ST 1T, TRE LOBAET APt
5.2, IMIDOIT OPTIONS. ettt
ST 2T TIITOTEIINE o8

5.171.2.2. DUPICATE NANAING ..t
© 2009 - 2024 by Data Geekery™ GmbH. Page 11 /720

The jOOQ User Manual

5123, BT 0T NANAIING e
5.11.3. Import data sources

5.11.3.1. Importing CSV.........

5.11.3.2. Importing JSON

517,33, IMPOITING TRCOITS. ... 542
5.1 1. 3.4 TP OITING @ITAYS ettt ettt a8 8ttt 542
5.1 T35, IMPOTTING XMLttt 542
5114 TMPOIT ISTENEIS ...t s bbbt 542
5.11.5. IMPOrt reSult @nd @10 NANAING. ... 543
5.12. CRUD WIth UpAatablERECOTAS. ... 543
5127, SIMPIE CRUD .ot 544
5.12.2. RECOIS" INTEIMAI FIAZS ...t 546
512,30 IDENTITY VAIUES... .ot 546
5.12.4. NAVIZATION MNETNOMAS ... bbb 547
5.12.5. NON-UPAATEDIE TECOMTS. ..ottt 547
5.12.6. Optimistic locking

5.12.7. BATCN EXECUTION....oouiii s
5.12.8. CRUD SPI: RecordListener

5130 DADS oL
514, TranSACION MANAEEIMENT. ...ttt e et 8 e bt h et E et e e bbbt sttt 551
515, EXCEPTION NANAING. ..t 554
DT B, EXOCULELISTENEIS ... 555
5.17. Database META GaTa ... 557
5.7, JDBC MELA LA ..ot 558
5.17.2. XML MELA AT it 558
TR T 1] = (G @] a1 aT=T et 4[] o FEU OO OO OO 559
5,79, MOCKING COMMECTION. ...ttt 560
5.20. MOCK FIl8 DATADASE. ...t 562
5.21. Parsing Connection

5.2 DIBENOSTICS ettt)
5.22.T. TOO MANY ROWS.....iiiiiiiitiiiiet ittt)
5.22.2. TOO MANY COMUMINS ...ttt 565new)
5.22.3. DUPIICALE STATEMENTS. .. oo 564new)
5.22.4. REPEATEA STATEMENTS. ...ttt 568new)
D225, WASNUIL CaIIS e ettt ettt ettt ettt ettt ettt 569new)
5.23. LOZEING WItN LOZEEILISTENEt 569
5.24. PerformanCe CONSIAEIATIONS. ...t 570
5.25. Alternative @XECUTION MIOAEIS.oiiiiiiie bbb 571
5.25.1. Using JOOQ WIth SPring's JADCTEMIPIATE.o 571
5.25.2. USING JOOQ WITN JPA ..o 572
5.25.2.1. USING JOOQ WIth JPA NATIVE QUETY...cuuiiuiiiiiiiieiieiie e 573
5.25.2.2. Using jJOOQ with JPA entities.........ccccccvvrrunnnn.

5.25.2.3. Using jOOQ with JPA EntityResult
0. OO BENEIATION. ...ttt s b
6.1. Configuration and setup of the generator
6.2. Advanced generator CONFIGUIATION.ottt

6.2.4.1. Database NAME AN PrOPEITIES. ...ttt
0.2.4.2. REZEXFIAZS. ...
6.2.4.3. INCIUAES GNT EXCIUGES. ...t

0.2.4.4. INCIUAE OIDJECE TYPES ...
© 2009 - 2024 by Data Geekery™ GmbH. Page 12 /720

The jOOQ User Manual

6.2.4.5. Record Version and TIMESTAMP FIEIAS. ... 597
0.2.4.6. SYNTNETIC IHONTITIES ...t
6.2.4.7. Synthetic primary keys

6.2.4.8. OVEITIAE PIIMAIY KEYS..... it
6.2.4.9. DAl @S LIMESTAMID. 1.ttt
6.2.4.10. Ignore procedure return values (AePreCatea).........coiiiiiieee e 601
0. 2.4 17 UNSIZNEA LY PES ottt 602
6.2.4.12. Catalog and SCNEMIA MAPPING. ... 603
6.2.4.13. Catalog and SChEMA VEISION PrOVIAEIS. ... 609
6.2.4.14. Custom ordering Of SENEratead COUR..... .o 612
0.2.4. 15, FOTCRA TYPBS. .. e 613
6.2.4.15.7. MAtCRING OF fOICEA LY PES. .. i 614
0.2.4.15.2. DATA TYPE TEWITLINEG ... cvvieviiiteistitiiete ettt 618
0.2.4.15.3. QUANTIEA CONVEITETS. ...ttt ettt ettt 619
6.2.4.15.4. INKINE CONMVETTEIS. ...ttt
6.2.4.15.5. Enum converters........

6.2.4.15.6. Data type bindings

6.2.4.16. Table ValUA fUNCLIONS. ...t 626
0.2.5. GRNMEIALL. ... 627
0.2 5. T ANINOTATIONS ..ttt e ARt 627
6.2.5.2. COVATIANT OVEITIAESiuciiiiiit et 629
0.2.5.2.1. OVEITIAING @S().+-vervrttriiriiiieiieeie ittt b2 629
6.2.5.2.2. OVEITIAING TENAIME()... .. ettt 630
6.2.5.3. Default catalog and SCREMIA.o 630
0.2.5.4. FIUBNT SEULEIS ..ot 630
6.2.5.5. FUIlY QUAITIEA TYPES. ...t 631
6.2.5.6. GlODAI ATTEIACES ... e 632
6.2.5.7. IMPHCI JOIN PAENS. ..ottt 633new)
6.2.5.8. Java Time TypesS.....cccvuvrrvrnee. 634
6.2.5.9. Zero Scale Decimal Types 635new)
6.2.6. OULPUL TArGET CONTIGUIATION ... et 636
6.3. Programmatic 8eNerator CONTIGUIATION.ccioi.iiiii s 637
6.4, CUSTOM ZENEIATON SIITATEZIES. ... ittt 638
0.5, MATCNET STrATEZIES. ...t 641
6.5.1. IMBECNETRUIE ... 643
6.5.2. MATCNING SCNEIMAS......ooiiiii s 644
6.5.3. MATCNING TADIES ... 645
6.5.4, MATCRING FIEIAS.o 647
6.5.5. MATCNING TOULINES ... 649
6.5.6. MATCNING SEOQUENCTES. ..ottt 650
0.5.7. MATCNING ENUMIS ...

6.5.8. Matcher examples...........

6.6. Custom code sections

6.7. Generated GloDal rTEIACES.o 657
6.8. Generated tables.....
6.9. Generated records
6.10. Generated POJOs

6.7, GENETATEA INTEITACES. ... 661
6.12. GENETATEA DADS. ...ttt 662
6.13. GENETATEA SEOUENCES. ...tttk 664
6.1T4. GENETALEA PIOCEAUIES.o 665
0. 75, GENETATEA UDTS ...t 666
6.16. Mapping generated Catalogs and SCREMAS. ... 667
6.17. Code generation fOr large SCREMAS ... 670

© 2009 - 2024 by Data Geekery™ GmbH. Page 13 /720

The jOOQ User Manual

6.18. Code generation and VEISION CONTIOL ...
6.19. JPADatabase: Code generation frOM ENTITIES.o
6.20. XMLDatabase: Code generation from XML files....
6.21. DDLDatabase: Code generation from SQL fIlES ...
6.22. XMLGENETatOr: GENETATING XML..ouiiuiiiieteiieei ettt
6.23. Running the code generator WIth IMaVEN..........co e
6.24. RUNNING the COAE ZENETATON WITN ANT .. it
6.25. Running the code generator WIth Gradle. ...
6.26. System properties gOVErNING COUE SENETATION.cvwiiiiiirirriei it

6.27. Features requiring SENEIAtEA COU.. ..o
7. TOOIS e

7.1. APl validation using the Checker Framework OF EITON PrONE.. ..o 687
7.2, JOOQ CONSOIE ..o

8. COMINEG TTOM JPA ..o

8.1, ST DASEA TNINMKINE. ..t

8.2. Database first.......ccoceo....

8.3. Eager or lazy loading
8.4. First level cache and SeCONA 18VEI CATNE. ... 692
8D ATLTIDUTECONVEITENo 692
BB U ST LY DS ettt 692
8.7 IMPICIE JOIN bbbt 693 new)
0. RETEIEICE. .. 694
9.1, SUPPOITEA RDBIMS......oiit s 694
9.2. COMMETCIAl ONIY FRATUIES ...ttt 694
9.3, EXPEIIMENTAN TRATUIES. ...

0.4, DATA LY PSR bR E AR
0,41, BLOBS GNA CLOBS. ...ttt e
9.4.2. BOOLEAN T8 TPtk
9.4.3. Unsigned integer types
.44, INTERVAL GALA TYPES ittt
9.5, XML AL TYPES ettt
9.4.6. GEOSPATIAl AATA TYPES...euiiiiiiiie e
9.4.7. CURSOR LA TYPES. .ottt 2t
9.4.8. ARRAY aNd TABLE A TYPES .t 697
9.4.9. OraCle DATE TATA TP ittt 698
9.5. SQL t0 DSL MAPPING TUIBS. ...t 700
9.6, QUANTTY ASSUIANCE. ...t 703
0.7 SBCUITEY ettt E £ 704
0.7 1 SQL TN CEION. ettt 705
0.7.2. DEDUE TOZZINE. ... 705
0.7.3. EXCEPUION MNESSAEE. . ittt e bbbt 705
9.7.4. Contact
9.8. MIZrating O JOOQ 3.0 ittt 705
9.9, DON'T A0 NS it
9.9.1. jOOQ: Implementing the DSL types
9.9.2. JOOQ: REfEreNCING the STEP TYPES. ...t
9.9.3. SCNEMIA: INULL COIUMINS. ...ttt
9.9.4. SChemMa: UNNamMEd CONSIIAINTS. ...t
9.9.5. SChema: UNNECESSArY SUIMOZATE KEYS........iiiiiiiiiiiiiicitis ettt 712
9.9.6. SCNEMA: WIONE LA TYPES. ..ot 713
9.9.7. SQL: COUNT(®) INSLEAA OF EXISTS()...vvuvreiiririietieeieeiei ettt 713
9.9.8. SOL: NHT e 713
9.9.9. SQL: NOT IN PIrEAICATE. ...ttt 715

9.9.10. SQL: Rely 0N IMPHCIT OFAEIING ...t 715
© 2009 - 2024 by Data Geekery™ GmbH. Page 14/720

The jOOQ User Manual

9.0, SQL: SELECT ot
9.9.12. SQL: SELECT DISTINCT ..titiutiateeiseiete ettt et
9.9.13. SQL: Unnecessary UNION instead of UNION ALL
9.10. The most important jOOQ types
9.11. Credits

© 2009 - 2024 by Data Geekery™ GmbH. Page 15/720

The jOOQ User Manual 1. Preface

1. Preface

jO0Q's reason for being - compared to JPA

Java and SQL have come a long way. SQL is an "old", yet established and well-understood technology.
Javais alegacy too, although its platform JVM allows for many new and contemporary languages built on
top of it. Yet, after all these years, libraries dealing with the interface between SQL and Java have come
and gone, leaving JPA to be a standard that is accepted only with doubts, short of any surviving options.

So far, there had been only few database abstraction frameworks or libraries, that truly respected SQL
as a first class citizen among languages. Most frameworks, including the industry standards JPA, EJB,
Hibernate, JDO, Criteria Query, and many others try to hide SQL itself, minimising its scope to things
called JPQL, HQL, JDOQL and various other inferior query languages

JOOQ has come to fill this gap.

jO0Q's reason for being - compared to LINQ

Other platforms incorporate ideas such as LINQ (with LINQ-to-SQL), or Scala's SLICK, or also Java's
QueryDSL to better integrate querying as a concept into their respective language. By querying, they
understand querying of arbitrary targets, such as SQL, XML, Collections and other heterogeneous data
stores. jJOOQ claims that this is going the wrong way too.

In more advanced querying use-cases (more than simple CRUD and the occasional JOIN), people will
want to profit from the expressivity of SQL. Due to the relational nature of SQL, this is quite different
from what object-oriented and partially functional languages such as C#, Scala, or Java can offer.

It is very hard to formally express and validate joins and the ad-hoc table expression types they create.
It gets even harder when you want support for more advanced table expressions, such as pivot tables,
unnested cursors, or just arbitrary projections from derived tables. With a very strong object-oriented
typing model, these features will probably stay out of scope.

In essence, the decision of creating an API that looks like SQL or one that looks like C#, Scala, Java
is a definite decision in favour of one or the other platform. While it will be easier to evolve SLICK in
similar ways as LINQ (or QueryDSL in the Java world), SQL feature scope that clearly communicates
its underlying intent will be very hard to add, later on (e.g. how would you model Oracle's partitioned
outer join syntax? How would you model ANSI/ISO SQL:1999 grouping sets? How can you support scalar
subquery caching? etc...).

JOOQ has come to fill this gap.

jO0Q's reason for being - compared to SQL / JDBC

So why not just use SQL?

SQL can be written as plain text and passed through the JDBC API. Over the years, people have become
wary of this approach for many reasons:

© 2009 - 2024 by Data Geekery™ GmbH. Page 16 /720

https://www.jooq.org/criteria-query

The jOOQ User Manual 1. Preface

- No typesafety

- No syntax safety

- No bind value index safety

- Verbose SQL String concatenation

- Boring bind value indexing techniques

- Verbose resource and exception handling in JDBC

- Avery "stateful", not very object-oriented JDBC API, which is hard to use

For these many reasons, other frameworks have tried to abstract JDBC away in the past in one way or
another. Unfortunately, many have completely abstracted SQL away as well

jOOQ has come to fill this gap.

jO0Q is different

SQL was never meant to be abstracted. To be confined in the narrow boundaries of heavy mappers,
hiding the beauty and simplicity of relational data. SQL was never meant to be object-oriented. SQL
was never meant to be anything other than... SQL!

© 2009 - 2024 by Data Geekery™ GmbH. Page 17 /720

The jOOQ User Manual 2. Copyright, License, and Trademarks

2. Copyright, License, and Trademarks

This section lists the various licenses that apply to different versions of jOOQ. Prior to version 3.2, JOOQ
was shipped for free under the terms of the Apache Software License 2.0. With jJOOQ 3.2,jO0Q became
dual-licensed: Apache Software License 2.0 (for use with Open Source databases) and commercial (for
use with commercial databases).

This manual itself (as well as the www.joog.org public website) is licensed to you under the terms of
the CC BY-SA 4.0 license.

Please contact legal@datageekery.com, should you have any questions regarding licensing.

License for JOOQ 3.2 and later

This work is dual-licensed
- under the Apache Software License 2.0 (the "ASL")
- under the jOOQ License and Maintenance Agreenent (the "jOOQ License")

You may choose which |icense applies to you:

- If you're using this work with Open Source databases, you may choose
ei ther ASL or jOOQ License.

- If you're using this work with at |east one conmercial database, you nust
choose j OOQ Li cense

For nore information, please visit https://wwmjooq.org/licenses

Apache Software License 2.0:

Li censed under the Apache License, Version 2.0 (the "License");
you may not use this file except in conpliance with the License.
You may obtain a copy of the License at

htt ps: // www. apache. org/ | i censes/ LI CENSE- 2. 0

Unl ess required by applicable |aw or agreed to in witing, software

di stributed under the License is distributed on an "AS | S" BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KIND, either express or inplied.
See the License for the specific |anguage governi ng perm ssions and
limtations under the License.

j OOQ License and Mai ntenance Agreenent:

Dat a Geekery grants the Custoner the non-exclusive, tinely limted and
non-transferable |icense to install and use the Software under the terms of
the jOOQ Li cense and Mai nt enance Agreenent .

This library is distributed with a LI M TED WARRANTY. See the jOOQ License
and Mai ntenance Agreement for nore details: https://ww.jooq.org/licensing

Historic license for jJOOQ 1.x, 2.x, 3.0, 3.1

Li censed under the Apache License, Version 2.0 (the "License");
you nmay not use this file except in conpliance with the License.
You may obtain a copy of the License at

https://ww. apache. org/ | i censes/ LI CENSE- 2. 0

Unl ess required by applicable |aw or agreed to in witing, software
distributed under the License is distributed on an "AS | S" BASIS,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KIND, either express or inplied.
See the License for the specific |anguage governing perni ssions and
limtations under the License.

© 2009 - 2024 by Data Geekery™ GmbH. Page 18 /720

https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.jooq.org/licensing
https://www.jooq.org
https://creativecommons.org/licenses/by-sa/4.0/
mailto:legal@datageekery.com

The jOOQ User Manual 2. Copyright, License, and Trademarks

Trademarks owned by Data Geekery™ GmbH

JOOA™ is a trademark by Data Geekery™ GmbH
jOOQ™ is a trademark by Data Geekery™ GmbH
- JOOR™ s a trademark by Data Geekery™ GmbH
jOOU™ is a trademark by Data Geekery™ GmbH
jOOX™ is a trademark by Data Geekery™ GmbH

Trademarks owned by database vendors with no affiliation to Data
Geekery™ GmbH

- Access® is a registered trademark of Microsoft® Inc.

- Adaptive Server® Enterprise is a registered trademark of Sybase®, Inc.
- CUBRID™ is a trademark of NHN® Corp.

- DB2® s a registered trademark of IBM® Corp.

- Derby is a trademark of the Apache™ Software Foundation

- H2is atrademark of the H2 Group

- HANA'is a trademark of SAP SE

- HSQLDBis a trademark of The hsgl Development Group

- Ingres is a trademark of Actian™ Corp.

- MariaDBis a trademark of Monty Program Ab

- MySQL® is a registered trademark of Oracle® Corp.

- Firebird® is a registered trademark of Firebird Foundation Inc.

- Oracle® database is a registered trademark of Oracle® Corp.

- PostgreSQL® is a registered trademark of The PostgreSQL Global Development Group
- Postgres Plus® is a registered trademark of EnterpriseDB® software

- SQL Anywhere® is a registered trademark of Sybase®, Inc.

- SQL Server® is a registered trademark of Microsoft® Inc.

- SQLite is a trademark of Hipp, Wyrick & Company, Inc.

Other trademarks by vendors with no affiliation to Data Geekery™ GmbH

- Java® is a registered trademark by Oracle® Corp. and/or its affiliates
- Liquibase is a trademark by Datical, Inc

Flyway is a trademark by Red Gate Software Ltd

- Scalais atrademark of EPFL

Other trademark remarks

Other names may be trademarks of their respective owners.

Throughout the manual, the above trademarks are referenced without a formal ® (R) or ™ (TM) symbol.
It is believed that referencing third-party trademarks in this manual or on the jJOOQ website constitutes
"fair use". Please contact us if you think that your trademark(s) are not properly attributed.

© 2009 - 2024 by Data Geekery™ GmbH. Page 19/720

mailto:contact@datageekery.com

The jOOQ User Manual 2. Copyright, License, and Trademarks

Contributions

The following are authors and contributors of JOOQ or parts of jJOOQ in alphabetical order:

© 2009 - 2024 by Data Geekery™ GmbH. Page 20 /720

The jOOQ User Manual

Aaron Digulla
Andreas Franzén
Anuraag Agrawal
Arnaud Roger

Art O Cathain
Artur Dryomov
Ben Manes

Brent Douglas
Brett Meyer
Christian Stein
Christopher Deckers
Dennis Neufeld
Ed Schaller

Eric Peters

Ernest Mishkin
Espen Stromsnes
Eugeny Karpov
Fabrice Le Roy
Gonzalo Ortiz Jaureguizar
Gregory Hlavac
Henrik Sjostrand
lvan Dugic

Javier Durante
Johannes Buhler
Joseph B Phillips
Joseph Pachod
Knut Wannheden
Laurent Pireyn
Logan Hauspie
Luc Marchaud
Lukas Eder

Matti Tahvonen
Michael Doberenz
Michael Simons
Michat Kotodziejski
Miguel Gonzalez Sanchez
Mustafa Yucel
Nathaniel Fischer
Octavia Togami
Oliver Flege

Per Lundberg
Peter Ertl

Richard Bradley
Robin Stocker
Roland Weisleder
Samy Deghou
Sander Plas

Sean Wellington
Sergey Epik
Sergey Zhuravlev
Stanislas Nanchen
Stephan Schroevers
Sugiharto Lim
Sven Jacobs
Szymon Jachim

© 2009 TarenceZhang™ GmbH.

Thomas Darimont
Timothy Wilson
Timur Shaidullin

2. Copyright, License, and Trademarks

Page 21 /720

The jOOQ User Manual 2. Copyright, License, and Trademarks

See the following website for details about contributing to jOOQ:
https://www.joog.org/legal/contributions

© 2009 - 2024 by Data Geekery™ GmbH. Page 22 /720

https://www.jooq.org/legal/contributions

The jOOQ User Manual 3. Getting started with jOOQ

3. Getting started with jJOOQ

These chapters contain a quick overview of how to get started with this manual and with jOOQ. While
the subsequent chapters contain a lot of reference information, this chapter here just wraps up the
essentials.

3.7. How to read this manual

This section helps you correctly interpret this manual in the context of jOOQ.

Code blocks

The following are code blocks:

-- A SQL code bl ock
SELECT 1 FROM DUAL

/1 A Java code bl ock
for (int i =0; i < 10; i++);

<!-- An XML code bl ock -->
<hel | o what ="wor | d"></ hel | 0>

A config file code bl ock
org.j ooq. property=val ue

These are useful to provide examples in code. Often, with jOOQ, it is even more useful to compare SQL
code with its corresponding Java/jJOOQ code. When this is done, the blocks are aligned side-by-side,
with SQL usually being on the left, and an equivalent JOOQ DSL query in Java usually being on the right:

- In SQL: /] Using jOOQ
SELECT 1 FROM DUAL create. sel ect One().fetch()

Code block contents

The contents of code blocks follow conventions, too. If nothing else is mentioned next to any given code
block, then the following can be assumed:

-- SQL assunptions

- If nothing else is specified, assune that the Oracle syntax is used
SELECT 1 FROM DUAL

© 2009 - 2024 by Data Geekery™ GmbH. Page 23 /720

The jOOQ User Manual 3.2. The sample database used in this manual

/1l Java assunptions
A

/'l \Whenever you see "standal one functions", assume they were static inported from org.jooq.inpl.DSL

/1 "DSL" is the entry point of the static query DSL

exists(); max(); min(); val(); inline(); // correspond to DSL.exists(); DSL.max(); DSL.min(); etc...

/1 \Whenever you see BOOK/ Book, AUTHOR/ Author and simlar entities, assune they were (static) inported fromthe generated schema
BOOK. TI TLE, AUTHOR. LAST_NAME // com exanpl e. gener at ed. Tabl es. BOOK. TI TLE, com exanpl e. gener at ed. Tabl es. AUTHOR. LAST_NAVE
FK_BOOK_AUTHOR /1 com exanpl e. gener at ed. Keys. FK_BOOK_AUTHOR

/'l Whenever you see "create" being used in Java code, assune that this is an instance of org.jooq. DSLCont ext.

/1l The reason why it is called "create" is the fact, that a jOOQ QueryPart is being created fromthe DSL object.

/Il "create" is thus the entry point of the non-static query DSL
DSLCont ext create = DSL.using(connection, SQLDi al ect.ORACLE);

Your naming may differ, of course. For instance, you could name the "create" instance "db", instead.

Execution

When you're coding PL/SQL, T-SQL or some other procedural SQL language, SQL statements are always
executed immediately at the semi-colon. This is not the case in jJOOQ, because as an internal DSL, jOOQ
can never be sure that your statement is complete until you call fetch() or execute(). The manual tries
to apply fetch() and execute() as thoroughly as possible. If not, it is implied:

SELECT 1 FROM DUAL create.sel ectOne().fetch();
UPDATE t SET v = 1 create.update(T).set(T.V, 1).execute();

Degree (arity)

jOOQ records (and many other APl elements) have a degree N between 1 and 22. The variable degree
of an APl element is denoted as [N], e.g. Row[N] or Record[N]. The term "degree" is preferred over arity,
as "degree" is the term used in the SQL standard, whereas "arity" is used more often in mathematics
and relational theory.

Settings

jOOQ allows to override runtime behaviour using org.joog.conf.Settings. If nothing is specified, the
default runtime settings are assumed.

Sample database

jOOQ query examples run against the sample database. See the manual's section about the sample
database used in this manual to learn more about the sample database.

3.2. The sample database used in this manual

For the examples in this manual, the same database will always be referred to. It essentially consists of
these entities created using the Oracle dialect

© 2009 - 2024 by Data Geekery™ GmbH. Page 24 /720

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/conf/Settings.html

The jOOQ User Manual 3.3. Different use cases for jJOOQ

CREATE TABLE | anguage (

id NUVBER(7) NOT NULL PRI MARY KEY,
cd CHAR(2) NOT NULL,
descri ption VARCHAR2(50)

)i

CREATE TABLE aut hor (

id NUVBER(7) NOT NULL PRI MARY KEY,
first_nane VARCHAR2(50) ,
| ast _name VARCHAR2(50) NOT NULL,

date_of _birth DATE,

year _of _birth NUVBER(7),

di stingui shed NUMBER(1)
)

CREATE TABLE book (

id NUVBER(7) NOT NULL PRI MARY KEY,

aut hor _i d NUVBER(7) NOT NULL,

title VARCHAR2(400) NOT NULL,

publ i shed_in NUVBER(7) NOT NULL,

| anguage_i d NUVBER(7) NOT NULL,

CONSTRAI NT f k_book_aut hor FOREI GN KEY (aut hor _i d) REFERENCES aut hor (i d),

CONSTRAI NT f k_book_| anguage FOREI GN KEY (| anguage_i d) REFERENCES | anguage(i d)
)

CREATE TABLE book_store (
nane VARCHAR2(400) NOT NULL UNI QUE
)

CREATE TABLE book_t o_book_store (

nane VARCHAR2(400) NOT NULL,

book_i d | NTEGER NOT NULL,

st ock | NTEGER,

PRI MARY KEY(name, book_id),

CONSTRAI NT f k_b2bs_book_store FOREI GN KEY (name) REFERENCES book_store (name) ON DELETE CASCADE,
CONSTRAI NT f k_b2bs_book FOREI GN KEY (book_i d) REFERENCES book (i d) ON DELETE CASCADE

More entities, types (e.g. UDT's, ARRAY types, ENUM types, etc), stored procedures and packages are
introduced for specific examples

In addition to the above, you may assume the following sample data:

I NSERT | NTO | anguage (id, cd, description) VALUES (1, 'en', 'English);

I NSERT | NTO | anguage (id, cd, description) VALUES (2, 'de', 'Deutsch');

I NSERT | NTO | anguage (id, cd, description) VALUES (3, 'fr', 'Francais');
I NSERT | NTO | anguage (id, cd, description) VALUES (4, 'pt', 'Portugués');

I NSERT | NTO aut hor (id, first_nane, |ast_nane, date_of _birth , year_of _birth)
VALUES (1, '"George’ , 'Orwell' , DATE '1903-06-26', 1903)

I NSERT | NTO aut hor (id, first_nane, |ast_nane, date_of birth , year_of _birth)
VALUES (2, 'Paulo , 'Coel ho' , DATE '1947-08-24', 1947)

I NSERT | NTO book (id, author_id, title , published_in, |anguage_id)
VALUES (1,1 , '1984' , 1948 , 1 ;

I NSERT | NTO book (id, author_id, title , published_in, |anguage_id)
VALUES (2,1 , "Animal Farm , 1945 , 1 ;

I NSERT | NTO book (id, author_id, title , published_in, |anguage_id)
VALUES (3, 2 , 'O A quinista, 1988 , 4 ;

I NSERT | NTO book (id, author_id, title , published_in, |anguage_id)
VALUES (4, 2 , ' Brida , 1990 , 2 ;

I NSERT | NTO book_store VALUES (' Orell Fussli');
I NSERT | NTO book_store VALUES (' Ex Libris");
I NSERT | NTO book_store VALUES (' Buchhandl ung i m Vol kshaus');

I NSERT | NTO book_t o_book_store VALUES (' Orell Fussli' , 1, 10);
I NSERT | NTO book_t o_book_store VALUES (' Orell Fussli' , 2, 10);
I NSERT | NTO book_t o_book_store VALUES (' Orell Fussli' , 3, 10);
I NSERT | NTO book_t o_book_store VALUES (' Ex Libris' , 1, 1);
I NSERT | NTO book_t o_book_store VALUES (' Ex Libris' , 3, 2)
I NSERT | NTO book_t o_book_store VALUES (' Buchhandl ung i m Vol kshaus', 3, 1)

3.3. Different use cases for jJO0OQ

jOOQ has originally been created as a library for complete abstraction of JDBC and all database
interaction. Various best practices that are frequently encountered in pre-existing software products
are applied to this library. This includes:

© 2009 - 2024 by Data Geekery™ GmbH. Page 25/720

The jOOQ User Manual 3.3.1.jO0Q as a SQL builder without code generation

- Typesafe database object referencing through generated schema, table, column, record,
procedure, type, dao, pojo artefacts (see the chapter about code generation)

- Typesafe SQL construction / SQL building through a complete querying DSL APl modelling SQL
as a domain specific language in Java (see the chapter about the query DSL API)

- Convenient query execution through an improved API for result fetching (see the chapters about
the various types of data fetching)

- SQL dialect abstraction and SQL clause emulation to improve cross-database compatibility and
to enable missing features in simpler databases (see the chapter about SQL dialects)

- SQL logging and debugging using jOOQ as an integral part of your development process (see the
chapters about logging)

Effectively, JOOQ was originally designed to replace any other database abstraction framework short of
the ones handling connection pooling (and more sophisticated transaction management)

Use JOOQ the way you prefer

... but open source is community-driven. And the community has shown various ways of using jOOQ
that diverge from its original intent. Some use cases encountered are:

- Using Hibernate for 70% of the queries (i.e. CRUD) and jOOQ for the remaining 30% where SQL
is really needed

- Using jJOOQ for SQL building and JDBC for SQL execution

- Using jJOOQ for SQL building and Spring Data for SQL execution

- Using JOOQ without the source code generator to build the basis of a framework for dynamic
SQL execution.

The following sections explain about various use cases for using jOOQ in your application.

3.3.1.J00Q as a SQL builder without code
generation

We strongly recommend to use jOOQ with its code generator to get the most out of jOOQ)!

However, if you have a dynamic schema, you don't have to use the code generator. This is the most
simple of all use cases, allowing for construction of valid SQL for any database. In this use case, you will
not use JOOQ's code generator and maybe not even jOOQ's query execution facilities. Instead, you'll use
I00Q's guery DSL API to wrap strings, literals and other user-defined objects into an object-oriented,
type-safe AST modelling your SQL statements. An example is given here:

/] Fetch a SQL string froma jOOQ Query in order to nmanually execute it with another tool.
/'l For sinplicity reasons, we're using the APl to construct case-insensitive object references, here.
Query query = create.select(field("BOOK TITLE"), field("AUTHOR FI RST_NAME"), fi el d("AUTHOR LAST_NAME"))

.fron(tabl e("BOXK"))
.join(table("AUTHOR"))
.on(field("BOOK AUTHOR | D").eq(fiel d("AUTHOR I D")))
.where(fiel d("BOOK. PUBLI SHED | N'). eq(1948));
String sql = query.get SQL();
Li st <Obj ect > bi ndVal ues = query. get Bi ndVal ues();

The SQL string built with the jOOQ query DSL can then be executed using JDBC directly, using
Spring's JdbcTemplate, using Apache DbUtils and many other tools (note that since jOOQ uses

© 2009 - 2024 by Data Geekery™ GmbH. Page 26 /720

The jOOQ User Manual 3.3.2.jO0Q as a SQL builder with code generation

lava.sgl.PreparedStatement by default, this will generate a bind variable for "1948". Read more about
bind variables here).

You can also avoid getting the SQL string and bind values separately:

String sql = query.get SQL(Paranype. | NLI NED) ;

If you wish to use jOOQ only as a SQL builder, the following sections of the manual will be of interest
to you:

- SQL building: This section contains a lot of information about creating SQL statements using the
jOOQ API

- Plain SQL: This section contains information useful in particular to those that want to supply
table expressions, column expressions, etc. as plain SQL to jOOQ), rather than through
generated artefacts

- Bind values: This section explains how bind values are managed and/or inlined in jOOQ.

3.3.2.]00Q as a SQL builder with code generation

In addition to using jOOQ as a standalone SQL builder, you can also use jOOQ's code generation
features in order to compile your SQL statements using a Java compiler against an actual database
schema. This adds a lot of power and expressiveness to just simply constructing SQL using the query
DSL and custom strings and literals, as you can be sure that all database artefacts actually exist in the
database, and that their type is correct. We strongly recommend using this approach. An example is
given here:

/] Fetch a SQL string froma jOOQ Query in order to nmanually execute it with another tool.
Query query = create. sel ect (BOOK. TI TLE, AUTHOR. FI RST_NAME, AUTHOR. LAST_NANE)

. f rom(BOOK)

. j oi n(AUTHOR)

. on(BOOK. AUTHOR_| D. eq(AUTHOR. | D))
. wher e(BOOK. PUBLI SHED | N. eq(1948)) ;

String sql = query.get SQL();
Li st <Obj ect > bi ndVal ues = query. get Bi ndVal ues();

The SQL string built with the jOOQ query DSL can then be executed using JDBC directly, using
Spring's JdbcTemplate, using Apache DbUtils and many other tools (note that since jOOQ uses
lava.sgl.PreparedStatement by default, this will generate a bind variable for "1948". Read more about
bind variables here).

You can also avoid getting the SQL string and bind values separately:

String sql = query.get SQL(Paranype. | NLI NED) ;

If you wish to use jOOQ only as a SQL builder with code generation, the following sections of the manual
will be of interest to you:

- SQOL building: This section contains a lot of information about creating SQL statements using the
jOOQ API

- Code generation: This section contains the necessary information to run jOOQ's code generator
against your developer database

- Bind values: This section explains how bind values are managed and/or inlined in jOOQ.

© 2009 - 2024 by Data Geekery™ GmbH. Page 27 /720

https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/PreparedStatement.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/PreparedStatement.html

The jOOQ User Manual 3.3.3.jO0Q as a SQL executor

3.3.3.J00Q as a SQL executor

Instead of any tool mentioned in the previous chapters, you can also use jOOQ directly to execute your
jOOQ-generated SQL statements. This will add a lot of convenience on top of the previously discussed
API for typesafe SQL construction, when you can re-use the information from generated classes to fetch
records and custom data types. An example is given here:

/1l Typesafely execute the SQL statement directly with j OOQ
Resul t <Record3<String, String, String>> result =
create. sel ect (BOOK. TI TLE, AUTHOR FI RST_NAME, AUTHOR. LAST_NAME)
. f r om(BOOK)
. j 0i n(AUTHOR)
. on(BOOK. AUTHOR | D. eq(AUTHOR. | D))
. wher e(BOOK. PUBLI SHED_I N. eq(1948))
.fetch();

By having jOOQ execute your SQL, the jOOQ query DSL becomes truly embedded SQL.

jOOQ doesn't stop here, though! You can execute any SQL with jOOQ. In other words, you can use any
other SQL building tool and run the SQL statements with jOOQ. An example is given here:

/1l Use your favourite tool to construct SQL strings:
String sql = "SELECT title, first_nane, |ast_name FROM book JO N aut hor ON book.author_id = author.id " +
"WHERE book. publ i shed_in = 1984";

I/ Fetch results using jO0Q
Resul t <Record> result = create.fetch(sql);

/Il O execute that SQL with JDBC, fetching the ResultSet wth jOOQ

Resul t Set rs = connection. createStatenent().executeQuery(sql);
Resul t <Record> result = create.fetch(rs);

If you wish to use jOOQ as a SQL executor with (or without) code generation, the following sections of
the manual will be of interest to you:

- SQL building: This section contains a lot of information about creating SQL statements using the
jOOQ API

- Code generation: This section contains the necessary information to run jOOQ's code generator
against your developer database

- SQL execution: This section contains a lot of information about executing SQL statements using
the jOOQ API

- Fetching: This section contains some useful information about the various ways of fetching data
with jOOQ

3.3.4.j00Q for CRUD

Apart from jOOQ's fluent API for query construction, JOOQ can also help you execute everyday CRUD
operations. An example is given here:

© 2009 - 2024 by Data Geekery™ GmbH. Page 28 /720

The jOOQ User Manual 3.3.5.jO0Q for PROs

/'l Fetch an aut hor
Aut hor Record aut hor = create.fetchOne(AUTHOR, AUTHOR ID.eq(1));
/Il Create a new author, if it doesn't exist yet
if (author == null) {
aut hor = create. newRecor d(AUTHOR) ;
aut hor.setld(1);
aut hor . set Fi r st Nane(" Dan") ;
aut hor . set Last Name(" Brown") ;

}

/1l Mark the author as a "distinguished" author and store it
aut hor . set Di sti ngui shed(1);

/] Executes an update on existing authors, or insert on new ones
aut hor. store();

If you wish to use all of JOOQ's features, the following sections of the manual will be of interest to you
(including all sub-sections):

- SQL building: This section contains a lot of information about creating SQL statements using the
jOOQ API

- Code generation: This section contains the necessary information to run jOOQ's code generator
against your developer database

- SQL execution: This section contains a lot of information about executing SQL statements using
the jOOQ API

3.3.5.)J00Q for PROs

jOOQ isn't just a library that helps you build and execute SQL against your generated, compilable
schema. jOOQ ships with a lot of tools. Here are some of the most important tools shipped with jOOQ:

- JOOQ's Execute Listeners: jOOQ allows you to hook your custom execute listeners into jOOQ's
SQL statement execution lifecycle in order to centrally coordinate any arbitrary operation
performed on SQL being executed. Use this for logging, identity generation, SQL tracing,
performance measurements, etc.

- Logging: jOOQ has a standard DEBUG logger built-in, for logging and tracing all your executed
SQL statements and fetched result sets

- Stored Procedures: jOOQ supports stored procedures and functions of your favourite database.
All routines and user-defined types are generated and can be included in jOOQ's SQL building
API as function references.

- Batch execution: Batch execution is important when executing a big load of SQL statements.
jOOQ simplifies these operations compared to JDBC

- Exporting and Importing: jOOQ ships with an API to easily export/import data in various formats

If you're a power user of your favourite, feature-rich database, jOOQ will help you access all of your
database's vendor-specific features, such as OLAP features, stored procedures, user-defined types,
vendor-specific SQL, functions, etc. Examples are given throughout this manual.

3.4. Getting jJOOQ

jOOQ is distributed over 3 main channels:

© 2009 - 2024 by Data Geekery™ GmbH. Page 29 /720

The jOOQ User Manual 3.4. Getting jOOQ

- The website as downloadable ZIP files: https://www.joog.org/download/versions
- The repository for jJOOQ's commercial editions only: https://repo.joog.org
- Maven Central for jOOQ's open source edition only: https://repol.maven.org/maven2/org/jooq

The ZIP file

If you choose to download jOOQ over the website, you will be able to download a ZIP file with the
following layout:

- maven-deploy.bat: A Windows batch script to deploy artifacts to a maven repository

- maven-deploy.sh: A bash script to deploy artifacts to a maven repository

- maven-install.bat: A Windows batch script to install artifacts to the local maven repository
- maven-install.sh: A bash script to install artifacts to the local maven repository

The website hosts the latest versions of the JOOQ Open Source Edition as well as all the historic versions
of the commercial jJOOQ editions including snapshot builds of all distributions that are available to
paying customers only.

The commercial artifact repository

The commercial artifact repository hosts all the historic versions of the commercial jOOQ editions
including snapshot builds of all distributions that are available to paying customers only.

Below is information regarding how to include these dependencies in Maven / Gradle:
Maven

settings.xm|

<server>
<i d>j ooq- pro</i d>
<user name>[your |icensee email]</username>
<passwor d>[your |icense key] </ password>

</ server>

© 2009 - 2024 by Data Geekery™ GmbH. Page 30/ 720

https://www.jooq.org/download/versions
https://repo.jooq.org
https://repo1.maven.org/maven2/org/jooq

The jOOQ User Manual 3.4. Getting JOOQ

pom.xml

<repositories>
<reposi tory>
<id>central </id>
<url >https://repol. maven. or g/ maven2/ </ url >
</ repository>
<!-- Oher repositories ... -->

<reposi tory>
<i d>j oog- pro</i d>
<url >https://repo.jooq. org/repo</url >
</ repository>
</repositories>
<pl ugi nReposi tori es>
<pl ugi nReposi t ory>
<id>central </id>
<url >https://repol. maven. or g/ maven2/ </ url >
</ pl ugi nReposi t ory>
<!-- Oher repositories ... -->

<pl ugi nReposi t ory>
<i d>j oog- pro</i d>
<url >https://repo.jooq.org/repo</url >
</ pl ugi nReposi t ory>
</ pl ugi nReposi tories>

Gradle (Kotlin)

/1 The j OOQ codegen-gradl e plugin has been introduced in version 3.19 only.
Gradle (Groovy)

Dependencies

Depending on the edition you're using, please declare the following dependencies in Maven or Gradle:
Maven

<dependency>
<l-- Use org.jooq for the Open Source Edition
org.j 0og. pro for comercial editions with Java 17 support,
org.jooq.pro-java-11 for comercial editions with Java 11 support,
org.joog.pro-java-8 for comercial editions with Java 8 support,
org.jooq.trial for the free trial edition with Java 17 support,

org.joog.trial-java-11 for the free trial edition with Java 11 support,
org.joog.trial-java-8 for the free trial edition with Java 8 support

Note: Only the Open Source Edition is hosted on Maven Central .
Install the others locally using the provided scripts, or access themfromhere: https://repo.joog.org -->
<gr oupl d>or g. j ooq</ gr oupl d>
<artifactld>jooq</artifactld>
<versi on>3. 11. 12</ ver si on>
</ dependency>

Gradle (Kotlin)

dependenci es {

/1l Use org.jooq for the Open Source Edition

Il org.joog. pro for comercial editions with Java 17 support,

Il org.joog. pro-java- 11 for comercial editions with Java 11 support,

Il org.joog. pro-java-8 for comercial editions with Java 8 support,

Il org.joog.trial for the free trial edition with Java 17 support,

Il org.jooqg.trial-java-11 for the free trial edition with Java 11 support,

Il org.joog.trial-java-8 for the free trial edition with Java 8 support

11l

// Note: Only the Open Source Edition is hosted on Maven Central .

Il Install the others locally using the provided scripts, or access themfrom here: https://repo.jooq.org

i npl enent ati on("org.jooq:jooq:3.11.12")

Gradle (Groovy)

© 2009 - 2024 by Data Geekery™ GmbH. Page 31/720

The jOOQ User Manual 3.5. Tutorials

3.5. Tutorials

Don't have time to read the full manual? Here are a couple of tutorials that will get you into the most
essential parts of JOOQ as quick as possible.

3.5.1.J00Q In 7 easy steps

This manual section is intended for new users, to help them get a running application with jJOOQ, quickly.

3.5.1.1. Step 1: Preparation

If you haven't already downloaded it, download jOOQ:
https://www.joog.org/download

Alternatively, you can create a Maven dependency to download jOOQ artefacts:

Open Source Edition

<dependency>
<gr oupl d>or g. j ooq</ gr oupl d>
<artifactld>jooqg</artifactld>
<versi on>3. 11. 12</ ver si on>

</ dependency>

<!-- These may not be required, unless you use the GenerationTool manually for code generation -->

<dependency>
<gr oupl d>or g. j oog</ gr oupl d>
<artifact!ld>j oog-neta</artifactld>
<versi on>3. 11. 12</ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. j ooq</ gr oupl d>
<artifact!d>j oog-codegen</artifactld>
<versi on>3. 11. 12</ ver si on>

</ dependency>

Commercial Editions (Java 8+)

<!-- Note: These aren't hosted on Maven Central. Inport them manually from your distribution -->
<dependency>

<gr oupl d>or g. j 0oq. pr o</ gr oup! d>

<artifactld>joog</artifactld>

<version>3. 11. 12</ ver si on>
</ dependency>

<!-- These nmay not be required, unless you use the GenerationTool manually for code generation -->

<dependency>
<gr oupl d>or g. j 0oq. pr o</ gr oupl d>
<artifact!d>j oog-neta</artifactld>
<version>3. 11. 12</ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. j 0oq. pr o</ gr oupl d>
<artifact!d>j oog-codegen</artifactld>
<version>3. 11. 12</ ver si on>

</ dependency>

© 2009 - 2024 by Data Geekery™ GmbH. Page 32 /720

https://www.jooq.org/download

The jOOQ User Manual 3.5.1.2. Step 2: Your database

Commercial Editions (Java 6+)

<l-- Note: These aren't hosted on Maven Central. Inport them manually fromyour distribution -->
<dependency>

<gr oupl d>or g. j 0oq. pr o-j ava- 6</ gr oupl d>

<artifactld>jooqg</artifactld>

<versi on>3. 11. 12</ ver si on>
</ dependency>

<!-- These may not be required, unless you use the GenerationTool manually for code generation -->

<dependency>
<gr oupl d>or g. j 0oq. pr o-j ava- 6</ gr oupl d>
<artifactld>j oog-neta</artifactld>
<versi on>3. 11. 12</ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. j 0oq. pr o-j ava- 6</ gr oupl d>
<artifact!d>j oog-codegen</artifactld>
<versi on>3. 11. 12</ ver si on>

</ dependency>

Commercial Editions (Free Trial)

<!-- Note: These aren't hosted on Maven Central. Inport them manually from your distribution -->
<dependency>

<groupl d>org. j ooq. tri al </ groupl d>

<artifactld>joog</artifactld>

<version>3. 11. 12</ ver si on>
</ dependency>

<!-- These nmay not be required, unless you use the GenerationTool manually for code generation -->

<dependency>
<groupl d>org. j ooq. trial </ groupl d>
<artifact!d>j oog-neta</artifactld>
<version>3. 11. 12</ ver si on>

</ dependency>

<dependency>
<groupl d>org. j ooq. trial </ groupl d>
<artifact!d>j oog-codegen</artifactld>
<version>3. 11. 12</ ver si on>

</ dependency>

Note that only the jJOOQ Open Source Edition is available from Maven Central. If you're using the jOOQ
Professional Edition or the jOOQ Enterprise Edition, you will have to manually install jOOQ in your local
Nexus, or in your local Maven cache. For more information, please refer to the licensing pages.

Please refer to the manual's section about Code generation configuration to learn how to use jOOQ's
code generator with Maven.

For this example, we'll be using MySQL. If you haven't already downloaded MySQL Connector/J,
download it here:
https://dev.mysgl.com/downloads/connector/j/

If you don't have a MySQL instance up and running yet, get it from https://www.mysgl.com or https://
hub.docker.com/ /mysgl now!

3.5.1.2. Step 2: Your database

We're going to create a database called "library" and a corresponding "author" table. Connect to MySQL
via your command line client and type the following:

© 2009 - 2024 by Data Geekery™ GmbH. Page 33/720

https://www.jooq.org/licensing
https://dev.mysql.com/downloads/connector/j/
https://www.mysql.com/
https://hub.docker.com/_/mysql
https://hub.docker.com/_/mysql

The jOOQ User Manual 3.5.1.3. Step 3: Code generation

CREATE DATABASE "library";

USE “library’;

CREATE TABLE "aut hor™ (

“id int NOT NULL,

“first_name’ varchar(255) DEFAULT NULL,
“last _nane’ varchar (255) DEFAULT NULL,
PRI MARY KEY (“id")

)

3.5.1.3. Step 3: Code generation

In this step, we're going to use jOOQ's command line tools to generate classes that map to the Author
table we just created. More detailed information about how to set up the jOOQ code generator can
be found here:

IO0Q manual pages about setting up the code generator

The easiest way to generate a schema is to copy the jOOQ jar files (there should be 3) and the MySQL
Connector jar file to a temporary directory. Then, create a library.xml that looks like this:

<?xm version="1.0" encodi ng="UTF-8" standal one="yes"?>
<confi guration>
<!-- Configure the database connection here -->
<j dbc>
<driver>com nysql .cj.jdbc.Driver</driver>
<ur | >j dbc: nysql : / /| ocal host: 3306/ | i brary</url >
<user >r oot </ user >
<passwor d></ passwor d>
</ j dbc>

<gener at or >
<!-- The default code generator. You can override this one, to generate your own code style.
Supported generators:
- org.jooq.codegen. JavaGener at or
- org.jooq.codegen. Scal aGener at or
Defaults to org.jooq.codegen. JavaGenerator -->
<nane>or g. j 0oq. codegen. JavaGener at or </ nane>

<dat abase>
<!-- The database type. The format here is:
org.jooq. net a. [dat abase] . [dat abase] Dat abase -->
<nane>or g. j 0oq. net a. nysql . \ySQLDat abase</ nane>

<!-- The database schena (or in the absence of schena support, in your RDBMS this
can be the owner, user, database nane) to be generated -->
<i nput Schema>| i br ary</ i nput Schema>

<!-- Al elenents that are generated from your schena
(A Java regul ar expression. Use the pipe to separate several expressions)
Watch out for case-sensitivity. Depending on your database, this mght be inportant! -->

<i ncl udes>. *</i ncl udes>

<!-- Al elenents that are excluded from your schema
(A Java regul ar expression. Use the pipe to separate several expressions).
Excl udes match before includes, i.e. excludes have a higher priority -->

<excl udes></ excl udes>
</ dat abase>

<target >
<!-- The destination package of your generated classes (within the destination directory) -->
<packageName>t est . gener at ed</ packageNane>

<!-- The destination directory of your generated classes. Using Maven directory |ayout here -->
<di rect ory>C: / wor kspace/ MySQLTest / src/ nai n/ j ava</ di rect ory>
</target>
</ gener at or >
</ configuration>

Replace the username (<username/> or <user/>) with whatever user has the appropriate privileges to
query the database meta data. You'll also want to look at the other values and replace as necessary.
Here are the two interesting properties:

<packageName/> - set this to the parent package you want to create for the generated
classes. Setting the value to testgenerated will cause the test.generated.tables. Author and
test.generated.tables.records.AuthorRecord classes to be created

© 2009 - 2024 by Data Geekery™ GmbH. Page 34 /720

The jOOQ User Manual 3.5.1.3. Step 3: Code generation

<directory/> - the directory to output the generated classes to.

Once you have the JAR files and library.xml in your temp directory, type this on a Windows machine:

java -classpath joog-3.11.12.jar;”"
joog-neta-3.11.12.jar; "

j 0og- codegen-3.11.12.jar; "
jaxb-api-2.3.1.jar;"

nysql -connector-java.jar;. *

org.j ooqg. codegen. GenerationTool |ibrary.xm

.. or type this on a UNIX/ Linux / Mac system (colons instead of semi-colons):

java -classpath joog-3.11.12.jar:\
joog-neta-3.11.12.jar:\

j oog- codegen-3.11.12.jar:\
jaxb-api-2.3.1.jar:\

nysql -connector-java.jar:. \

org. j ooq. codegen. Gener ati onTool |ibrary. xni

)

- jOOQ will try loading the library.xml from your classpath. Thisis also why thereisatrailing period (.)
on the classpath. If the file cannot be found on the classpath, jOOQ will look on the file system from the
current working directory.

- Replace the filenames with your actual filenames. In this example, jOOQ 3.11.12 is being used.

- If you're using a linux style shell on Windows, but a Windows JDK/JRE, you still need to
use semi-colons in your classpath! (;) In git-bash, you might have to quote your classpath
("joog-3.11.12.jar;joog-meta-3.11.12 jar;...")

If everything has worked, you should see this in your console output:

© 2009 - 2024 by Data Geekery™ GmbH. Page 35/720

The jOOQ User Manual

Nov 1, 2011 7:25:06
INFG Initialising
Nov 1, 2011 7:25:07
I NFO Dat abase para
Nov 1, 2011 7:25:07
INFO ----imee- -
Nov 1, 2011 7:25:07
I NFO di al ect

Nov 1, 2011 7:25:07
I NFO schena

Nov 1, 2011 7:25:07
I NFO target dir
Nov 1, 2011 7:25:07
I NFO target pack
Nov 1, 2011 7:25:07
INFO ----imee- -
Nov 1, 2011 7:25:07
I NFO. Enptying

Nov 1, 2011 7:25:07
INFO. Generating cl
Nov 1, 2011 7:25:07
INFO Cenerating sc
Nov 1, 2011 7:25:07

3.5.1.4. Step 4: Connect to your database

PM org. j oog. i npl . JoogLogger i nfo
properties : /library.xni

PM org. j oog. i npl . JoogLogger i nfo
meters

PM org. j oog. i npl . JoogLogger i nfo

PM org. j ooq. i npl . JoogLogger i nfo
o MYSQL

PM org. j oog. i npl . JoogLogger i nfo
library
PM org. j oog. i npl . JoogLogger i nfo
C: / wor kspace/ MySQLTest / src
PM org. j oog. i npl . JoogLogger i nfo
age . test.generated
PM org. j oog. i npl . JoogLogger i nfo
PM org.j ooq. i npl . JoogLogger i nfo
C: / wor kspace/ M\ySQLTest / src/ t est/ gener at ed
PM org. j oog. i npl . JoogLogger i nfo

asses in : C/workspace/ MySQLTest/ src/ test/ generat ed
PM org. j oog. i npl . JoogLogger i nfo
hema : Library.java

PM org. j oog. i npl . JoogLogger i nfo

INFO. Schema gener at ed : Total: 122.18ms

Nov 1, 2011 7:25:07
I NFO Sequences fet
Nov 1, 2011 7:25:07
I NFO Tabl es fetche
Nov 1, 2011 7:25:07

PM org. j oog. i npl . JoogLogger i nfo

ched : 0 (0 included, 0 excluded)
PM org. j ooq. i npl . JoogLogger i nfo

d : 5 (5 included, 0 excluded)
PM org. j oog. i npl . JoogLogger i nfo

I NFO Cenerating tables : C/workspace/ MySQLTest/ src/ test/ generated/tabl es

Nov 1, 2011 7:25:07
I NFO ARRAYs fetche
Nov 1, 2011 7:25:07
INFO Enuns fetched
Nov 1, 2011 7:25:07
I NFO UDTs fetched

Nov 1, 2011 7:25:07

PM org. j ooq. i npl . JoogLogger i nfo
d : 0 (0 included, 0 excluded)

PM org. j oog. i npl . JoogLogger i nfo
: 0 (0 included, 0 excluded)

PM org. j oog. i npl . JoogLogger i nfo
: 0 (0 included, 0 excluded)

PM org. j oog. i npl . JoogLogger i nfo

INFO Generating table : Author.java

Nov 1, 2011 7:25:07

PM org. j oog. i npl . JoogLogger i nfo

I NFO. Tabl es generat ed : Total: 680.464ns, +558.284ns

Nov 1, 2011 7:25:07
I NFO Generating Ke
Nov 1, 2011 7:25:08
I NFO Keys generat e
Nov 1, 2011 7:25:08
INFO Cenerating re
Nov 1, 2011 7:25:08
INFO Cenerating re
Nov 1, 2011 7:25:08
I NFO Tabl e records
Nov 1, 2011 7:25:08
INFO Routines fetc
Nov 1, 2011 7:25:08
I NFO Packages fetc
Nov 1, 2011 7:25:08

PM org. j ooq. i npl . JoogLogger i nfo
ys : C/workspace/ MySQLTest/ src/ test/ generated/tabl es
PM org. j oog. i npl . JoogLogger i nfo
d : Total: 718.621ns, +38.157ns
PM org. j ooq. i npl . JoogLogger i nfo
cords : C/workspace/ MySQLTest/ src/ test/ generated/tabl es/records
PM org. j oog. i npl . JoogLogger i nfo
cord : Aut hor Record. j ava
PM org. j ooq. i npl . JoogLogger i nfo
generated : Total: 782.545ms, +63.924ns
PM org. j oog. i npl . JoogLogger i nfo
hed : 0 (0 included, 0 excluded)
PM org. j oog. i npl . JoogLogger i nfo
hed : 0 (0 included, 0 excluded)
PM org. j oog. i npl . JoogLogger i nfo

I NFO

GENERATI ON FI NI SHED!

Total : 791.688ms, +9.143nms

3.5.1.4. Step 4: Connect to your database

Let's just write a vanilla main class in the project containing the generated classes:

/'l For
i mport
i mport

i mport

conveni ence, always static inport your generated tables and jOOQ functions to decrease verbosity:
static test.generated. Tabl es. *;
static org.jooq.inpl.DSL.*;

java.sql.*;

public class Min {
public static void main(String[] args) {
String userName = "root";

String password =

String url = "jdbc:nysql://1ocal host:3306/Iibrary";

/1 Connection is the only JDBC resource that we need

Il PreparedStatenment and ResultSet are handled by jOOQ internally

try (Connection conn = DriverManager. get Connection(url, userName, password)) {
1.

}

Il For the sake of this tutorial, let's keep exception handling sinple

catch (Exception e) {

e.printStackTrace();

}

© 2009 - 2024 by Data Geekery™ GmbH.

Page 36 /720

The jOOQ User Manual 3.5.1.5. Step 5: Querying

This is pretty standard code for establishing a MySQL connection.

3.5.1.5. Step 5: Querying

Let's add a simple query constructed with jOOQ's query DSL:

DSLCont ext create = DSL.using(conn, SQLDi al ect. MYSQL) ;
Resul t <Record> result = create.sel ect().fron AUTHOR).fetch();

First get an instance of DSLContext so we can write a simple SELECT query. We pass an instance of
the MySQL connection to DSL. Note that the DSLContext doesn't close the connection. We'll have to
do that ourselves.

We then use jOOQ's query DSL to return an instance of Result. We'll be using this result in the next step.

3.5.1.6. Step 6: Iterating

After the line where we retrieve the results, let's iterate over the results and print out the data:

for (Record r : result) {
Integer id = r.getVal ue(AUTHOR | D);
String firstNane = r.get Val ue(AUTHOR Fl RST_NAME) ;
String | ast Name = r.get Val ue(AUTHOR. LAST_NAME) ;

Systemout.printIn("ID: " +id + " first nane: " + firstName + " last nane: " + |astNane);

The full program should now look like this:

© 2009 - 2024 by Data Geekery™ GmbH. Page 37 /720

The jOOQ User Manual 3.5.1.7. Step 7: Explore!

package test;

/'l For conveni ence, always static inmport your generated tables and
// jOOQ functions to decrease verbosity:

inmport static test.generated. Tables. *;

import static org.jooq.inpl.DSL.*;

import java.sql.*;

import org.jooq.*;
import org.jooq.inpl.*;

public class Main {

J**
* (@aram ar gs
*/
public static void main(String[] args) {
String userName = "root";
String password = "";
String url = "jdbc:nysql://local host:3306/1ibrary";

// Connection is the only JDBC resource that we need

/'l PreparedStatenent and ResultSet are handled by jOOQ internally

try (Connection conn = DriverManager. get Connection(url, userName, password)) {
DSLCont ext create = DSL.using(conn, SQLDi al ect.MYSQL);
Resul t <Record> result = create.select().fron{ AUTHOR).fetch();

for (Record r : result) {
Integer id = r.getVal ue(AUTHOR | D);
String firstName = r.getVal ue(AUTHOR FI RST_NAME) ;
String | astNane = r. get Val ue(AUTHOR. LAST_NAME) ;

Systemout.printIn("ID: " +id + " first nane: " + firstName + " last nanme: " + |astNane);
}
}

/'l For the sake of this tutorial, let's keep exception handling sinple

catch (Exception e) {
e.printStackTrace();
}

}
}

3.5.1.7. Step 7: Explore!

jOOQ has grown to be a comprehensive SQL library. For more information, please consider the
documentation:
https://www.joog.org/learn

... explore the Javadoc:
https://www.jooqg.org/javadoc/latest/

... or join the news group:
https://groups.google.com/forum/#!forum/joog-user

This tutorial is the courtesy of Ikai Lan. See the original source here:
https://ikaisays.com/2011/11/01/getting-started-with-joog-a-tutorial/

3.5.2. Using JOOQ with Flyway

When
performing database migrations, we at Data Geekery recommend using jOOQ with Flyway - Database
Migrations Made Easy. In this chapter, we're going to look into a simple way to get started with the two
frameworks.

© 2009 - 2024 by Data Geekery™ GmbH. Page 38 /720

https://www.jooq.org/learn
https://www.jooq.org/javadoc/latest/
https://groups.google.com/forum/#!forum/jooq-user
https://ikaisays.com/2011/11/01/getting-started-with-jooq-a-tutorial/
https://flywaydb.org/

The jOOQ User Manual 3.5.2. Using jOOQ with Flyway

Philosophy

There are a variety of ways how jOOQ and Flyway could interact with each other in various development
setups. In this tutorial we're going to show just one variant of such framework team play - a variant that
we find particularly compelling for most use cases.

The general philosophy behind the following approach can be summarised as this:

- 1. Database increment
- 2. Database migration
- 3. Code re-generation
- 4. Development

The four steps above can be repeated time and again, every time you need to modify something in your
database. More concretely, let's consider:

- 1. Database increment - You need a new column in your database, so you write the necessary
DDL in a Flyway script

- 2. Database migration - This Flyway script is now part of your deliverable, which you can share
with all developers who can migrate their databases with it, the next time they check out your
change

- 3. Code re-generation - Once the database is migrated, you regenerate all JOOQ artefacts (see
code generation), locally

- 4. Development - You continue developing your business logic, writing code against the updated,
generated database schema

Maven Project Configuration - Properties

The following properties are defined in our pom.xml, to be able to reuse them between plugin
configurations:

<properties>
<db. url >j dbc: h2: ~/ f| yway-t est </ db. ur| >
<db. user name>sa</ db. user name>

</ properties>

0. Maven Project Configuration - Dependencies

While jOOQ and Flyway could be used in standalone migration scripts, in this tutorial, we'll be
using Maven for the standard project setup. You will also find the source code of this tutorial on
GitHub at https://github.com/jO0Q/jO0Q/tree/main/jO0Q-examples/[O0Q-flyway-example, and the
full pom.xml file here.

These are the dependencies that we're using in our Maven configuration:

© 2009 - 2024 by Data Geekery™ GmbH. Page 39/ 720

https://github.com/jOOQ/jOOQ/tree/main/jOOQ-examples/jOOQ-flyway-example
https://github.com/jOOQ/jOOQ/blob/master/jOOQ-examples/jOOQ-flyway-example/pom.xml

The jOOQ User Manual 3.5.2. Using jJOOQ with Flyway

<l-- We'll add the latest version of jOOQ and our JDBC driver - in this case H2 -->
<dependency>
<!-- Use org.jooq for the Open Source Edition
org.joog. pro for commercial editions

org.jooq.pro-java-8 for conmercial editions with Java 8 support
org.jooq.pro-java-6 for conmercial editions with Java 6 support
org.joog.trial for the free trial edition

Note: Only the Open Source Edition is hosted on Maven Central
Install the others locally using the provided scripts, or access themfrom here: https://repo.jooq.org -->
<gr oupl d>or g. j oog</ gr oupl d>
<artifactld>jooqg</artifactld>
<versi on>3. 11. 12</ ver si on>
</ dependency>
<dependency>
<gr oupl d>com h2dat abase</ gr oupl d>
<artifactld>h2</artifactld>
<versi on>1. 4. 197</ ver si on>
</ dependency>

<!-- For inproved | ogging, we'll be using |log4j via slf4j to see what's going on during mgration and code generation -->
<dependency>

<gr oupl d>or g. apache. | oggi ng. | og4j </ gr oupl d>

<artifactld>l og4j-slf4j-inpl</artifactld>

<versi on>2. 11. 0</ ver si on>
</ dependency>

<!-- To ensure our code is working, we're using JUnit -->
<dependency>
<groupl d>j uni t </ gr oupl d>
<artifactld>junit</artifactld>
<versi on>4. 11</ versi on>
<scope>t est </ scope>
</ dependency>

0. Maven Project Configuration - Plugins

After the dependencies, let's simply add the Flyway and jOOQ Maven plugins like so. The Flyway plugin:

<pl ugi n>
<groupl d>or g. f | ywaydb</ gr oupl! d>
<artifact!d>flyway-maven-pl ugi n</artifact!d>
<ver si on>3. 0</ ver si on>

<!-- Note that we're executing the Flyway plugin in the "generate-sources" phase -->
<executions>
<execution>
<phase>gener at e- sour ces</ phase>
<goal s>
<goal >ni gr at e</ goal >
</ goal s>
</ executi on>
</ executi ons>

<!-- Note that we need to prefix the db/mgration path with filesystem to prevent Flyway
from|looking for our migration scripts only on the classpath -->

<confi guration>
<url>${db. url}</url>
<user >${ db. user nane} </ user >
<l ocati ons>

<l ocation>fil esystem src/ nai n/ resources/db/ m gration</|ocation>

</l ocations>

</ configuration>

</ pl ugi n>

The above Flyway Maven plugin configuration will read and execute all database migration scripts
from src/main/resources/db/migration prior to compiling Java source code. While the official Flyway
documentation may suggest that migrations be done in the compile phase, the jOOQ code generator
relies on such migrations having been done prior to code generation.

After the Flyway plugin, we'll add the jJOOQ Maven Plugin. For more details, please refer to the manual's
section about the code generation configuration.

© 2009 - 2024 by Data Geekery™ GmbH. Page 40 /720

The jOOQ User Manual 3.5.2. Using jJOOQ with Flyway

<pl ugi n>
<!-- Use org.jooq for the Open Source Edition
org.joog. pro for commercial editions,
org.jooq.pro-java-8 for conmercial editions with Java 8 support,
org.jooq.pro-java-6 for conmercial editions with Java 6 support,
org.joog.trial for the free trial edition

Note: Only the Open Source Edition is hosted on Maven Central .
Install the others locally using the provided scripts, or access themfrom here: https://repo.jooqg.org -->
<gr oupl d>or g. j ooq</ gr oupl d>
<artifact!|d>j oog-codegen-maven</artifact|d>
<versi on>${ or g. j 0oq. versi on} </ ver si on>

<l-- The jOOQ code generation plugin is also executed in the generate-sources phase, prior to conpilation -->
<executions>
<execution>
<phase>gener at e- sour ces</ phase>
<goal s>
<goal >gener at e</ goal >
</ goal s>
</ executi on>
</ executi ons>

<l-- This is a minimal working configuration. See the manual's section about the code generator for nore details -->
<confi guration>
<j dbc>

<url>${db.url}</url>
<user >${ db. user nane} </ user >
</ j dbc>
<gener at or >
<dat abase>
<i ncl udes>. *</i ncl udes>
<i nput Schema>FLYWAY_TEST</ i nput Schena>
</ dat abase>
<t arget >
<packageNanme>or g. j ooq. exanpl e. f | yway. db. h2</ packageName>
<di rect ory>t ar get/ gener at ed- sour ces/ j oog- h2</ di rect ory>
</target>
</ gener at or >
</ configuration>
</ pl ugi n>

This configuration will now read the FLYWAY_TEST schema and reverse-engineer it into the target/
generated-sources/joog-h2 directory, and within that, into the org.joog.example.flyway.db.h2 package.

1. Database increments

Now, when we start developing our database. For that, we'll create database increment scripts, which we
put into the src/main/resources/db/migration directory, as previously configured for the Flyway plugin.
We'll add these files:

- V1__initialise_database.sq|l
- V2__create_author_table.sql
- V3__create_book_table_and_records.sql

These three scripts model our schema versions 1-3 (note the capital V!). Here are the scripts' contents

- V1__initialise_database. sql
DROP SCHEMA flyway_test |F EXI STS;

CREATE SCHEMA f | yway_test;

-- V2__create_author_table.sql
CREATE SEQUENCE flyway_test.s_author_id START WTH 1;

CREATE TABLE fl yway_test. aut hor (
id INT NOT NULL,
first_name VARCHAR(50),
| ast _name VARCHAR(50) NOT NULL,
date_of _birth DATE,
year _of _birth | NT,
address VARCHAR(50),

CONSTRAI NT pk_aut hor PRI MARY KEY (I D)

© 2009 - 2024 by Data Geekery™ GmbH. Page 41 /720

The jOOQ User Manual

-- V3__create_book_tabl e_and_records. sql
CREATE TABLE flyway_test. book (

id INT NOT NULL,

author _id I NT NOT NULL,

title VARCHAR(400) NOT NULL,

CONSTRAI NT pk_book PRI MARY KEY (id),
CONSTRAI NT f k_book_aut hor _i d FOREI GN KEY (

| NSERT
| NSERT

I NTO fl yway_test.
I NTO fl yway_test.

aut hor VALUES (next
aut hor VALUES (next

| NSERT
| NSERT
| NSERT
| NSERT

I NTO fl yway_test.
INTO fl yway_test.
I NTO fl yway_test.
I NTO fl yway_test.

book VALUES (1,
book VALUES (2,
book VALUES (3,
book VALUES (4,

PP E

2. Database migration an

aut hor _i d) REFERENCES fl| yway_test. aut hor (i d)

value for flyway_test.s_author_id,
value for flyway_test.s_author_id,

‘Orwell',
' Coel ho' ,

' Ceorge',
' Paul o',

11984");
"Aninmal Farm);
'O Alquinista');
"Brida');

d 3. Code regeneration

3.5.2. Using jJOOQ with Flyway

' 1903- 06- 25",
' 1947-08- 24",

1903,
1947,

nul 1) ;
nul 1) ;

The above three scripts are picked up by Flyway and executed in the order of the versions. This can

be seen very simply by executing:

nmvn clean install

And then observing the log output from Flyway...

[INFQ ---
[INFO
[INFO
[INFO
[INFO

fl yway- maven-plugin:3.0: mgrate (

Creating Metadata table:
Current version of schema "PUBLIC":

default) @joog-flyway-exanple ---

Dat abase: jdbc: h2: ~/flyway-test (H2 1.4)

Validated 3 migrations (execution tine 00:00.004s)
"PUBLI C'. "schenma_ver si on"

<< Enpty Schena >>

[INFQ
[INFQ
[INFQ

M grating schema "PUBLIC' to version 1
M grating schema "PUBLIC' to version 2
M grating schema "PUBLIC' to version 3

[INFQ

Successfully applied 3 nmigrations to

..and from jOOQ on the console:

schema "PUBLI C' (execution tine 00:00.073s).

[INFQ --- joog-codegen-naven: 3.11.12: generate (default) @joog-flyway-exanple ---
[INFQ --- joog-codegen-naven: 3.11.12:generate (default) @joog-flyway-exanple ---
[INFQ Using this configuration:

[INFO Generating schemata : Total: 1

[INFQ Cenerating schema : FlywayTest.java

3

[....]

[I NFOl GENERATI ON FI NI SHED! : Total: 337.576ns, +4.299ns

4. Development

Note that all of the previous steps are executed automatically, every time someone adds new migration
scripts to the Maven module. For instance, a team member might have committed a new migration
script, you check it out, rebuild and get the latest jJOOQ-generated sources for your own development

or integration-test database.

Now, that these steps are done, you can proceed writing your database queries. Imagine the following

test case

© 2009 - 2024 by Data Geekery™ GmbH.

Page 42 /720

The jOOQ User Manual 3.5.2. Using jJOOQ with Flyway

import org.jooq.Result;
import org.jooq.inpl.DSL;
import org.junit.Test;

i mport java.sql.DriverManager;

inmport static java.util.Arrays.asList;
import static org.jooq.exanple.flyway.db. h2. Tables.*;
inmport static org.junit.Assert.assertEquals;

public class AfterM grationTest {

@est
public void testQueryingAfterMgration() throws Exception {
try (Connection ¢ = DriverManager. get Connection("jdbc: h2: ~/flyway-test", "sa", "")) {
Resul t<?> result =
DSL. usi ng(c)
.sel ect (
AUTHOR. FI RST_NAME,
AUTHOR. LAST_NAME,
BOCXK. | D,
BOOK. TI TLE

)

. fron{ AUTHOR)

. j 0i n(BOOK)

. on(AUTHOR. | D. eq(BOOK. AUTHOR I D))
. order By(BOOK. I D. asc())

.fetch();

assert Equal s(4, result.size());
assert Equal s(asList (1, 2, 3, 4), result.getVal ues(BOXK. ID));

Reiterate

The power of this approach becomes clear once you start performing database modifications this way.
Let's assume that the French guy on our team prefers to have things his way:

- V4__le_french. sql
ALTER TABLE fl yway_t est.book ALTER COLUW title RENAME TO le_titre;

They check it in, you check out the new database migration script, run

nvn clean install

And then observing the log output:

[INFQ --- flyway-nmaven-plugin:3.0:migrate (default) @joog-flyway-exanple ---

[INFQ --- flyway-maven-plugin:3.0:nmigrate (default) @joog-flyway-exanple ---

[INFQ Database: jdbc:h2:~/flyway-test (H2 1.4)

[INFQ Validated 4 migrations (execution time 00:00.005s)

[INFQ Current version of schema "PUBLIC': 3

[INFO Mgrating schena "PUBLIC' to version 4

[INFOQ Successfully applied 1 migration to schema "PUBLIC' (execution time 00:00.016s).

So far so good, but later on:

[ERROR] COWPI LATI ON ERRCR :

[R e e e
[ERROR] C:\...\jOOQflyway-exanple\src\test\javalAfterMgrationTest.java:[24,19] error: cannot find symbol
[INFO 1 error

When we go back to our Java integration test, we can immediately see that the TITLE column is still
being referenced, but it no longer exists:

© 2009 - 2024 by Data Geekery™ GmbH. Page 43 /720

The jOOQ User Manual 3.5.3. Using jOOQ with jbang

public class AfterM grationTest {

@est
public void testQueryingAfterMgration() throws Exception {
try (Connection ¢ = DriverManager. get Connection("jdbc: h2: ~/flyway-test”, "sa", "")) {
Resul t<?> result =
DSL. usi ng(c)
.sel ect(
AUTHOR. FI RST_NAME,
AUTHOR. LAST_NAME,
BOCK. | D,
BOOK. TI TLE
Il AANAN This columm no | onger exists. We'll have to rename it to LE TITRE
)
. from(AUTHOR)
. j 0i n(BOOK)
. on(AUTHOR. | D. eq(BOOK. AUTHOR_I D))
. order By(BOOK. I D. asc())
.fetch();
assert Equal s(4, result.size());
assert Equal s(asList(1, 2, 3, 4), result.getValues(BOXK. ID));
}
}
}
Automation

The above steps can be automated in your build using another third party called testcontainers. Please
look at this article here for examples on how to do that: https://blog.joog.org/using-testcontainers-to-
generate-joog-code/

Conclusion

This tutorial shows very easily how you can build a rock-solid development process using Flyway and
jOOQ to prevent SQL-related errors very early in your development lifecycle - immediately at compile
time, rather than in production!

Please, visit the Flyway website for more information about Flyway.

3.5.3. Using jJOOQ with jbang

ibang allows for quickly working with all sorts of Java libraries without the hassle of setting up
environments, dependencies, etc. This catalog allows for using jOOQ's code generator right away on
an existing database.

For more information on jbang, see:

- Installation
- Usage
An example

In a shell, type

git clone https://github. conmjOOQ j bang- exanpl e
cd j bang- exanpl e
j bang Exanpl e. j ava

© 2009 - 2024 by Data Geekery™ GmbH. Page 44 /720

https://www.testcontainers.org
https://blog.jooq.org/using-testcontainers-to-generate-jooq-code/
https://blog.jooq.org/using-testcontainers-to-generate-jooq-code/
https://flywaydb.org/
https://www.jbang.dev
https://www.jbang.dev/documentation/guide/latest/installation.html
https://www.jbang.dev/documentation/guide/latest/usage.html

The jOOQ User Manual 3.6.j00Q and Java 8

In order to re-generate the example code, e.g. when your schema changes, just type:
j bang codegen@ ooq db. xm

If you prefer working with a pre-existing database, just edit the db.xml file and point it to your database.
Add the JDBC driver dependency like this:

jbang --deps org. postgresql: postgresql : RELEASE codegen@ ooq db. xm

To override the jOOQ version from the default RELEASE to a specific version, use

j bang - Dj 0oq. ver si on=<ver si on> codegen@ ooq db. xni

3.6.]00Q and Java 8

Java 8 has introduced a great set of enhancements, among which lambda expressions and the new
java.util.stream.Stream. These new constructs align very well with jJOOQ's fluent APl as can be seen in
the following examples:

jO0Q and lambda expressions

jOOQ's RecordMapper APl is fully Java-8-ready, which basically means that it is a SAM (Single Abstract
Method) type, which can be instanciated using a lambda expression. Consider this example:

try (Connection ¢ = get Connection()) {
String sql = "select schema_nane, is_default " +
"frominformtion_schena.schemata " +
"order by schema_nane";

DSL. usi ng(c)
.fetch(sql)

// We can use | anbda expressions to map j OOQ Records
.map(rs -> new Schema(

rs. get Val ue(" SCHEMA_NAME", String.cl ass),

rs. getVal ue("l S_DEFAULT", bool ean. cl ass)
))

/1 ... and then profit fromthe new Col | ection nethods
.forEach(Systemout::println);

The above example shows how jOOQ's Result.map() method can receive a lambda expression that
implements RecordMapper to map from jOOQ Records to your custom types.

jO0Q and the Streams API

jOOQ's Result type extends java.util.List, which opens up access to a variety of new Java features
in Java 8. The following example shows how easy it is to transform a jOOQ Result containing
INFORMATION_SCHEMA meta data to produce DDL statements:

© 2009 - 2024 by Data Geekery™ GmbH. Page 45/ 720

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/stream/Stream.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Result.html#map()
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Record.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Result.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/List.html

The jOOQ User Manual 3.7.j00Q and JavaFx

DSL. usi ng(c)
.sel ect(
COLUWNS. TABLE_NAME,
COLUWNS. COLUVN_NAME,
COLUMNS. TYPE_NANVE

)

. f r om(COLUWNS)

. order By(
COLUWNS. TABLE_CATALOG,
COLUWNS. TABLE_SCHENA,
COLUWNS. TABLE_NAME,
COLUWNS. ORDI NAL_PCsI TI ON

)
.fetch() // jOOQ ends here
.stream() // JDK 8 Streans start here
. col | ect (groupi ngBy(
r -> r.getVal ue(COLUWS. TABLE_NAME) ,
Li nkedHashMap: : new,
mappi ng(
r -> new Col um(
r. get Val ue(COLUWNS. COLUMN_NAME) ,
r. get Val ue(COLUWS. TYPE_NAME)

),
toList()
)

))
. for Each(
(table, colums) -> {
/1 Just emt a CREATE TABLE statenent
System out. println(
"CREATE TABLE " + table + " (");

// Map each "Colum" type into a String
/1 containing the colum specification,
/1 and join them using conma and
/1l new ine. Done!
System out. println(
col umms. strean)
.map(col ->" " + col.nanme +
" + col.type)
.collect(Coll ectors.joining(",\n"))

)3

Systemout.printin(");");
}
)i

The above example is explained more in depth in this blog post: https://blog.joog.org/java-8-friday-no-
more-need-for-orms/. For more information about Java 8, consider these resources:

- Our Java 8 Friday blog series
- Agreat]ava 8 resources collection by the folks at Baeldung.com

3.7.]00Q and JavaFX

One of the major improvements of Java 8 is the introduction of JavaFX into the JavaSE. With jOOQ and
Java 8 Streams and lambdas, it is now very easy and idiomatic to transform SQL results into JavaFX
XYChart.Series or other, related objects:

Creating a bar chart from a JOOQ Result

As we've seen in the previous section about jOOQ and Java 8, jOOQ integrates seamlessly with Java 8's
Streams API. The fluent style can be maintained throughout the data transformation chain.

In this example, we're going to use Open Data from the world bank to show a comparison of countries
GDP and debts:

© 2009 - 2024 by Data Geekery™ GmbH. Page 46 /720

https://blog.jooq.org/java-8-friday-no-more-need-for-orms/
https://blog.jooq.org/java-8-friday-no-more-need-for-orms/
https://blog.jooq.org/tag/java-8/
https://www.baeldung.com/java-streams
https://docs.oracle.com/javafx/2/api/javafx/scene/chart/XYChart.Series.html
https://data.worldbank.org

The jOOQ User Manual

DROP SCHEMA | F EXI STS wor | d;

CREATE SCHEMA wor | d;

CREATE TABLE worl d.countries (

code CHAR(2) NOT NULL,

year | NT NOT NULL,
gdp_per _capi ta DECI MAL(10, 2) NOT NULL,
govt _debt DECI MAL(10, 2) NOT NULL

)i

I NSERT | NTO wor | d. countri es

VALUES ("

e e e e L e e i L L e T T T PPN

RRERRRR2Q

mmm
qqa

FR ,

, 2009,
. 2010,
. 2011,
., 2012,
, 2009,
. 2010,
. 2011,
., 2012,
, 2009,
. 2010,
. 2011,
2012,
, 2009,
. 2010,
. 2011,
., 2012,
, 2009,
. 2010,
. 2011,
., 2012,
, 2009,
. 2010,
. 2011,
., 2012,
, 2009,
. 2010,
. 2011,
., 2012,
, 2009,
. 2010,
. 2011,
., 2012,

40764,
47465,
51791,
52409,
40270,
40408,
44355,
42598,
40488,
39448,
42578,
39759,
35455,
36573,
38927,
38649,
35724,
34673,
36988,
33814,
39473,
43118,
46204,
46548,

8616,
10710,
13324,
14091,
46999,
48358,
49855,
51755,

3.7.j00Q and JavaFx

Once this data is set up (e.g. in an H2 or PostgreSQL database), we'll run jOOQ's code generator and

implement the following code to display our chart:

© 2009 - 2024 by Data Geekery™ GmbH.

Page 47 /720

The jOOQ User Manual 3.7.j00Q and JavaFx

Cat egoryAxi s xAxi s = new Categor yAxis();
Nunber Axi s yAxi s = new Number Axi s();
XxAxi s. set Label (" Country");

yAXi s. set Label ("% of CDP");

Bar Chart <String, Nunmber> bc = new BarChart<String, Nunber>(xAxis, yAxis);
bc.setTitl e("Governnent Debt");
bc. get Dat a() . addAl | (

/1 SQ data transfornation, executed in the database
L e T T
DSL. usi ng(connect i on)
.sel ect(
COUNTRI ES. YEAR,
COUNTRI ES. CODE,
COUNTRI ES. GOVT_DEBT)
. f r on{ COUNTRI ES)
.join(
tabl e(
sel ect (COUNTRI ES. CODE, avg(COUNTRI ES. GOVT_DEBT) . as("avg"))
. f r on{ COUNTRI ES)
. gr oupBy(COUNTRI ES. CODE)
).as("cl")

)
. on(COUNTRI ES. CODE. eq(fi el d(name("cl1", COUNTRI ES. CODE. get Nane()), String.class)))

/1 order countries by their average projected val ue
. order By(

field(name("avg")),

COUNTRI ES. CODE,

COUNTRI ES. YEAR)

/1l The result produced by the above statenment |ooks |ike this:

I e R S +
/1l |year|code| govt_debt |
I e R S +
/1]2009| RU | 8. 70|
/1]12010| RU | 9. 10|
/1 12011 RU | 9. 30|
/112012 RU | 9. 40|
/1]2009| CA | 51. 30|
I e R S +

// Java data transformation, executed in application nenory
L e T T

I/l Goup results by year, keeping sort order in place
. f et chG oups(COUNTRI ES. YEAR)

/'l StreanxEntry<lnteger, Result<Record3<BigDecinal, String, |nteger>>>>
.entrySet ()
.strean()

// Map each entry into a { Year -> Projected value } series
.map(entry -> new XYChart. Seri es<>(

entry. getKey().toString(),

observabl eArraylLi st (

// Map each country record into a chart Data object
entry. get Val ue()
.map(country -> new XYChart.Data<String, Number>(
country. get Val ue(COUNTRI ES. CODE) ,
country. get Val ue(COUNTRI ES. GOVT_DEBT)
))
)

)
.col lect(toList())

The above example uses basic SQL-92 syntax where the countries are ordered using aggregate
information from a derived table, which is supported in all databases. If you're using a database that
supports window functions, e.g. PostgreSQL or any commercial database, you could have also written
a simpler query like this:00

DSL. usi ng(connect i on)
.sel ect(
COUNTRI ES. YEAR,
COUNTRI ES. CODE,
COUNTRI ES. GOVT_DEBT)
. f r om(COUNTRI ES)

/1 order countries by their average projected val ue

. order By(
DSL. avg(COUNTRI ES. GOVT_DEBT) . over (partiti onBy(COUNTRI ES. CODE)) ,
COUNTRI ES. CODE,
COUNTRI ES. YEAR)

.fetch()

return bc;

© 2009 - 2024 by Data Geekery™ GmbH. Page 48 /720

The jOOQ User Manual 3.8.j00Q and Nashorn

When executed, we'll get nice-looking bar charts like these:

The complete example can be downloaded and run from GitHub:
https://github.com/[O0Q/j00Q/tree/main/jO0Q-examples/{O0Q-javafx-example

3.8.]00Q and Nashorn

With Java 8 and the new built-in JavaScript engine Nashorn, a whole new ecosystem of software can
finally make easy use of jOOQ in server-side JavaScript. A very simple example can be seen here:

/] Let's assunme these objects were generated

/'l by the jOOQ source code generator

var Tabl es = Java.type("org.jooq.db. h2.information_schema. Tabl es");
var t = Tabl es. TABLES;

var ¢ = Tabl es. COLUWS;

/1 This is the equivalent of Java's static inports
var count = DSL.count;
var row = DSL.row,

/1 W can now execute the follow ng query:
print(
DSL. usi ng(conn)
. sel ect (
t. TABLE_SCHEMA,
t. TABLE_NAME,
c. COLUMN_NANE)
from(t)
.join(c)
.on(row(t. TABLE_SCHEMA, t.TABLE NAME)
.eq(c. TABLE_SCHEMA, c. TABLE NAME))
. order By(
t. TABLE_SCHEMA. asc(),
t. TABLE_NAME. asc(),
c. ORDI NAL_PGsI Tl ON. asc())
.fetch()

More details about how to use jO0Q, IDBC, and SQL with Nashorn can be seen here.

3.9.)00Q and Scala

As any other library, JOOQ can be easily used in Scala, taking advantage of the many Scala language
features such as for example:

- Optional "." to dereference methods from expressions

- Optional "("and ")" to delimit method argument lists

- Optional ";" at the end of a Scala statement

- Typeinference using "var" and "val" keywords

- Lambda expressions and for-comprehension syntax for record iteration and data type
conversion

But jOOQ also leverages other useful Scala features, such as

- implicit defs for operator overloading
- Scala Macros (soon to come)

All of the above heavily improve jOOQ's querying DSL API experience for Scala developers.

© 2009 - 2024 by Data Geekery™ GmbH. Page 49 /720

https://github.com/jOOQ/jOOQ/tree/main/jOOQ-examples/jOOQ-javafx-example
https://blog.jooq.org/java-8-friday-javascript-goes-sql-with-nashorn-and-jooq/

The jOOQ User Manual 3.10.jO0OQ and Groovy

A short example jJOOQ application in Scala might look like this:

import collection.JavaConversions. _ // Inport inplicit defs for iteration over org.jooq.Result
Il
inport java.sql.DriverManager Il
Il
import org.jooq._ Il
inport org.jooq.inpl._ Il
inport org.jooq.inpl.DSL. _ Il
i mport org.jooq.exanpl es. scal a. h2. Tabl es. _ Il
i nport org.jooq.scal aext ensi ons. Conversi ons. _ /1 Inport inplicit defs for overloaded j OOQ SQL operators
Il
obj ect Test { Il
def main(args: Array[String]): Unit = { Il
val c¢ = DriverManager. get Connection("jdbc: h2: ~/test", "sa", ""); // Standard JDBC connection
val e = DSL.using(c, SQDialect.H2); Il
val x = AUTHOR as "x" /1l SQL-esque table aliasing
Il
for (r <- e Il lteration over Result. "r" is an org.jooq. Record3
sel ect (Il
BOOK. | D * BOOK. AUTHOR | D, /1l Using the overloaded "*" operator
BOOK. I D + BOOK. AUTHOR ID * 3 + 4, /1l Using the overloaded "+" operator
BOOK TITLE || " abc" || " xy" /'l Using the overloaded "||" operator
) Il
from BOOK /1 No need to use parentheses or "." here
leftQuterJoin (Il
sel ect (x.1D, x.YEAR OF BI RTH /'l Dereference fields fromaliased table
from x Il
limt 1 Il
asTabl e x. get Nane() X
) Il
on BOOK. AUTHOR I D === x.ID /1l Using the overloaded "===" oper ator
where (BOXK.ID <> 2) /'l Using the ol erloaded "<>" operator
or (BOOK. TITLE in ("O Al quinista", "Brida")) /1 Neat IN predicate expression
fetch X
) | 1
println(r) Il
Il
} Il

For more details about jOOQ's Scala integration, please refer to the manual's section about SQL building
with Scala.

3.10.j00Q and Groovy

As any other library, JOOQ can be easily used in Groovy, taking advantage of the many Groovy language
features such as for example:

- Optional ";" at the end of a Groovy statement
- Type inference for local variables

A short example jOOQ application in Groovy might look like this:

Note that while Groovy supports some means of operator overloading, we think that these means
should be avoided in ajOOQ integration. For instance, a + b in Groovy maps to a formal a.plus(b) method
invocation, and jOOQ provides the required synonyms in its API to help you write such expressions.
Nonetheless, Groovy only offers little typesafety, and as such, operator overloading can lead to many
runtime issues.

Another caveat of Groovy operator overloading is the fact that operators such as == or >= map to
a.equals(b), a.compareTo(b) == 0, a.compareTo(b) >= 0 respectively. This behaviour does not make sense
in a fluent APl such as jOOQ.

© 2009 - 2024 by Data Geekery™ GmbH. Page 50 /720

https://groovy-lang.org/operators.html#Operator-Overloading

The jOOQ User Manual 3.11.jO0Q and Kotlin

3.11.J00Q and Kotlin

As any other library, JOOQ can be easily used in Kotlin, taking advantage of the many Kotlin language
features such as for example:

- Optional ";" at the end of a Kotlin statement
- Type inference for local variables

A short example jOOQ application in Kotlin might look like this:

Note that Kotlin supports some means of operator overloading. For instance, a + b in Kotlin maps to
a formal a.plus(b) method invocation, and jOOQ provides the required synonyms in its API to help you
write such expressions.

One particularly nice language feature is the fact that [square brackets] allow for accessing any object's
contents via get() and set() methods. Instead of using the above value(), value2(), and value3() methods,
we could also iterate as such:

A caveat of Kotlin operator overloading is the fact that operators such as == or >= map to a.equals(b),
a.compareTo(b) == 0, a.compareTo(b) >= 0 respectively. This behaviour does not make sense in a fluent
APl such as jOOQ.

3.12.j00Q and NoSQL

jOOQ users often get excited about jOOQ's intuitive APl and would then wish for NoSQL support.

There are a variety of NoSQL databases that implement some sort of proprietary query language. Some
of these query languages even look like SQL. Examples are JCR-SQL2, CQL (Cassandra Query Language),
Cypher (Neo4j's Query Language), and many more.

Mapping the jOOQ API onto these alternative query languages would be a very poor fit and a leaky
abstraction. We believe in the power and expressivity of the SQL standard and its various dialects.
Databases that extend this standard too much, or implement it not thoroughly enough are often not
suitable targets for jOOQ. It would be better to build a new, dedicated API for just that one particular
query language.

jOOQ is about SQL, and about SQL alone. Read more about our visions in the manual's preface.

3.13.j00Q and JPA

Just because you're using JOOQ doesn't mean you have to use it for everything!

When introducing jOOQ into an existing application that uses JPA, the common question is always:
"Should we replace JPA by jJOOQ?" and "How do we proceed doing that?"

Beware that jOOQ is not a replacement for JPA. Think of jOOQ as a complement. JPA (and ORMs in
general) try to solve the object graph persistence problem. In short, this problem is about

© 2009 - 2024 by Data Geekery™ GmbH. Page 51/ 720

https://kotlinlang.org/docs/reference/operator-overloading.html
https://www.h2database.com/jcr/grammar.html
https://cassandra.apache.org/doc/cql/CQL.html
https://neo4j.com/docs/cypher-manual/current/

The jOOQ User Manual 3.14. Build your own

- Loading an entity graph into client memory from a database
- Manipulating that graph in the client
Storing the modification back to the database

As the above graph gets more complex, a lot of tricky questions arise like:

- What's the optimal order of SQL DML operations for loading and storing entities?

- How can we batch the commands more efficiently?

- How can we keep the transaction footprint as low as possible without compromising on ACID?
- How can we implement optimistic locking?

JO0Q only has some of the answers.

While jOOQ does offer updatable records that help running simple CRUD, a batch AP, optimistic locking
capabilities, jJOOQ mainly focuses on executing actual SQL statements.

SQL is the preferred language of database interaction, when any of the following are given:

- You run reports and analytics on large data sets directly in the database
You import / export data using ETL
- You run complex business logic as SQL queries

Whenever SQL is a good fit, JOOQ is a good fit. Whenever you're operating and persisting the object
graph, JPA is a good fit.

And sometimes, it's best to combine both

3.14. Build your own

In order to build jOOQ (Open Source Edition) yourself, please download the sources from https://
github.com/[00Q/[00Q and use Maven to build jOOQ, preferably in Eclipse. The jOOQ Open Source
Edition requires Java 8+ to compile and run. The commercial jJOOQ Editions require Java 8+ or Java 6+
to compile and run, depending on the distribution.

Some useful hints to build JOOQ yourself:

© 2009 - 2024 by Data Geekery™ GmbH. Page 52 /720

https://github.com/jOOQ/jOOQ
https://github.com/jOOQ/jOOQ

The jOOQ User Manual 3.15.jO0Q and backwards-compatibility

- Get the latest version of Git or EGit

- Get the latest version of Maven or M2E

- Check out the jOOQ sources from https://github.com/[00Q/j0O0Q

- Optionally, import Maven artefacts into an Eclipse workspace using the following command (see
the maven-eclipse-plugin documentation for details):

* mvn eclipse:eclipse
- Build the joog-parent artefact by using any of these commands:

* mvn clean package

create .jar files in ${project.build.directory}
* mvn clean install

install the jar files in your local repository (e.g. ~/.m?2)
* mvn clean {goal} -Dmaven.test.skip=true

don't run unit tests when building artefacts

3.15.J00Q and backwards-compatibility

Semantic versioning

jOOQ's understanding of backwards compatibility is inspired by the rules of semantic versioning
according to https://semver.org. Those rules impose a versioning scheme [X].[Y].[Z] that can be
summarised as follows:

- If a patch release includes bugfixes, performance improvements and API-irrelevant new features,
[Z] is incremented by one.

- Ifaminor release includes backwards-compatible, API-relevant new features, [Y] is incremented
by one and [Z] is reset to zero.

- Ifamajor release includes backwards-incompatible, API-relevant new features, [X] is
incremented by one and [Y], [Z] are reset to zero.

jO0Q's understanding of backwards-compatibility

Backwards-compatibility is important to jOOQ. You've chosen jOOQ as a strategic SQL engine and you
don't want your SQL to break.

However, there are some elements of API evolution that would be considered backwards-incompatible
in other APIs, but not in jJOOQ. As discussed later on in the section about JOOQ's query DSL API, much
of JOOQ's APl is indeed an internal domain-specific language implemented mostly using Java interfaces.
Adding language elements to these interfaces means any of these actions:

© 2009 - 2024 by Data Geekery™ GmbH. Page 53 /720

https://git-scm.com
https://www.eclipse.org/egit
https://maven.apache.org
https://eclipse.org/m2e
https://github.com/jOOQ/jOOQ
https://maven.apache.org/plugins/maven-eclipse-plugin/
https://semver.org

The jOOQ User Manual 3.15.jO0Q and backwards-compatibility

- Adding methods to the interface
- Overloading methods for convenience
- Changing the type hierarchy of interfaces (including raw type or binary compatibility implications)

It becomes obvious that it would be impossible to add new language elements (e.g. new SQL functions,
new SELECT clauses) to the API without breaking any client code that actually implements those
interfaces. Hence, the following rules should be observed:

- jOOQ's DSL interfaces should not be implemented by client code! Extend only those extension
points that are explicitly documented as "extendable" (e.g. custom QueryParts).

- Generated code implements such interfaces and extends internal classes, and as such is
recommended to be re-generated with a matching code generator version every time the
runtime library is upgraded.

- Binary compatibility can be expected from patch releases, but not from minor releases as it is
not practical to maintain binary compatibility in an internal DSL.

- Source compatibility can be expected from patch and minor releases, the exception being raw
type compatibility (see #11879), and rare exceptions where APl design is clearly lacking.

- Behavioural compatibility can be expected from patch and minor releases.

- AnyjOOQ SPI XYZ that is meant to be implemented ships with a DefaultXYZ or AbstractXYZ,
which can be used safely as a default implementation.

jO0Q-codegen and JO0OQ-meta

While a reasonable amount of care is spent to maintain these two modules under the rules of semantic
versioning, it may well be that minor releases introduce backwards-incompatible changes. This will be
announced in the respective release notes and should be the exception.

© 2009 - 2024 by Data Geekery™ GmbH. Page 54 /720

https://github.com/jOOQ/jOOQ/issues/11879

The jOOQ User Manual 4, SQL building

4. SQL building

SQL is a declarative language that is hard to integrate into procedural, object-oriented, functional or
any other type of programming languages. jJOOQ's philosophy is to give SQL the credit it deserves and
integrate SQL itself as an "internal domain specific language" directly into Java.

With this philosophy in mind, SQL building is the main feature of jOOQ. All other features (such as SOL
execution and code generation) are mere convenience built on top of JOOQ's SQL building capabilities.

This section explains all about the various syntax elements involved with jOOQ's SQL building
capabilities. For a complete overview of all syntax elements, please refer to the manual's sections about
SQL to DSL mapping rules.

4.7. The query DSL type

jOOQ exposes a lot of interfaces and hides most implementation facts from client code. The reasons
for this are:

- Interface-driven design. This allows for modelling queries in a fluent APl most efficiently

- Reduction of complexity for client code.

- APl guarantee. You only depend on the exposed interfaces, not concrete (potentially dialect-
specific) implementations.

The org.joog.impl.DSL class is the main class from where you will create all JOOQ objects. It serves as a
static factory for table expressions, column expressions (or "fields"), conditional expressions and many

other QueryParts.

The static query DSL API

With jOOQ 2.0, static factory methods have been introduced in order to make client code look more
like SQL. Ideally, when working with jOOQ), you will simply static import all methods from the DSL class:

import static org.jooq.inpl.DSL.*;

Note, that when working with Eclipse, you could also add the DSL to your favourites. This will allow to
access functions even more fluently:

concat (trim(FI RST_NAME), trin{LAST_NAME));

/1 ... which is in fact the same as:
DSL. concat (DSL. tri m(FI RST_NAME), DSL.tri nm(LAST_NAME));

© 2009 - 2024 by Data Geekery™ GmbH. Page 55/ 720

https://en.wikipedia.org/wiki/Domain_Specific_Language
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/impl/DSL.html

The jOOQ User Manual 4.1.1. DSL subclasses

4.7.7. DSL subclasses

There are a couple of subclasses for the general query DSL. Each SQL dialect has its own dialect-specific
DSL. For instance, if you're only using the MySQL dialect, you can choose to reference the MySQLDSL
instead of the standard DSL:

The advantage of referencing a dialect-specific DSL lies in the fact that you have access to more
proprietary RDMBS functionality. This may include:

- MySQLU's encryption functions
- PL/SQL constructs, pgplsql, or any other dialect's ROUTINE-language (maybe in the future)

4.2. The DSLContext API

DSLContext references a org.joog.Configuration, an object that configures jOOQ's behaviour when
executing queries (see SQL execution for more details). Unlike the static DSL, the DSLContext allow for
creating SQL statements that are already "configured" and ready for execution.

Fluent creation of a DSLContext object

The DSLContext object can be created fluently from the DSL type:

I/l Create it froma pre-existing configuration
DSLCont ext create = DSL.using(configuration);

I/l Create it from ad-hoc argunents
DSLCont ext create = DSL.using(connection, dialect);

If you do not have a reference to a pre-existing Configuration object (e.g. created from
org.joog.impl.DefaultConfiguration), the various overloaded DSL.using() methods will create one for
you.

Contents of a Configuration object

A Configuration can be supplied with these objects:

© 2009 - 2024 by Data Geekery™ GmbH. Page 56 /720

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Configuration.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/impl/DefaultConfiguration.html

The jOOQ User Manual 4.2.The DSLContext API

- org.jooq.SQLDialect : The dialect of your database. This may be any of the currently supported
database types (see SQL Dialect for more details)

- orgjoog.conf.Settings : An optional runtime configuration (see Custom Settings for more details)

- org.joog.ExecutelistenerProvider : An optional reference to a provider class that can provide
execute listeners to jOOQ (see Executelisteners for more details)

- org.joog.RecordListenerProvider : An optional reference to a provider class that can provide
record listeners to jOOQ (see CRUD SPI: RecordListener for more details)

- org.joog.RecordMapperProvider : An optional reference to a provider class that can provide
record mappers to jOOQ (see for more details)

- Any of these:

* java.sgl.Connection : An optional JDBC Connection that will be re-used for the whole
lifecycle of your Configuration (see Connection vs. DataSource for more details). For
simplicity, this is the use-case referenced from this manual, most of the time.

* java.sgl.DataSource : An optional JDBC DataSource that will be re-used for the whole
lifecycle of your Configuration. If you prefer using DataSources over Connections, jOOQ
will internally fetch new Connections from your DataSource, conveniently closing them
again after query execution. This is particularly useful in Java EE or Spring contexts (see
Connection vs. DataSource for more details)

* org.joog.ConnectionProvider : A custom abstraction that is used by jOOQ to "acquire"
and "release" connections. jOOQ will internally "acquire" new Connections from your
ConnectionProvider, conveniently "releasing" them again after query execution. (see
Connection vs. DataSource for more details)

Usage of DSLContext

Wrapping a Configuration object, a DSLContext can construct statements, for later execution. An
example is given here:

/1 The DSLContext is "configured® with a Connection and a SQLDi al ect
DSLCont ext create = DSL. using(connection, dialect);

/'l This select statenent contains an internal reference to the DSLContext's Configuration:
Sel ect <?> sel ect = create.sel ectOne();

/1 Using the internally referenced Configuration, the select statenent can now be executed:
Resul t<?> result = select.fetch();

Note that you do not need to keep a reference to a DSLContext. You may as well inline your local variable,
and fluently execute a SQL statement as such:

Il Execute a statenent froma single execution chain:
Resul t<?> result =
DSL. usi ng(connection, dialect)

.select()

. f r om(BOOK)

. wher e(BOOK. TI TLE. | i ke(" Ani mal %'))

.fetch();

© 2009 - 2024 by Data Geekery™ GmbH. Page 57 /720

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/SQLDialect.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/conf/Settings.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/ExecuteListenerProvider.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/RecordListenerProvider.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/RecordMapperProvider.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Connection.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/DataSource.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/ConnectionProvider.html

The jOOQ User Manual 4.2.1.SQL Dialect

4.2.1.SQL Dialect

While jOOQ tries to represent the SQL standard as much as possible, many features are vendor-specific
to a given database and to its "SQL dialect". JOOQ models this using the org.jooq.SQLDialect enum type.

The SQL dialect is one of the main attributes of a Configuration. Queries created from DSLContexts will
assume dialect-specific behaviour when rendering SOL and binding bind values.

Some parts of the JOOQ API are officially supported only by a given subset of the supported SQL dialects.
For instance, the Oracle CONNECT BY clause, which is supported by the Oracle and CUBRID databases,
is annotated with a org.joog.Support annotation, as such:

J**
* Add an Oracl e-specific <code>CONNECT BY</code> cl ause to the query
*/

@upport ({ SQLDi al ect. CUBRI D, SQLDi al ect. ORACLE })
Sel ect Connect ByCondi ti onSt ep<R> connect By(Condi tion condition);

jOOQ APl methods which are not annotated with the org.joog.Support annotation, or which are
annotated with the Support annotation, but without any SQL dialects can be safely used in all SQL
dialects. An example for this is the SELECT statement factory method:

/**
* Create a new DSL sel ect statenent.
*/
@uppor t
Sel ect Sel ect St ep<R> sel ect (Fi el d<?>... fields);

jO0Q's SQL clause emulation capabilities

The aforementioned Support annotation does not only designate, which databases natively support a
feature. It also indicates that a feature is emulated by jOOQ for some databases lacking this feature. An
example of this is the DISTINCT predicate, a predicate syntax defined by SQL:1999 and implemented
only by H2, HSQLDB, and Postgres:

A 1S DI STINCT FROM B

Nevertheless, the IS DISTINCT FROM predicate is supported by jOOQ in all dialects, as its semantics can
be expressed with an equivalent CASE expression. For more details, see the manual's section about
the DISTINCT predicate.

jO0Q and the Oracle SQL dialect

Oracle SQL is much more expressive than many other SQL dialects. It features many unique keywords,
clauses and functions that are out of scope for the SQL standard. Some examples for this are

- The CONNECT BY clause, for hierarchical queries

- The PIVOT keyword for creating PIVOT tables

- Packages, object-oriented user-defined types, member procedures as described in the section
about stored procedures and functions

- Advanced analytical functions as described in the section about window functions

© 2009 - 2024 by Data Geekery™ GmbH. Page 58 /720

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/SQLDialect.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Support.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Support.html

The jOOQ User Manual 4.2.2. SQL Dialect Family

jOOQ has a historic affinity to Oracle's SQL extensions. If something is supported in Oracle SQL, it has
a high probability of making it into the jJOOQ AP

4.2.2. SQL Dialect Family

In jJOOQ 3.1, the notion of a SQLDialect.family() was introduced, in order to group several similar SOL
dialects into a common family. An example for this is SQL Server, which is supported by jJOOQ in various
Versions:

- SQL Server: The "version-less" SQL Server version. This always maps to the latest supported
version of SQL Server

- SQL Server 2012: The SQL Server version 2012

- SQL Server 2008: The SQL Server version 2008

In the above list, SQLSERVER is both a dialect and a family of three dialects. This distinction is used
internally by jOOQ to distinguish whether to use the OFFSET .. FETCH clause (SQL Server 2012), or
whether to emulate it using ROW_NUMBER() OVER() (SQL Server 2008).

4.72.3. Connection vs. DataSource

Interact with JDBC Connections

While you can use jOOQ for SQL building only, you can also run queries against a JDBC
java.sgl.Connection. Internally, jJOOQ creates java.sgl.Statement or java.sql.PreparedStatement objects
from such a Connection, in order to execute statements. The normal operation mode is to provide a
Configuration with a JDBC Connection, whose lifecycle you will control yourself. This means that jOOQ
will not actively close connections, rollback or commit transactions.

Note, in this case, jJOOQ will internally use a org.joog.impl.DefaultConnectionProvider, which you can
reference directly if you prefer that. The DefaultConnectionProvider exposes various transaction-
control methods, such as commit(), rollback(), etc.

Interact with JDBC DataSources

If you're in a Java EE or Spring context, however, you may wish to use a javax.sgl.DataSource instead.
Connections obtained from such a DataSource will be closed after query execution by jOOQ. The
semantics of such a close operation should be the returning of the connection into a connection pool,
not the actual closing of the underlying connection. Typically, this makes sense in an environment using
distributed JTA transactions.

Note, in this case, jOOQ will internally use a org.joog.impl.DataSourceConnectionProvider, which you
can reference directly if you prefer that.

Inject custom behaviour

If your specific environment works differently from any of the above approaches, you can inject your own
custom implementation of a ConnectionProvider into jOOQ. This is the API contract you have to fulfil:

© 2009 - 2024 by Data Geekery™ GmbH. Page 59/ 720

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/SQLDialect.html#SQLSERVER
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/SQLDialect.html#SQLSERVER2012
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/SQLDialect.html#SQLSERVER2008
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Connection.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Statement.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/PreparedStatement.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/impl/DefaultConnectionProvider.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/javax/sql/DataSource.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/impl/DataSourceConnectionProvider.html

The jOOQ User Manual 4.2.4. Custom data

public interface ConnectionProvider {

/1l Provide jOOQ with a connection
Connection acquire() throws DataAccessException;

I/ Get a connection back fromjOOQ
voi d rel ease(Connection connection) throws DataAccessException;

4.2.4. Custom data

In advanced use cases of integrating your application with jJOOQ, you may want to put custom data into
your Configuration, which you can then access from your...

- Custom Executelisteners
- Custom QueryParts

Here is an example of how to use the custom data APIl. Let's assume that you have written an
Executelistener, that prevents INSERT statements, when a given flag is set to true:

public class NolnsertListener extends Defaul t Executelistener {

@verride
public void start(ExecuteContext ctx) {

/Il This listener is active only, when your customflag is set to true
if (Bool ean. TRUE. equal s(ctx. configuration().data("com exanpl e. ny-nanespace. no-inserts"))) {

/Il If active, fail this execution, if an INSERT statenment is being executed
if (ctx.query() instanceof Insert) {

t hrow new Dat aAccessException("“No | NSERT statenents al |l owed");
}

See the manual's section about Executelisteners to learn more about how to implement an
ExecuteListener.

Now, the above listener can be added to your Configuration, but you will also need to pass the flag to
the Configuration, in order for the listener to work:

/1l Create your Configuration
Configuration configuration = new Defaul t Configuration().set(connection).set(dialect);

/1 Set a new execute |istener provider onto the configuration:
configuration. set (new Def aul t Execut eLi st ener Provi der (new Nol nsertListener()));

// Use any String literal to identify your custom data
configuration. data("com exanpl e. ny- nanmespace. no-i nserts", true);

/1 Try to execute an | NSERT statenent
try {
DSL. usi ng(confi guration)
.insertlnto(AUTHOR, AUTHOR | D, AUTHOR LAST_NAME)
.values(1, "Owell")
.execute();

/1 You shouldn't get here
Assert.fail();
}
/1 Your NolnsertListener should be throwi ng this exception here:

catch (DataAccessException expected) {
Assert.assert Equal s("No | NSERT statenents all owed", expected. get Message());
}

Using the data() methods, you can store and retrieve custom data in your Configurations.

© 2009 - 2024 by Data Geekery™ GmbH. Page 60 /720

The jOOQ User Manual 4.2.5. Custom Executelisteners

4.2.5. Custom ExecutelListeners

Executelisteners are a useful tool to...

- implement custom logging
- apply triggers written in Java
- collect query execution statistics

Executelisteners are hooked into your Configuration by returning them from an
org.jooq.ExecuteListenerProvider:

I/ Create your Configuration
Configuration configuration = new Defaul t Configuration().set(connection).set(dialect);

/1 Hook your listener providers into the configuration:

configuration. set (
new Def aul t Execut eLi st ener Provi der (new MyFi rstListener()),
new Def aul t Execut eLi st ener Provi der (new Per f or nancelLoggi ngLi st ener()),
new Def aul t Execut eLi st ener Provi der (new Nol nsertLi stener())

IE

See the manual's section about ExecutelListeners to see examples of such listener implementations.

4.2.6. Custom Settings

The jOOQ Configuration allows for some optional configuration elements to be used by advanced users.
The org.joog.conf.Settings class is a JAXB-annotated type, that can be provided to a Configuration in
several ways:

- In the DSLContext constructor (DSL.using()). This will override default settings below

- inthe orgjooqg.impl.DefaultConfiguration constructor. This will override default settings below
- From a location specified by a JVM parameter: -Dorg.jooq.settings

- From the classpath at /joog-settings.xml

- From the settings defaults, as specified in https://www.joog.org/xsd/joog-runtime-3.11.0.xsd

The most specific settings for a given context will apply.

If you wish to configure your settings through XML, but explicitly load them for a given Configuration,
you can do so as well, using JAXB:

Settings settings = JAXB.unnarshal (new File("/path/to/settings.xm "), Settings.class);

Example

For example, if you want to indicate to jOOQ, that it should inline all bind variables, and execute static
java.sgl.Statement instead of binding its variables to java.sgl.PreparedStatement, you can do so by
creating the following DSLContext:

© 2009 - 2024 by Data Geekery™ GmbH. Page 61 /720

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/ExecuteListenerProvider.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/conf/Settings.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/impl/DefaultConfiguration.html
https://www.jooq.org/xsd/jooq-runtime-3.11.0.xsd
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Statement.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/PreparedStatement.html

The jOOQ User Manual 4.2.6.1. Auto-attach Records

Settings settings = new Settings();
settings. set St at enent Type(St at ement Type. STATI C_STATEMENT) ;
DSLCont ext create = DSL.using(connection, dialect, settings);

More details

Please refer to the jOOQ runtime configuration XSD for more details:
https://www.joog.org/xsd/joog-runtime-3.11.0.xsd

4.2.6.1. Auto-attach Records

By default, all records fetched through jOOQ are "attached" to the configuration that created them. This
allows for features like updatable records as can be seen here:

Aut hor Record aut hor =

DSL. usi ng(configuration) // This configuration will be attached to any record produced by the bel ow query.
. sel ect Fr on{ AUTHOR)
. wher e(AUTHOR. | D. eq(1))
.fetchOne();

aut hor . set Last Name("Smi th");
author.store(); // This store call operates on the "attached" configuration.

In some cases (e.g. when serialising records), it may be desirable not to attach the Configuration that
Created a record to the record. This can be achieved with the attachRecords setting:

Programmatic configuration

Settings settings = new Settings()
.withAttachRecords(false); // Defaults to true

XML configuration

<settings xm ns="http://wwmv.jooq.org/xsd/joog-runtinme-3.11.0.xsd">
<at t achRecor ds>f al se</ att achRecor ds>
</ settings>

4.2.6.2. Backslash Escaping

Some databases (mainly MySQL and MariaDB) unfortunately chose to go an alternative, non-SQL-
standard route when escaping string literals. Here's an example of how to escape a string containing
apostrophes in different dialects:

SELECT 'I'"msure this is OK AS val -- Standard SQL escapi ng of apostrophe by doubling it.
SELECT 'I\'mcertain this causes trouble' AS val -- Vendor-specific escaping of apostrophe by using a backsl ash.

As most databases don't support backslash escaping (and MySQL also allows for turning it off!), jJOOQ
by default also doesn't support it when inlining bind variables. However, this can lead to SQL injection
vulnerabilities and syntax errors when not dealing with it carefully!

This feature is turned on by default and for historic reasons for MySQL and MariaDB.

© 2009 - 2024 by Data Geekery™ GmbH. Page 62 /720

https://www.jooq.org/xsd/jooq-runtime-3.11.0.xsd

The jOOQ User Manual 4.2.6.3. Execute Logging

- DEFAULT (the - surprise! - default): Turns the feature ON for MySQL and MariaDB and OFF for all
other dialects

- ON: Turn the feature on.

- OFF: Turn the feature off.

Example configuration

Settings settings = new Settings()
.wi t hBacksl ashEscapi ng(Backsl ashEscapi ng. OFF); // Default to DEFAULT

4.2.6.3. Execute Logging

The executelogging setting turns off the default loggin implemented through
org.joog.tools.Loggerlistener

Programmatic configuration

Settings settings = new Settings()
. Wi t hExecut eLoggi ng(false); // Defaults to true

XML configuration

<settings xm ns="http://ww.jooq.org/xsd/joog-runtinme-3.11.0.xsd">
<execut eLoggi ng>f al se</ execut eLoggi ng>
</ settings>

4.2.6.4. Fetch Warnings

Apart from JDBC exceptions, there is also the possibility to handle java.sgl.SQLWarning, which are made
available to jOOQ users through the java.sgl.Executelistener SPI and the log

Users who do not wish to get these notifications (e.g. for performance reasons), may turn off fetching
of warnings through the fetchWarnings setting:

Programmatic configuration

Settings settings = new Settings()
.wi t hFet chWarni ngs(false); // Defaults to true

XML configuration

<settings xm ns="http://ww.jooq.org/xsd/jooq-runtinme-3.11.0.xsd">
<f et chWar ni ngs>f al se</ f et chWar ni ngs>
</ settings>

© 2009 - 2024 by Data Geekery™ GmbH. Page 63 /720

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/tools/LoggerListener.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/SQLWarning.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/ExecuteListener.html

The jOOQ User Manual 4.2.6.5. Identifier style

4.2.6.5. |dentifier style

By default, JOOQ will always generate quoted names for all identifiers (even if this manual omits this
for readability). For instance:

SELECT "TABLE"."COLUW' FROM "TABLE" -- SQL standard style
SELECT "TABLE . COLUW FROM "TABLE -- M/SQL style
SELECT [TABLE].[COLUMN] FROM [TABLE] -- SQL Server style

Quoting has the following effect on identifiers in most (but not all) databases:

- It allows for using reserved names as object names, e.g. a table called "FROM" is usually possible
only when quoted.

- It allows for using special characters in object names, e.g. a column called "FIRST NAME" can be
achieved only with quoting.

- Itturns what are mostly case-insensitive identifiers into case-sensitive ones, e.g. "name" and
"NAME" are different identifiers, whereas name and NAME are not. Please consider your
database manual to learn what the proper default case and default case sensitivity is.

The renderNameStyle setting allows for overriding the name of all identifiers in jOOQ to a consistent
style. Possible options are:

- QUOTED (the default): This will generate all names in their proper case with quotes around
them.

- AS_IS: This will generate all names in their proper case without quotes.

- LOWER: This will transform all names to lower case.

- UPPER: This will transform all names to upper case.

Programmatic configuration

Settings settings = new Settings()
.wi t hRender NaneSt yl e(Render NaneStyl e. AS |S); // Defaults to QUOTED

XML configuration

<settings xm ns="http://ww.jooq.org/xsd/jooqg-runtine-3.11.0.xsd">
<render NaneSt yl e>AS_| S</ r ender NameSt yl e>
</ settings>

4.2.6.6. IN-list Padding

Databases that feature a cursor cache / statement cache (e.g. Oracle, SQL Server, DB2, etc.) are highly
optimised for prepared statement re-use. When a client sends a prepared statement to the server, the
server will go to the cache and look up whether there already exists a previously calculated execution
plan for the statement (i.e. the SQL string). This is called a "soft-parse" (in Oracle). If not, the execution
plan is calculated on the fly. This is called a "hard-parse" (in Oracle).

© 2009 - 2024 by Data Geekery™ GmbH. Page 64 /720

The jOOQ User Manual 4.2.6.7.)DBC Flags

Preventing hard-parses is extremely important in high throughput OLTP systems where queries are
usually not very complex but are run millions of times in a short amount of time. Using bind variables,
this is usually not a problem, with the exception of the IN predicate, which generates different SQL
strings even when using bind variables:

- Al of these are different SQL statenents:
SELECT * FROM AUTHOR WHERE I D IN (?)

SELECT * FROM AUTHOR WHERE ID IN (?, ?)

SELECT * FROM AUTHOR WHERE ID IN (?, 2, ?)
SELECT * FROM AUTHOR WHERE ID IN (2, 2, 2, ?)
SELECT * FROM AUTHOR WHERE ID IN (?, 2, 2, 2, ?)

This problem may not be obvious to Java / jOOQ developers, as they are always produced from the
same jOOQ statement:

/1 Al of these are the sane jOOQ statenent
DSL. usi ng(confi gurati on)
.select()
. f r om(AUTHOR)
. wher e(AUTHOR. I D.i n(col | ection))
.fetch();

Depending on the possible sizes of the collection, it may be worth exploring using arrays or temporary
tables as a workaround, or to reuse the original query that produced the set of IDs in the first place
(through a semi-join). But sometimes, this is not possible. In this case, users can opt in to a third
workaround: enabling the inListPadding setting. If enabled, jOOQ will "pad" the IN list to a length that is
a power of two (configurable with Settings.inListPadBase). So, the original queries would look like this
instead:

- Original -- Padded
SELECT * FROM AUTHOR WHERE ID IN (?) SELECT * FROM AUTHOR WHERE ID IN (?)
SELECT * FROM AUTHOR WHERE ID IN (?, ?) SELECT * FROM AUTHOR WHERE ID IN (?, ?)
SELECT * FROM AUTHOR WHERE ID IN (?, ?, ?) SELECT * FROM AUTHOR WHERE ID IN (?, ?, 2, ?)
SELECT * FROM AUTHOR WHERE ID IN (?, 2, ?, ?) SELECT * FROM AUTHOR WHERE ID IN (?, ?, 2, ?)
SELECT * FROM AUTHOR WHERE ID IN (?, 2, ?, ?, ?) SELECT * FROM AUTHOR WHERE ID IN (?, ?, 2, ?, 2, ?, 2, ?)
SELECT * FROM AUTHOR WHERE ID IN (?, 2, 2, ?2, 2, ?) SELECT * FROM AUTHOR WHERE ID IN (?, ?, 2, ?, 2, ?, 2, ?)

This technique will drastically reduce the number of possible SQL strings without impairing too much
the usual cases where the IN list is small. When padding, the last bind variable will simply be repeated
many times.

Usually, there is a better way - use this as a last resort!

Programmatic configuration

Settings settings = new Settings()
.withlnListPadding(true) // Default to false
.wi thlnLi st PadBase(4); I/ Default to 2

XML configuration

<settings xm ns="http://ww.jooq.org/xsd/joog-runtine-3.11.0.xsd">
<i nLi st Paddi ng>t r ue</ i nLi st Paddi ng>
</ settings>

4.2.6.7. JDBC Flags

JDBC statements feature a couple of flags that influence the execution of such a statement. Each of
these flags can be configured through jOOQ's org.joog.Query and org.joog.ResultQuery on a statement-

© 2009 - 2024 by Data Geekery™ GmbH. Page 65/ 720

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Query.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/ResultQuery.html

The jOOQ User Manual 4.2.6.8. Keyword style

per-statement basis, but there's also the possibility to centrally specify a value for these flags. These
are the three flags:

- queryTimeout: The JDBC statement timeout in seconds. Corresponds to Query.queryTimeout()
or Statement.setQueryTimeout()

- maxRows: The maximum number of rows returned by the JDBC statement. Corresponds to
ResultQuery.maxRows() or Statement.setMaxRows()

- fetchSize: The number of rows to be buffered by the JDBC ResultSet. Corresponds to
ResultQuery.fetchSize() or Statement.setFetchSize()

All of these flags are JDBC-only features with no direct effect on jOOQ. JOOQ only passes them through
to the underlying statement.

Programmatic configuration

Settings settings = new Settings()
.wi t hQuer yTi meout (5)
. Wi t hMaxRows (1000)
.wi t hFet chSi ze(20) ;

XML configuration

<settings xm ns="http://ww.jooq.org/xsd/jooq-runtinme-3.11.0.xsd">
<quer yTi neout >5</ quer yTi neout >
<maxRows>1000</ maxRows >
<f et chSi ze>20</f et chSi ze>

</ settings>

4.2.6.8. Keyword style

In all SQL dialects, keywords are case insensitive, and this is also the default in jJOOQ, which mostly
generates lower-case keywords.

Users may wish to adapt this and they have these options for the renderKeywordStyle setting:

- AS_IS (the default): Generate keywords as they are defined in the codebase (mostly lower case).
- LOWER: Generate keywords in lower case.

- UPPER: Generate keywords in upper case.

- PASCAL: Generate keywords in pascal case.

Programmatic configuration

Settings settings = new Settings()
.wi t hRender Keywor dSt yl e(Render Keywor dSt yl e. UPPER); // Defaults to AS IS

XML configuration

<settings xm ns="http://wwm. jooq.org/xsd/jooq-runtinme-3.11.0.xsd">
<r ender Keywor dSt yl e>UPPER</ r ender Keywor dSt yl e>
</ settings>

© 2009 - 2024 by Data Geekery™ GmbH. Page 66 /720

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Query.html#queryTimeout(int)
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Statement.html#setQueryTimeout(int)
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/ResultQuery.html#maxRows(int)
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Statement.html#setMaxRows(int)
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/ResultQuery.html#fetchSize(int)
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Statement.html#setFetchSize(int)

The jOOQ User Manual 4.2.6.9. Map JPA Annotations

4.2.6.9. Map JPA Annotations

The org.joog.impl.DefaultRecordMapper supports basic JPA mapping (mostly @Table and @Column
annotations). Looking up these annotations costs a slight extra overhead (mostly taken care of through
reflection caching). It can be turned off using the mapJPAAnNotations setting:

Programmatic configuration

Settings settings = new Settings()
.wi t hMapJPAAnnot ations(false); // Defaults to true

XML configuration

<settings xm ns="http://ww.jooq.org/xsd/jooq-runtine-3.11.0.xsd">
<mapJPAAnnot at i ons>f al se</ mapJPAAnnot at i ons>
</ settings>

4.2.6.10. Object qualification

By default, jOOQ fully qualifies all objects with their catalog and schema names, if such qualification
is made available by the code generator. For instance, the following SQL statement containing full
qualification may be produced by jOOQ code with seemingly no qualification:

- Full qualification on columms and tables DSL. usi ng(confi gurati on)
SELECT cat al og. scheng. t abl e. col um .sel ect (TABLE. COLUMN) // Columm only qualified with table
FROM cat al og. schens. t abl e . fron{ TABLE) /1 No qualification on table

While the jJOOQ code is also implicitly fully qualified (see implied imports), it may not be desireable to
use fully qualified object names in SQL. The renderCatalog and renderSchema settings are used for this.

Example configuration

new Settings()
.wi t hRender Catal og(false) // Defaults to true
.wi t hRender Schema(fal se); // Defaults to true

More sophisticated multitenancy approaches are available through the render mapping feature.

4.2.6.17. Optimistic Locking

There are two settings governing the behaviour of the jOOQ optimistic locking feature:

- executeWithOptimisticLocking: This allows for turning off the feature entirely.
- executeWithOptimisticLockingExcludeUnversioned: This allows for turning off the feature for
updatable records who are not explicitly versioned.

Programmatic configuration

© 2009 - 2024 by Data Geekery™ GmbH. Page 67 /720

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/impl/DefaultRecordMapper.html

The jOOQ User Manual

Settings settings = new Settings()
.wi t hExecut eW t hOpti mi sti cLocki ng(true)

.wi t hExecut eW t hOpti mi sti cLocki ngExcl udeUnver si oned(f al se);

XML configuration

<settings xm ns="http://ww.jooq.org/xsd/joog-runtine-3.11.0.xsd">
<executeW t hOpti m sti cLocki ng>true</executeWthOptim sticLocking>

4.2.6.12. Parameter types

/1l Defaults to false
/1l Defaults to false

<executeWt hOpti m sti cLocki ngExcl udeUnver si oned>f al se</ execut eW t hOpti mi sti cLocki ngExcl udeUnver si oned>

</ settings>

For more details, please refer to the manual's section about the optimistic locking feature.

4.2.6.12. Parameter types

Bind values or bind parameters come in different flavours in different SQL databases. JDBC standardises
on their syntax by allowing only ? (question mark) characters as placeholders for bind variables. Thus,
jOOQ, by default, generates ? placeholders for JDBC consumptions.

Users who wish to use jOOQ with a different backend than JDBC can specify that all JOOQ bind values,
including indexed parameters and named parameters generate alternative strings, other than ?. These

are the current options:

- INDEXED (the default): Generates indexed parameter placeholders using ?.

- NAMED: Generates named parameter placeholders, such as :param for parameters that are
named explicitly or :1 for unnamed, indexed parameters.

- NAMED_OR_INLINED: Generates named parameter placeholders for parameters that are named

explicitly and inlines all unnamed parameters.

- INLINED: Inlines all parameters.

An example:

- | NDEXED
SELECT FIRST_NAME || ? FROM AUTHOR WHERE ID = ?

- NAMED

SELECT FIRST_NAME || :1 FROM AUTHOR WHERE ID = :x
- NAMED OR_I NLI NED

SELECT FIRST_NAME || 'x' FROM AUTHOR WHERE ID = : x
- INLI NED

SELECT FIRST_NAME || 'x' FROM AUTHOR WHERE I D = 42

Programmatic configuration

Settings settings = new Settings()

. wi t hPar anilype(Par aniType. NAVED) ; // Defaults to | NDEXED

XML configuration

<settings xm ns="http://wwm. jooq. org/xsd/jooq-runtinme-3.11.0.xsd">

<par anlrype>NAVED</ par anilype>
</ settings>

ParanxString> x = val ("x");
Paranxl nteger> i = paran("x", 42);

DSL. usi ng(confi guration)
. sel ect (FI RST_NAME. concat (x))
. fron{ AUTHOR)
.where(ID. eq(i))
.fetch();

The following setting statementType may override this setting.

© 2009 - 2024 by Data Geekery™ GmbH.

Page 68 /720

The jOOQ User Manual 4.2.6.13. Reflection caching

4.2.6.13. Reflection caching

All operations of the DefaultRecordMapper are cached in the Configuration by default for improved
mapping and reflection speed. Users who prefer to override this cache, or work with their own custom
record mapper provider may wish to turn off the out-of-the-box caching feature.

Programmatic configuration

Settings settings = new Settings()
.withRefl ectionCaching(false); // Defaults to true

XML configuration

<settings xm ns="http://ww.jooq.org/xsd/jooq-runtine-3.11.0.xsd">
<refl ecti onCachi ng>f al se</refl ecti onCachi ng>
</ settings>

4.2.6.14. Return All Columns On Store

When using the updatable records feature, jJOOQ always fetches the generated identity value, if such
a value is available.

The identity value is not the only value that is generated by default. Specifically, there may be triggers
that are used for auditing or other reasons, which generate LAST_UPDATE or LAST_UPDATE_BY values
in a record. Users who wish to also automatically fetch these values after all store(), insert(), or update()
calls may do so by specifying the returnAllOnUpdatableRecord setting. This setting depends on the
availability of INSERT .. RETURNING, UPDATE .. RETURNING, and DELETE .. RETURNING statements,
which are not available from all databases, in case of which a refresh() call may be issued, creating a
separate round trip to the server.

Programmatic configuration

Settings settings = new Settings()
. Wi t hRet ur nAl | OnUpdat abl eRecord(true); // Defaults to false

XML configuration

<settings xm ns="http://ww.jooq.org/xsd/joog-runtine-3.11.0.xsd">
<r et ur nAl | OnUpdat abl eRecor d>t r ue</r et ur nAl | OnUpdat abl eRecor d>
</ settings>

© 2009 - 2024 by Data Geekery™ GmbH. Page 69/ 720

The jOOQ User Manual 4.2.6.15. Runtime schema and table mapping

4.2.6.15. Runtime schema and table mapping

Mapping your DEV schema to a productive environment

You may wish to design your database in a way that you have several instances of your schema. This
is useful when you want to cleanly separate data belonging to several customers / organisation units /
branches / users and put each of those entities' data in a separate database or schema.

In our AUTHOR example this would mean that you provide a book reference database to several
companies, such as My Book World and Books R Us. In that case, you'll probably have a schema setup
like this:

- DEV: Your development schema. This will be the schema that you base code generation upon,
with jOOQ

- MY_BOOK_WORLD: The schema instance for My Book World

- BOOKS_R_US: The schema instance for Books R Us

Mapping DEV to MY_BOOK_WORLD with jOOQ

When a user from My Book World logs in, you want them to access the MY_BOOK_WORLD schema
using classes generated from DEV. This can be achieved with the org.joog.conf.RenderMapping class,
that you can equip your Configuration's settings with. Take the following example:

Example configuration

Settings settings = new Settings()
.wi t hRender Mappi ng(new Render Mappi ng()
.wi t hSchemat a(
new MappedSchema(). wi t hl nput (" DEV")
. Wit hQut put (" MY_BOOK_WORLD") ,
new MappedSchema(). withl nput ("LOG")
. Wi t hQut put (" MY_BOOK_WORLD LOG')));

XML configuration

<settings xm ns="http://ww. jooq.org/xsd/jooq-runtinme-3.11.0.xsd">
<r ender Mappi ng>
<schemat a>
<schema>
<i nput >DEV</ i nput >
<out put >My_BOOK_WORLD</ out put >
</ schema>
<schema>
<i nput >LOG</ i nput >
<out put >My_BOOK_WORLD_LOG</ out put >
</ schema>
</ schenat a>
</ render Mappi ng>
</ settings>

The query executed with a Configuration equipped with the above mapping will in fact produce this
SQL statement:

SELECT * DSL. usi ng(connection, dialect, settings)
FROM MY_BOOK_WORLD. AUTHOR . sel ect Fr on{ DEV. AUTHOR)

© 2009 - 2024 by Data Geekery™ GmbH. Page 70 /720

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/conf/RenderMapping.html

The jOOQ User Manual 4.2.6.15. Runtime schema and table mapping

This works because AUTHOR was generated from the DEV schema, which is mapped to the
MY_BOOK_WORLD schema by the above settings.

Mapping of tables

Not only schemata can be mapped, but also tables. If you are not the owner of the database
your application connects to, you might need to install your schema with some sort of prefix to
every table. In our examples, this might mean that you will have to map DEV.AUTHOR to something
MY_BOOK_WORLD.MY_APP__AUTHOR, where MY_APP__is a prefix applied to all of your tables. This can
be achieved by creating the following mapping:

Example configuration

Settings settings = new Settings()
. wi t hRender Mappi ng(new Render Mappi ng()
.wi t hSchemat a(
new MappedSchema() . wi t hl nput (" DEV")
.wi t hTabl es(
new MappedTabl e(). wi t hl nput (" AUTHOR")
. Wi t hQut put (" MY_APP__AUTHOR'))));

XML configuration

<settings xm ns="http://ww.jooq.org/xsd/joog-runtine-3.11.0.xsd">
<r ender Mappi ng>
<schemat a>
<schema>
<i nput >DEV</ i nput >
<t abl es>
<t abl e>
<i nput >AUTHOR</ i nput >
<out put >MY_APP__ AUTHOR</ out put >
</tabl e>
</tabl es>
</ schena>
</ schemat a>
</ render Mappi ng>
</ settings>

The query executed with a Configuration equipped with the above mapping will in fact produce this
SQL statement:

SELECT * FROM DEV. MY_APP__AUTHOR

Table mapping and schema mapping can be applied independently, by specifying several
MappedSchema entries in the above configuration. jJOOQ will process them in order of appearance and
map at first match. Note that you can always omit a MappedSchema's output value, in case of which,
only the table mapping is applied.

Using regular expressions

All of the above examples were using 1:1 constant name mappings where the input and output schema
or table names are fixed by the configuration. With jOOQ 3.8, regular expression can be used as well
for mapping, for example:

Example configuration

© 2009 - 2024 by Data Geekery™ GmbH. Page 71 /720

The jOOQ User Manual 4.2.6.16. Scalar subqueries for stored functions

Settings settings = new Settings()
. wi t hRender Mappi ng(new Render Mappi ng()
.wi t hSchemat a(
new MappedSchema() . wi t hl nput Expressi on(Pattern. conpile("DEV_(.*)"))
. wi t hQut put (" PROD_$1")
.wi t hTabl es(
new MappedTabl e().w t hl nput Expressi on(Pattern. conpile("DEV_(.*)"))
. Wit hQut put ("PROD_$1"))));

XML configuration

<settings xm ns="http://ww.jooq.org/xsd/joog-runtine-3.11.0.xsd">
<r ender Mappi ng>
<schemat a>
<schema>
<i nput Expr essi on>DEV_(. *) </ i nput Expr essi on>
<out put >PROD_$1</ out put >
<t abl es>
<t abl e>
<i nput Expr essi on>DEV_(. *) </ i nput Expr essi on>
<out put >PRCD_$1</ out put >
</t abl e>
</tabl es>
</ schena>
</ schemat a>
</ render Mappi ng>
</ settings>

The only difference to the constant version is that the input field is replaced by the inputExpression field
of type java.util.regex.Pattern, in case of which the meaning of the output field is a pattern replacement,
not a constant replacement.

Hard-wiring mappings at code-generation time

Note that the manual's section about code generation schema mapping explains how you can hard-
wire your catalog, schema and table mappings at code generation time.

Limitations

Mapped objects need to be known to the jOOQ org.joog.RenderContext, which means that for example
plain SQL templates and their contents cannot be mapped. See also features requiring code generation
for more details.

4.2.6.16. Scalar subqgueries for stored functions

This setting is useful mostly for the Oracle database, which implements a feature called scalar subguery
caching, which is a good tool to avoid the expensive PL/SQL-to-SQL context switch when predicates
make use of stored function calls.

With this setting in place, all stored function calls embedded in SQL statements will be wrapped in a
scalar subquery:

SELECT DSL. usi ng(confi gurati on)
(SELECT ny_package. f or mat (LANGUAGE | D) FROM dual) . sel ect (MyPackage. f or mat (BOOK. LANGUAGE_I D))
FROM BOOK . f r om(BOOK)

If our table contains thousands of books, but only a dozen of LANGUAGE_ID values, then with scalar
subquery caching, we can avoid most of the function calls and cache the result per LANGUAGE_ID.

Example configuration

© 2009 - 2024 by Data Geekery™ GmbH. Page 72 /720

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Pattern.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/RenderContext.html
https://blog.jooq.org/oracle-scalar-subquery-caching/
https://blog.jooq.org/oracle-scalar-subquery-caching/

The jOOQ User Manual 4.2.6.17. Statement Type

Settings settings = new Settings()
.wi t hRender Scal ar Subqueri esFor St or edFuncti ons(true);

4.2.6.17. Statement Type

JDBC knows two types of statements:

- Java.sgl.PreparedStatement: This allows for sending bind variables to the server. JOOQ uses
prepared statements by default.

- Java.sgl.Statement: Also "static statement”. These do not support bind variables and may be
useful for one-shot commands like DDL statements.

The statementType setting allows for overriding the default of using prepared statements internally.
There are two possible options for this setting:

- PREPARED_STATEMENT (the default): Use prepared statements.
- STATIC_STATEMENT: Use static statements. This enforces the paramType == INLINED. See
parameter types

Programmatic configuration

Settings settings = new Settings()
.wi t hSt at enent Type(St at enent Type. STATI C_STATEMENT); // Defaults to PREPARED STATEMENT

XML configuration

<settings xm ns="http://ww.jooq.org/xsd/joog-runtine-3.11.0.xsd">
<st at enent Type>STATI C_STATEMENT</ st at enent Type>
</ settings>

4.2.6.18. Updatable Primary Keys

In most database design guidelines, primary key values are expected to never change - an assumption
that is essential to a normalised database.

As always, there are exceptions to these rules, and users may wish to allow for updatable primary
key values in the updatable records feature (note: any value can always be updated through ordinary
update statements). An example:

Aut hor Record aut hor =

DSL. usi ng(configuration) // This configuration will be attached to any record produced by the bel ow query.
. sel ect Fr on{ AUTHOR)
. wher e(AUTHOR. | D. eq(1))
.fetchOne();

aut hor. set1d(2);
aut hor.store(); // The behaviour of this store call is governed by the updatabl ePrimaryKeys flag

The above store call depends on the value of the updatablePrimaryKeys flag:

© 2009 - 2024 by Data Geekery™ GmbH. Page 73 /720

https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/PreparedStatement.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Statement.html

The jOOQ User Manual 4.2.7. Thread safety

- false (the default): Since immutability of primary keys is assumed, the store call will create a new
record (a copy) with the new primary key value.

- true: Since mutablity of primary keys is allowed, the store call will change the primary key value
from 1 to 2.

Programmatic configuration

Settings settings = new Settings()
.wi t hUpdat abl ePri maryKeys(true); // Defaults to false

XML configuration

<settings xm ns="http://wwm. jooq. org/xsd/jooq-runtinme-3.11.0.xsd">
<updat abl ePri mar yKeys>t r ue</ updat abl ePri mar yKeys>
</ settings>

4.2.7. Thread safety

org.jooqg.Configuration, and by consequence org.joog.DSLContext, make no thread safety guarantees,
but by carefully observing a few rules, they can be shared in a thread safe way. We encourage sharing
Configuration instances, because they contain caches for work not worth repeating, such as reflection
field and method lookups for org.joog.impl.DefaultRecordMapper. If you're using Spring or CDI for
dependency injection, you will want to be able to inject a DSLContext instance everywhere you use it.

The following needs to be considered when attempting to share Configuration and DSLContext among
threads:

- Configuration is mutable for historic reasons. Calls to various Configuration.set() methods must
be avoided after initialisation, should a Configuration (and by consequence DSLContext) instance
be shared among threads. If you wish to modify some elements of a Configuration for single use,
use the Configuration.derive() methods instead, which create a copy.

- Configuration components, such as org.joog.conf.Settings are mutable as well. The same rules
for modification apply here.

- Configuration allows for supplying user-defined SPI implementations (see above for examples).
All of these must be thread safe as well, for their wrapping Configuration to be thread safe. If you
are using a org.joog.impl.DataSourceConnectionProvider, for instance, you must make sure that
your javax.sgl.DataSource is thread safe as well. This is usually the case when you use a third
party connection pool.

As can be seen above, Configuration was designed to work in a thread safe way, despite it not making
any such guarantee.

4.3. SQL Statements (DML)

jOOQ currently supports 5 types of SQL statements. All of these statements are constructed from a
DSLContext instance with an optional JDBC Connection or DataSource. If supplied with a Connection or
DataSource, they can be executed. Depending on the query type, executed queries can return results.

© 2009 - 2024 by Data Geekery™ GmbH. Page 74 /720

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Configuration.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/DSLContext.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/impl/DefaultRecordMapper.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/conf/Settings.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/impl/DataSourceConnectionProvider.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/javax/sql/DataSource.html

The jOOQ User Manual 4.3.1.j00Q's DSL and model API

4.3.1.]00Q's DSL and model API

jOOQ ships with its own DSL (or Domain Specific Language) that emulates SQL in Java. This means,
that you can write SQL statements almost as if Java natively supported it, just like .NET's C# does with
LINQ to SQL.

Here is an example to illustrate what that means:

- Select all books by authors born after 1920, Resul t <Record> result =
- naned "Paul 0" from a catal ogue: create.sel ect()
SELECT * . fron{ AUTHOR. as("a"))
FROM aut hor a .join(BOXK. as("b")).on(a.!D. eq(b. AUTHOR I D))
JO N book b ON a.id = b.author_id . wher e(a. YEAR_OF_BI RTH. gt (1920)
WHERE a. year_of _birth > 1920 .and(a. FI RST_NAME. eq(" Paul 0")))
AND a. first_nane = ' Paul o' .orderBy(b. TITLE)
ORDER BY b.title .fetch();

We'll see how the aliasing works later in the section about aliased tables

JO0Q as an internal domain specific language in Java (a.k.a. the DSL API)

Many other frameworks have similar APIs with similar feature sets. Yet, what makes jOOQ special is its
informal BNF notation modelling a unified SQL dialect suitable for many vendor-specific dialects, and
implementing that BNF notation as a hierarchy of interfaces in Java. This concept is extremely powerful,
when using JOOQ with IDE syntax auto completion. Not only can you code much faster, your SQL code
will be compile-checked to a certain extent. An example of a DSL query equivalent to the previous one
is given here:

DSLCont ext create = DSL.using(connection, dialect);

Resul t<?> result = create. sel ect()
. f r om(AUTHOR)
.j 0i n(BOOK) . on(BOOK. AUTHOR | D. eq(AUTHOR. | D))
.fetch();

Unlike other, simpler frameworks that use "fluent APIs" or "method chaining", jOOQ's BNF-based
interface hierarchy will not allow bad query syntax. The following will not compile, for instance:

DSLCont ext create = DSL. using(connection, dialect);
Resul t<?> result = create.select()
. j 0i n(BOOK) . on(BOOK. AUTHOR | D. eq(AUTHOR. | D))
/] AMAAN Mjoin" is not possible here
. from(AUTHOR)
.fetch();

Resul t<?> result = create.select()
. from(AUTHOR)
. j oi n(BOOK)
.fetch();
/| ANAAN ton" is mssing here

Resul t<?> result = create. sel ect (rowNunber())

11 ANANAANAN tgyer ()" is missing here
. from(AUTHOR)
.fetch();
Resul t<?> result = create.select()
. from(AUTHOR)
. wher e(AUTHOR. | D. i n(sel ect (BOOK. TI TLE) . f r on{ BOOK)))
// ANNANNNNANANNNNNNNN
// AUTHOR ID is of type Field<Integer> but subselect returns Recordl<String>
.fetch();
Resul t<?> result = create.select()
. from(AUTHOR)
. wher e(AUTHOR. | D. i n(sel ect (BOOK. AUTHOR | D, BOOK. I D). f r om(BOXK)))
// ANNANNNNANNANNNNNANNANNNNNNANNNNNNN

// AUTHOR ID is of degree 1 but subsel ect returns Record2<Integer, |nteger>
.fetch();

© 2009 - 2024 by Data Geekery™ GmbH. Page 75/720

https://en.wikipedia.org/wiki/Domain-specific_language
https://msdn.microsoft.com/en-us/library/bb425822.aspx
https://blog.jooq.org/the-java-fluent-api-designer-crash-course/
https://blog.jooq.org/why-you-should-use-jooq-with-code-generation/
https://en.wikipedia.org/wiki/Fluent_interface
https://en.wikipedia.org/wiki/Method_chaining

The jOOQ User Manual 4.3.2. The WITH clause

History of SQL building and incremental query building (a.k.a. the model
API)

Historically, JOOQ started out as an object-oriented SQL builder library like any other. This meant that
all queries and their syntactic components were modeled as so-called QueryParts, which delegate SOL
rendering and variable binding to child components. This part of the APl will be referred to as the
model API (or non-DSL API), which is still maintained and used internally by jJOOQ for incremental query
building. An example of incremental query building is given here:

DSLCont ext create = DSL.using(connection, dialect);
Sel ect Query<Record> query = create. sel ect Query();
query. addFr on{ AUTHOR) ;
/1 Join books only under certain circunstances
if (join) {

query. addJoi n(BOOK, BOOK. AUTHOR | D. eq(AUTHOR. I D)) ;

Resul t<?> result = query.fetch();

This query is equivalent to the one shown before using the DSL syntax. In fact, internally, the DSL AP
constructs precisely this SelectQuery object. Note, that you can always access the SelectQuery object
to switch between DSL and model APIs:

DSLCont ext create = DSL.using(connection, dialect);
Sel ect Fi nal St ep<?> sel ect = create. sel ect().fron AUTHOR);

// Add the JO N clause on the internal QueryChject representation

Sel ect Query<?> query = sel ect. get Query();
query. addJoi n(BOOK, BOOK. AUTHOR | D. eq(AUTHOR. I D)) ;

Mutability

Note, that for historic reasons, the DSL APl mixes mutable and immutable behaviour with respect to
the internal representation of the QueryPart being constructed. While creating conditional expressions,
column expressions (such as functions) assumes immutable behaviour, creating SQL statements does
not. In other words, the following can be said:

/1 Conditional expressions (inmmutable)

R L R
Condition a BOOK. TI TLE. eq("1984");
Condition b BOOK. TI TLE. eq(" Ani mal Farni');

/1 The follow ng can be said
a = a.or(b); // or() does not nodify a
a.or(b) !'=a.or(b); // or() always creates new objects

/] Statements (nutable)

R R T

Sel ect FronBt ep<?> s1 = select();

Sel ect Joi nSt ep<?> s2 = sl.fron{BOX);
Sel ect Joi nSt ep<?> s3 = sl.fron{ AUTHOR) ;

/1 The follow ng can be said
sl == s2; // The internal object is always the sane
s2 == s3; // The internal object is always the sane

On the other hand, beware that you can always extract and modify bind values from any QueryPart.

4.3.2. The WITH clause

The SQL:1999 standard specifies the WITH clause to be an optional clause for the SELECT statement, in

order to specify common table expressions (also: CTE). Many other databases (such as PostgreSQL, SQL
© 2009 - 2024 by Data Geekery™ GmbH. Page 76 /720

The jOOQ User Manual 4.3.3. The WITH RECURSIVE clause

Server) also allow for using common table expressions also in other DML clauses, such as the INSERT
statement, UPDATE statement, DELETE statement, or MERGE statement.

When using common table expressions with jOOQ, there are essentially two approaches:

- Declaring and assigning common table expressions explicitly to names
- Inlining common table expressions into a SELECT statement

Explicit common table expressions

The following example makes use of names to construct common table expressions, which can then
be supplied to a WITH clause or a FROM clause of a SELECT statement:

- Pseudo-SQL for a common tabl e expression specification /1 Code for creating a CormonTabl eExpression instance
"t1v ("f1, "f2") AS (SELECT 1, 'a') nane("t1").fields("f1", "f2").as(select(val (1), val("a")));

The above expression can be assigned to a variable in Java and then be used to create a full SELECT
statement:

CommonTabl eExpr essi on<Recor d2<Integer, String>> tl =
nane("t1").fields("f1", "f2").as(select(val (1), val("a")));

CommonTabl eExpr essi on<Recor d2<Integer, String>> t2 =
nane("t2").fields("f3", "f4").as(select(val(2), val("b")));

Resul t<?> result2 =
create.with(t1l)

WTH "t1" (“fi1", "f2") AS (SELECT 1, 'a'), wi th(t2)
“t2" ("f3", "f4") AS (SELECT 2, 'b') _sel ect (

SELECT t1.field("f1").add(t2.fiel d("f3")).as("add"),
DR, DAY @ DGR, Ve AS ekl t1.field("f2").concat (t2.field("f4")).as("concat"))
“t1t.ef2" || "t2"."f4" AS "concat" from(tl, t2)

FROM "t 1", "t2 fetch();

Note that the org.joog.CommonTableExpression type extends the commonly used org.joog.Table type,
and can thus be used wherever a table can be used.

Inlined common table expressions

If you're just operating on plain SOL, you may not need to keep intermediate references to such
common table expressions. An example of such usage would be this:

create.with("a").as(sel ect (

WTH "a" AS (SELECT val (1).as("x"),
1 AS "x", val ("a").as("y")
a AS 'y)
) .sel ect ()
SELECT .fron(tabl e(name("a")))

FROM " a" .fetch();

4.3.3. The WITH RECURSIVE clause

The various SQL dialects do not agree on the use of RECURSIVE when writing recursive common
table expressions. When using jOOQ, always use the DSLContext.withRecursive() or DSL.withRecursive()
methods, and jJOOQ will render the RECURSIVE keyword, if needed.

© 2009 - 2024 by Data Geekery™ GmbH. Page 77 /720

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/CommonTableExpression.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Table.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/DSLContext.html#withRecursive(org.jooq.CommonTableExpression...)
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/impl/DSL.html#withRecursive(org.jooq.CommonTableExpression...)

The jOOQ User Manual 4.3.3. The WITH RECURSIVE clause

Assuming a table like this:

CREATE TABLE directory (
id I NT NOT NULL,
parent _id I NT,

- In PostgreSQL, use TEXT instead, to work around https://github.conljOOQ j OOQ i ssues/ 12067
| abel VARCHAR(50) ,

CONSTRAI NT pk_directory PRI MARY KEY (id),
CONSTRAINT fk_directory FOREIGN KEY (parent _id) REFERENCES directory (id)

)i

I NSERT I NTO directory VALUES (1, null, 'C"');

I NSERT | NTO directory VALUES (2 1, "eclipse');

I NSERT | NTO directory VALUES (3 2, 'configuration');

I NSERT | NTO directory VALUES (4 2, 'dropins');

I NSERT | NTO directory VALUES (5, 2, 'features');

I NSERT | NTO directory VALUES (7 2, 'plugins');

I NSERT | NTO directory VALUES (8 2, 'readne');

I NSERT | NTO directory VALUES (9, 8, 'readne_eclipse.htm');
I NSERT | NTO directory VALUES (10, 2, 'src');

I NSERT | NTO directory VALUES (11, 2, 'eclipse.exe');

Using WITH RECURSIVE, you can now query the structure of this directory as follows:

W TH RECURSI VE t (CommonTabl eExpr essi on<?> cte = name("t").fiel ds(

g, i 6P,
nane, "name",
pat h " pat h"
) AS () - as(
SELECT sel ect (
DI RECTCRY. | D, DI RECTCRY. | D,

DI RECTORY. LABEL,
DI RECTORY. LABEL

DI RECTORY. LABEL,
DI RECTORY. LABEL)

FROM . fron(DI RECTORY)
DI RECTORY . wher e(DI RECTORY. PARENT_I D. i sNul | ())
WHERE .uni onAl | (
DI RECTORY. PARENT_I D | S NULL sel ect (
UNI ON ALL DI RECTORY. | D,
SELECT DI RECTORY. LABEL,
DI RECTCRY. | D, field(name("t", "path"), VARCHAR)
DI RECTORY. LABEL, .concat ("\\")
t.path . concat (DI RECTORY. LABEL))

[
|| DI RECTORY. LABEL

.fron(tabl e(name("t")))
.j oi n(DI RECTORY)

FROM .on(field(name("t", "id"), |INTEGER)
t . eq(DI RECTORY. PARENT_I D)))

JON DE
DI RECTCRY

ON t.id = DI RECTORY. PARENT_I| D

System out. print! n(

) create. withRecursive(cte)
SELECT * .sel ect Fron{cte)
FROM .fetch()

t;

The output would look like this:

Femem e meee e me e e e +
| id | name | path |
Femem e meee e me e e Fememeemeeeemeeeeeeeeee e +
1] cC	C	
2	eclipse	C\eclipse
3	configuration	C\eclipse\configuration
4	dropins	C:\eclipse\dropins
11	eclipse.exe	C:\eclipseleclipse.exe
5	features	C\eclipse\features
7	plugins	C:\eclipse\plugins
8	readne	C:\eclipse\readne
9	readne_eclipse.htm	C\eclipse\readne\readne_eclipse. htnl
10	src	C\eclipse\src
Femem e meee e me e e e +
Caveats

The SQL language expresses the recursion syntactically, meaning the table t in the above example is
being referenced from within the declaration of t. This isn't possible in a language like Java. Hence, we
must use the identifier API to construct identifier references for tables and columns. This technique
usually appears a bit more verbose than ordinary jJOOQ API usage that is based on generated code
for your schema.

© 2009 - 2024 by Data Geekery™ GmbH. Page 78 /720

The jOOQ User Manual 4.3.4. The SELECT statement

4.3.4. The SELECT statement

When you don't just perform CRUD (i.e. SELECT * FROM your_table WHERE ID = ?), you're usually
generating new record types using custom projections. With jOOQ, this is as intuitive, as if using SQL
directly. A more or less complete example of the "standard" SQL syntax, plus some extensions, is
provided by a query like this:

SELECT from a complex table expression

- get all authors' first and |ast nanes, and the nunber /1 And with jOOQ ..
- of books they've witten in Gernan, if they have witten

- nore than five books in German in the |ast three years

- (from 2011), and sort those authors by |ast nanes

- limting results to the second and third row, | ocking DSLCont ext create = DSL.using(connection, dialect);
- the rows for a subsequent update... whew
create. sel ect (AUTHOR FI RST_NAME, AUTHOR. LAST_NAME, count())
SELECT AUTHOR. FI RST_NAME, AUTHOR LAST_NAME, COUNT(*) . f ron{ AUTHOR)
FROM AUTHOR . j 0i n(BOOK) . on(BOOK. AUTHOR | D. eq(AUTHOR. | D))
JO N BOOK ON AUTHOR. | D = BOOK. AUTHOR_I D . wher e(BOOK. LANGUAGE. eq(" DE"))
VWHERE BOOK. LANGUAGE = ' DE' . and(BOOK. PUBLI SHED. gt (" 2008- 01-01"))
AND BOOK. PUBLI SHED > ' 2008- 01- 01' . gr oupBy(AUTHOR. FI RST_NAME, AUTHOR. LAST_NAVE)
GROUP BY AUTHOR. FI RST_NAME, AUTHOR. LAST_NAME . havi ng(count (). gt (5))
HAVI NG COUNT(*) > 5 . order By(AUTHOR. LAST_NAME. asc(). nul | sFirst())
ORDER BY AUTHOR. LAST_NAME ASC NULLS FI RST dimt(2)
LIMT 2 .of fset(1)
OFFSET 1 . forUpdat e()
FOR UPDATE .fetch();

Details about the various clauses of this query will be provided in subsequent sections.

SELECT from single tables

A very similar, but limited APl is available, if you want to select from single tables in order to retrieve
TableRecords or even UpdatableRecords. The decision, which type of select to create is already made
at the very first step, when you create the SELECT statement with the DSL or DSLContext types:

public <R extends Record> Sel ect Wier eSt ep<R> sel ect Fr on(Tabl e<R> t abl e) ;

As you can see, there is no way to further restrict/project the selected fields. This just selects all known
TableFields in the supplied Table, and it also binds <R extends Record> to your Table's associated
Record. An example of such a Query would then be:

BookRecord book = create. sel ect Fr om(BOOK)
. wher e(BOOK. LANGUAGE. eq(" DE"))
. or der By(BOOXK. Tl TLE)
.fetchAny();

The "reduced" SELECT APl is limited in the way that it skips DSL access to any of these clauses:

- SELECT clause
- OIN operator

In most parts of this manual, it is assumed that you do not use the "reduced" SELECT API. For more
information about the simple SELECT API, see the manual's section about fetching strongly or weakly

typed records.

© 2009 - 2024 by Data Geekery™ GmbH. Page 79 /720

The jOOQ User Manual 4.3.4.1. SELECT clause

4.3.4.7. SELECT clause

The SELECT clause lets you project your own record types, referencing table fields, functions, arithmetic
expressions, etc. The DSL type provides several methods for expressing a SELECT clause:

- The SELECT cl ause /1 Provide a varargs Fields list to the SELECT cl ause:
SELECT BOOK. | D, BOXX. TI TLE Sel ect <?> s1 = create. sel ect (BOOK. | D, BOX. Tl TLE);
SELECT BOOK. | D, TRI M BOOK. Tl TLE) Sel ect<?> s2 = create. sel ect (BOOK. I D, trinm{BOOK. TITLE));

The following sections illustrate various features and subclauses of the SELECT clause.

4.3.4.1.7. Projection type safety

Since jOOQ 3.0, records and row value expressions up to degree 22 are now generically typesafe. This is
reflected by an overloaded SELECT (and SELECT DISTINCT) APl in both DSL and DSLContext. An extract
from the DSL type:

/1 Non-typesafe sel ect nethods:
public static Sel ectSel ect St ep<Record> sel ect (Col | ecti on<? extends Sel ectFi el d<?>> fields);
public static SelectSel ect Step<Record> sel ect (Sel ectField<?>... fields);

/1 Typesafe sel ect nmethods:
public static <T1> Sel ect Sel ect St ep<Recor d1<T1>> sel ect (Sel ect Fi el d<T1> fiel dl);

public static <T1, T2> Sel ect Sel ect St ep<Recor d2<T1, T2>> sel ect (Sel ect Fi el d<T1> fiel dl, SelectField<T2> field2);
...

The type that is being projected is the org.joog.SelectField, see also the next section about SelectField.
Since the generic R type is bound to some Record[N], the associated T type information can be used in
various other contexts, e.g. the IN predicate. Such a SELECT statement can be assigned typesafely:

Sel ect <Record2<I nteger, String>> sl
Sel ect <Record2<I nteger, String>> s2

create. sel ect (BOOK. | D, BOOXK. TI TLE) ;
create.sel ect (BOOK. I D, trim BOXK. TITLE));

/1 Alternatively, just use var to infer the type:
var s3 = create.select(BOOK.ID, trin(BOOXK. TITLE));

For more information about typesafe record types with degree up to 22, see the manual's section about
Record1 to Record22.

4.3.4.1.2. SelectField

The orgjoog.SelectField type is used by any projection of the SELECT clause and the INSERT ..
RETURNING clause. It has numerous subtypes, which are allowed as projections in jJOOQ:

- More subtypes are available from future jOOQ versions.

© 2009 - 2024 by Data Geekery™ GmbH. Page 80 /720

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/SelectField.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/SelectField.html

The jOOQ User Manual 4.3.4.1.3. SELECT *

4.3.4.1.3. SELECT *

jOOQ supports the asterisk operator in projections both as a qualified asterisk (through Table.asterisk())
and as an unqualified asterisk (through DSL.asterisk()). It is also possible to omit the projection entirely,
in case of which an asterisk may appear in generated SQL, if not all column names are known to jOOQ.

Whenever jOOQ generates an asterisk (explicitly, or because jOOQ doesn't know the exact projection),
the column order, and the column set are defined by the database server, not jOOQ. If you're using
generated code, this may lead to problems as there might be a different column order than expected,
as well as too many or too few columns might be projected.

/1l Explicitly selects all colums available fromBOXK - No asterisk
create.select().fron(BOX).fetch();

Il Explicitly selects all colums available fromBOXK and AUTHOR - No asterisk
create.sel ect().fron(BOOXK, AUTHOR).fetch();
create. sel ect (). from BOXK). crossJoi n(AUTHOR) . fetch();

I/ Renders a SELECT * statenment, as colums are unknown to jOOQ - Inplicit unqualified asterisk
create.select().fron(tabl e(name("BOOK"))).fetch();

/1 Renders a SELECT * statement - Explicit unqualified asterisk
create. sel ect(asterisk()).from BOX).fetch();

/1 Renders a SELECT BOOK.* statement - Explicit qualified asterisk
create. sel ect (BOK. asterisk()).from BOX).fetch();
create. sel ect (BOOK. asterisk(), AUTHOR asterisk()).fron(BOXK, AUTHOR).fetch();

With all of the above syntaxes, the row type (as discussed below) is unknown to jOOQ and to the Java
compiler.

It is worth mentioning that in many cases, using an asterisk is a sign of an inefficient query because if
not all columns are needed, too much data is transferred between client and server, plus some joins
that could be eliminated otherwise, cannot.

4.3.4.1.4. SELECT DISTINCT

The DISTINCT keyword can be included in the method name, when constructing a SELECT clause, to
remove duplicate tuples from the projection.

SELECT DI STI NCT BOOK. TI TLE FROM BOOK create. sel ect Di stinct(BOOK. TI TLE). f rom(BOXK) . f et ch() ;

Dialect support
This example using jOO0Q:

sel ect Di stinct (BOOK. TI TLE) . f r om(BOOK)

Translates to the following dialect specific expressions:

© 2009 - 2024 by Data Geekery™ GmbH. Page 81 /720

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Table.html#asterisk()
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/impl/DSL.html#asterisk()

The jOOQ User Manual 4.3.4.1.5. SELECT DISTINCT ON

All dialects

SELECT DI STI NCT BOCK. TI TLE
FROVI BOOK

4.3.4.1.5. SELECT DISTINCT ON

A useful, though perhaps a bit esoteric PostgreSQL specific extension to SELECT DISTINCT is the ON
clause. Using this clause, PostgreSQL users can specify a distinctness criteria, but then produce other
columns per distinct group from one of the group's tuples. This is normally not possible in SQL, but
with ON, the first tuple in the group according to the ORDER BY clause can be accessed nonetheless.
An example:

SELECT DI STI NCT ON (BOOK. LANGUAGE | D) Sel ect <?> sel ect1l = create. sel ect (BOOK. LANGUAGE | D, BOXK. Tl TLE)
BOOK. LANGUAGE | D, BOOK. TI TLE . di sti nct On(BOOK. LANGUAGE_| D)

FROM BOOK . f r om(BOOK)

ORDER BY BOCOK. LANGUAGE | D, BOCK. TI TLE . or der By(BOOK. LANGUAGE_|I D, BOOK. TI TLE) . fetch();

For syntactic reasons, the order of keywords had to be inversed as the PostgreSQL syntax cannot
be easily reproduced in jOOQ's internal DSL. Quite likely, you might find jOOQ's syntax a bit more
intuitive, though, as it more clearly separates the SELECT parts and the DISTINCT ON parts. Arguably,
the DISTINCT ON clause should be positioned after ORDER BY, where it logically belongs.

Dialect support
This example using jOOQ:
sel ect (BOOK. LANGUAGE_| D, BOCK. TI TLE) . di st i nct On(BOOK. LANGUAGE | D) . f r on{ BOOK) . or der By (BOOK. LANGUAGE | D, BQOK. TI TLE)

Translates to the following dialect specific expressions:

Aurora Postgres, CockroachDB, H2, Postgres, YugabyteDB

SELECT DI STI NCT ON (BOOK. LANGUAGE | D) BOOK. LANGUAGE | D, BOOX. TI TLE
FROM BOOK
ORDER BY BOOK. LANGUAGE | D, BOCK. TI TLE

© 2009 - 2024 by Data Geekery™ GmbH. Page 82 /720

https://blog.jooq.org/a-beginners-guide-to-the-true-order-of-sql-operations/

The jOOQ User Manual 4.3.4.1.6. Convenience methods

DB2, Exasol, Firebird, Hana, Informix, MariaDB, MemSQL, MySQL, Oracle, Redshift,
SQLDataWarehouse, SQLServer, SQLite, Snowflake, Sybase, Teradata, Trino, Vertica

SELECT t.LANGUAGE_ID, t.TITLE
FROM (
SELECT
BOOK. LANGUAGE_| D,
BOOK. TI TLE,
row_nunber () OVER (
PARTI TI ON BY BOOK. LANGUAGE_| D
ORDER BY BOOK. LANGUAGE_| D, BOOK. TI TLE
) rn
FROM BOOK
)t
WHERE rn = 1
ORDER BY LANGUAGE_I D, TITLE

ASE, Access, Aurora MySQL, BigQuery, ClickHouse, Derby, DuckDB, HSQLDB

/* UNSUPPORTED */

4.3.4.1.6. Convenience methods

Some commonly used projections can be easily created using convenience methods:

- Sinple SELECTs /1 Select comonly used val ues
SELECT COUNT(*) Resul t<?> resultl = create. sel ect Count().fetch();
SELECT 0 -- Not a bind variable Resul t<?> result2 = create. sel ect Zero().fetch();
SELECT 1 -- Not a bind variable Resul t<?> result3 = create. sel ectOne().fetch();

Which are short forms for creating Column expressions from the org.jooqg.impl.DSL API

- Sinple SELECTs /'l Sel ect commonly used val ues
SELECT COUNT(*) Resul t<?> resultl = create.select(count()).fetch();
SELECT 0 -- Not a bind variable Resul t<?> result2 = create.select(inline(0)).fetch();
SELECT ? -- A bind variable Resul t<?> result3 = create.select(val (1)).fetch();

4.3.4.2. FROM clause

The SQL FROM clause allows for specifying any number of table expressions to select data from. The
following are examples of how to form normal FROM clauses:

SELECT 1 FROM BOOK create. sel ect One().fron(BOXK). fetch();
SELECT 1 FROM BOOK, AUTHOR create. sel ect One().fron(BOOK, AUTHOR).fetch();
SELECT 1 FROM BOOK "b", AUTHOR "a" create.sel ectOne().fron(BOOK as("b"), AUTHOR as("a")).fetch();

Read more about aliasing in the manual's section about aliased tables.

© 2009 - 2024 by Data Geekery™ GmbH. Page 83 /720

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/impl/DSL.html

The jOOQ User Manual 4.3.4.3. JOIN operator

More advanced table expressions

Apart from simple tables, you can pass any arbitrary table expression to the jJOOQ FROM clause. This
may include unnested cursors in Oracle:

SELECT * create.sel ect()
FROM TABLE(.fron(tabl e(
DBMVS_XPLAN. DI SPLAY_CURSOR(nul |, null, " ALLSTATS') DbnsXpl an. di spl ayCursor(nul |, null, "ALLSTATS")

);).fetch();

Note, in order to access the DbmsXplan package, you can use the code generator to generate Oracle's
SYS schema.

Selecting FROM DUAL with jOOQ

In many SQL dialects, FROM is a mandatory clause, in some it isn't. JOOQ allows you to omit the FROM
clause, returning just one record. An example:

SELECT 1 FROM DUAL DSL. usi ng(SQLDI al ect . ORACLE) . sel ect One(). fetch();
SELECT 1 DSL. usi ng(SQLDi al ect . POSTGRES) . sel ect One().fetch();

Read more about dual or dummy tables in the manual's section about the DUAL table. The following
are examples of how to form normal FROM clauses:

4.3.4.3. JOIN operator

jOOQ supports many different types of standard and non-standard SQL JOIN operations. All of these
JOIN methods can be called on org.joog.Table types the (more info in joined tables section), or directly
after the FROM clause for convenience. The following example joins AUTHOR and BOOK

DSLCont ext create = DSL. using(connection, dialect);

/l Call "join" directly on the AUTHOR tabl e
Resul t<?> result = create.select()
. from(AUTHOR. j oi n(BOOK)
. on(BOOK. AUTHOR_| D. eq(AUTHOR. I D)))
.fetch();

/1 Call "join" on the type returned by "front
Resul t<?> result = create.select()

. from(AUTHOR)

. j oi n(BOOK)

. on(BOOK. AUTHOR_| D. eq(AUTHOR. | D))
.fetch();

The two syntaxes will produce the same SQL statement. However, calling "join" on org.jooq.Table objects
allows for more powerful, nested JOIN expressions (if you can handle the parentheses):

SELECT * /1 Nest joins and provide JON conditions only at the end
FROM AUTHOR create.select()
LEFT QUTER JO N (. f ron{ AUTHOR
BOOK JO N BOOK_TO_BOOK_STORE .l ef t Qut er Joi n(BOOK
ON BOOK_TO_BOOK_STORE. BOOK_| D = BOXK. | D .j 0i n(BOOK_TO_BOOK_STORE)
) . on(BOOK_TO BOOK_STORE. BOOK_I D. eq(BOOK. 1 D)))
ON BOOK. AUTHOR I D = AUTHOR. | D . on(BOOK. AUTHOR | D. eq(AUTHOR. 1 D)))
.fetch();

© 2009 - 2024 by Data Geekery™ GmbH. Page 84 /720

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Table.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Table.html

The jOOQ User Manual 4.3.4.4. Implicit path JOIN

- See the section about conditional expressions to learn more about the many ways to create
org.joog.Condition objects in jOOQ.

- See the section about table expressions to learn about the various ways of referencing
org.joog.Table objects in jOOQ

For more information about the different types of join, please refer to the joined tables section.

4.3.4.4. Implicit path JOIN

In SQL, a lot of explicit JOIN clauses are written simply to retrieve a parent table's column from a given
child table. For example, we'll write:

- Get all books, their authors, and their respective |anguage
SELECT
a.first_name,
a. |l ast _nane,
b.title,
| .cd AS | anguage
FROM book b
JO N author a ON b.author_id = a.id
JO N | anguage | ON b.language_id = |.id;

- Count the nunber of books by author and | anguage
SELECT
a.first_name,
a. |l ast _nane,
| .cd AS | anguage,

COUNT(*)
FROM book
JO N author a ON b.author_id = a.id
JO N | anguage | ON b.language_id = |.id
GROUP BY a.id, a.first_nane, a.last_nane, |.cd
ORDER BY a.first_nane, a.last_name, |.cd

There is quite a bit of syntactic ceremony (or we could even call it "noise") to get a relatively simple job
done. A much simpler notation would be using implicit joins:

- Get all books, their authors, and their respective |anguage
SELECT
b. aut hor. first_nane,
b. aut hor. | ast _nane,
b.title,
b. | anguage. cd AS | anguage
FROM book b;

- Count the nunber of books by author and | anguage
SELECT
b. aut hor. first_nane,
b. aut hor. | ast _nane,
b. | anguage. cd AS | anguage,
COUNT(*)
FROM book b
GROUP BY
b. aut hor _id,
b. aut hor. first_nane,
b. aut hor. | ast _nane,
b. | anguage. cd
ORDER BY
b. aut hor. first_nane,
b. aut hor. | ast _nane,
b. | anguage. cd

Notice how this alternative notation (depending on your taste) may look more tidy and straightforward,
as the semantics of accessing a table's parent table (or an entity's parent entity) is straightforward.

From jOOQ 3.11 onwards, this syntax is supported for to-one relationship navigation, and from
jOOQ 3.19 also for to-many relationship navigation. The code generator produces relevant navigation
methods on generated tables, which can be used in a type safe way. The navigation method names are:

© 2009 - 2024 by Data Geekery™ GmbH. Page 85/720

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Condition.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Table.html

The jOOQ User Manual 4.3.4.4. Implicit path JOIN

- The parent table name, if there is only one foreign key between child table and parent table
- The foreign key name, if there are more than one foreign keys between child table and parent
table

This default behaviour can be overridden by using a Code Generator Strategy.

The jOOQ version of the previous queries looks like this:

I/ Get all books, their authors, and their respective |anguage
create. sel ect (
BOOK. aut hor () . FI RST_NANME,
BOOK. aut hor () . LAST_NANE,
BOOK. TI TLE,
BOCK. | anguage() . CD. as("| anguage"))
. f r om(BOOK)
.fetch();

// Count the nunber of books by author and | anguage
create. sel ect (
BOOK. aut hor () . FI RST_NANME,
BOOK. aut hor () . LAST_NANE,
BOCK. | anguage() . CD. as("| anguage"),
count ())
. f r om(BOOK)
. groupBy(
BOOK. AUTHOR_I D,
BOOK. aut hor () . FI RST_NANME,
BOOK. aut hor () . LAST_NANE,
BOCK. | anguage() . CD)
. order By(
BOCOK. aut hor () . FI RST_NANME,
BOOK. aut hor () . LAST_NANE,
BOCK. | anguage() . CD)
.fetch();

The generated SQL is almost identical to the original one - there is no performance penalty to this
syntax.

Default JOIN type

The default type of join that is generated is:

- INNER JOIN for to-one path segments with non-nullable parent
- LEFTJOIN for to-one path segments with nullable parent

How it works

During the SQL generation phase, implicit join paths are replaced by generated aliases for the path's
last table. The paths are translated to a join graph, which is always LEFT JOINed to the path's "root table".
If two paths share a common prefix, that prefix is also shared in the join graph.

© 2009 - 2024 by Data Geekery™ GmbH. Page 86 /720

The jOOQ User Manual 4.3.4.5. WHERE clause

Known limitations

- UntiljOOQ 3.17, implicit JOINs were only supported in SELECT statements (including any type
of subquery), but not in the WHERE clause of UPDATE statements or DELETE statements, for
instance.

- Implicit JOINs can currently only be used to access columns, not to produce joins. l.e. it is not
possible to write things like FROM book IMPLICIT JOIN book.author

- Implicit JOINs are added to the SQL string after the entire SQL statement is available, for
performance reasons. This means, that VisitListener SPI implementations cannot observe
implicitly joined tables

4.3.4.5 WHERE clause

The WHERE clause can be used for JOIN or filter predicates, in order to restrict the data returned by the
table expressions supplied to the previously specified from clause and join clause. Here is an example:

SELECT * create.select()

FROM BOOK . f rom(BOOK)

WHERE AUTHOR ID = 1 . wher e(BOOK. AUTHOR I D. eq(1))

AND TI TLE = ' 1984' . and(BOOK. TI TLE. eq("1984"))
.fetch();

The above syntax is convenience provided by jOOQ, allowing you to connect the org.joog.Condition
supplied in the WHERE clause with another condition using an AND operator. You can of course also
create a more complex condition and supply that to the WHERE clause directly (observe the different
placing of parentheses). The results will be the same:

SELECT * create. sel ect ()

FROM BOOK . f r om(BOOK)

VHERE AUTHOR ID = 1 . wher e(BOOK. AUTHOR | D. eq(1) . and(
AND TI TLE = ' 1984’ BOOK. TI TLE. eq("1984")))

.fetch();

You will find more information about creating conditional expressions later in the manual.

4.3.4.6. CONNECT BY clause

The Oracle database knows a very succinct syntax for creating hierarchical queries: the CONNECT BY
clause, which is fully supported by jOOQ, including all related functions and pseudo-columns. A more
or less formal definition of this clause is given here:

SELECT ..
FROM . .
WHERE . .
CONNECT BY [NOCYCLE] condition [AND condition, ...] [START WTH condition]
-- GROUP BY ..
-- ORDER [SIBLINGS] BY ..

An example for an iterative query, iterating through values between 1 and 5 is this:

© 2009 - 2024 by Data Geekery™ GmbH. Page 87 /720

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Condition.html

The jOOQ User Manual

SELECT LEVEL
FROM DUAL
CONNECT BY LEVEL <= 5

4.3.4.6. CONNECT BY clause

Il Get a table with elenents 1, 2, 3, 4, 5
create. sel ect(level())

.connect By(l evel ().le(5))

.fetch();

Here's a more complex example where you can recursively fetch directories in your database, and

concatenate them to a path:

SELECT
SUBSTR(SYS_CONNECT_BY_PATH(DI RECTORY. NAME, '/'), 2)
FROM DI RECTORY
CONNECT BY
PRI OR DI RECTORY. | D = DI RECTORY. PARENT_| D
START W TH DI RECTCRY. PARENT I D |'S NULL
ORDER BY 1

The output might then look like this

e +
| substring |
e +
€

| C:/eclipse

| C:/ecli pse/dropins

|
|
| C:/eclipsel/configuration |
|
| C:/eclipseleclipse. exe |

|...21 record(s) truncated...

.sel ect (

substring(sysConnect ByPat h(DI RECTORY. NAME, "/"), 2))
. f ron(DI RECTORY)
. connect By(

prior (DI RECTORY. | D) . eq(DI RECTORY. PARENT_| D))
.start Wt h(DI RECTORY. PARENT_I D.i sNul | ())
.orderBy(1)
.fetch();

Some of the supported functions and pseudo-columns are these (available from the DSL):

- LEVEL

- CONNECT_BY_IS_CYCLE
- CONNECT_BY_IS_LEAF

- CONNECT_BY_ROOT

- SYS_CONNECT_BY_PATH
- PRIOR

If this syntax is unavailable in your dialect, starting from jOOQ 3.15, it is emulated in parts using WITH

RECURSIVE.

ORDER SIBLINGS

The Oracle database allows for specifying a SIBLINGS keyword in the ORDER BY clause. Instead of
ordering the overall result, this will only order siblings among each other, keeping the hierarchy intact.

An example is given here:

SELECT DI RECTORY. NAMVE
FROM DI RECTORY
CONNECT BY

PRI OR DI RECTORY. | D = DI RECTORY. PARENT_I| D
START W TH DI RECTORY. PARENT_I D IS NULL
ORDER SI BLI NGS BY 1

© 2009 - 2024 by Data Geekery™ GmbH.

. sel ect (DI RECTORY. NANME)
. f ron(DI RECTORY)
. connect By(

prior (DI RECTORY. | D) . eq(DI RECTORY. PARENT_| D))
.start Wt h(DI RECTORY. PARENT_I D.i sNul | ())
.orderSi bl ingsBy(1)
.fetch();

Page 88 /720

The jOOQ User Manual 4.3.4.7. GROUP BY clause

4.3.4.7. GROUP BY clause

GROUP BY can be used to create unigue groups of data, to form aggregations, to remove duplicates
and for other reasons. It will transform your previously defined set of table expressions, and return only
one record per unigue group as specified in this clause.

4.3.4.7.1. GROUP BY columns

The GROUP BY columns list specifies the columns whose values are used to form groups. The group
columns can then be projected, whereas all the non-group columns can be aggregated. An example of
such a grouped aggregation is this query:

SELECT AUTHOR | D, COUNT(*) create. sel ect (BOOK. AUTHOR | D, count())
FROM BOOK . f r on(BOOK)
GROUP BY AUTHOR_I D . gr oupBy(BOOK. AUTHOR | D)

.fetch();

The above example counts all books per author.

(") Note: a different and more powerful way of grouping data is to use the WINDOW clause and
window functions.

Dialect support
This example using jO0Q:

sel ect (BOOK. AUTHOR | D, count ()). fron(BOOXK) . gr oupBy(BOOK. AUTHOR | D)

Translates to the following dialect specific expressions:

All dialects

SELECT
BOOK. AUTHOR_I D,
count (*)
FROM BOOK
GROUP BY BOOK. AUTHOR | D

4.3.4.7.2. GROUP BY ROLLUP

In reports, it may be useful to run multiple aggregations across multiple dimensions of the data in one
g0. ROLLUP is one way to do this.

© 2009 - 2024 by Data Geekery™ GmbH. Page 89/ 720

The jOOQ User Manual 43.4.7.2. GROUP BY ROLLUP

SELECT AUTHOR | D, LANGUAGE_| D, COUNT(*) create. sel ect (BOOK. AUTHOR | D, BOOK. LANGUAGE_| D, count())

FROM BOOK . f r on(BOOK)

GROUP BY ROLLUP (AUTHOR | D, LANGUAGE | D) . groupBy(rol | up(BOOK. AUTHOR | D, BOOK. LANGUAGE | D))
.fetch();

The above is a more concise (and possibly more performant) form of writing the following UNION ALL
query:

SELECT AUTHOR_ I D, LANGUAGE_| D, COUNT(*)
FROM BOOK

GROUP BY AUTHOR | D, LANGUAGE | D
UNION ALL

SELECT AUTHOR I D, NULL, COUNT(*)
FROM BOOK

GROUP BY AUTHOR | D

UNION ALL

SELECT NULL, NULL, COUNT(*)
FROM BOOK

GROUP BY ()

The ROLLUP function is just syntax sugar for a more complex GROUPING SETS specification. In general:

-- This
ROLLUP (A, B, O

-- Is just short for this
GROUPING SETS ((A, B, O, (A B), (A, ())

Dialect support
This example using jOOQ:

sel ect (BOOK. AUTHOR_I D, BOOK. LANGUAGE_I D, count ()). from(BOOK) . gr oupBy(r ol | up(BOOK. AUTHOR | D, BOCK. LANGUAGE_| D))

Translates to the following dialect specific expressions:

Aurora MySQL, MariaDB, MySQL

SELECT
BOOK. AUTHOR I D,
BOOK. LANGUAGE_|I D,
count (*)
FROM BOOK
GROUP BY BOOK. AUTHOR | D, BOOK. LANGUAGE_ | D
W TH ROLLUP

Aurora Postgres, DB2, DuckDB, Hana, MemSQL, Oracle, Postgres, SQLDataWarehouse,
SQLServer, Snowflake, Sybase, Teradata, Trino, Vertica

SELECT
BOOK. AUTHOR_I D,
BOOK. LANGUAGE_I D,
count (*)
FROM BOOK
GROUP BY ROLLUP (BOOK. AUTHOR | D, BOOK. LANGUAGE_ | D)

© 2009 - 2024 by Data Geekery™ GmbH. Page 90 /720

The jOOQ User Manual 4.3.4.7.3. GROUP BY CUBE

ASE, Access, BigQuery, ClickHouse, CockroachDB, Derby, Exasol, Firebird, H2, HSQLDB,
Informix, Redshift, SQLite, YugabyteDB

/* UNSUPPORTED */

4.3.4.7.3. GROUP BY CUBE

In reports, it may be useful to run multiple aggregations across multiple dimensions of the data in one
go. CUBE is one way to do this.

SELECT AUTHOR | D, LANGUAGE_ | D, COUNT(*) create. sel ect (BOOK. AUTHOR | D, BOOK. LANGUAGE_ I D, count())

FROM BOOK . f r om(BOOK)

GROUP BY CUBE (AUTHOR I D, LANGUAGE_I D) . gr oupBy(cube(BOOK. AUTHOR | D, BOOK. LANGUAGE_| D))
.fetch();

The above is a more concise (and possibly more performant) form of writing the following UNION ALL
query:

SELECT AUTHOR I D, LANGUAGE | D, GCOUNT(*)
FROM BOOK

GROUP BY AUTHOR I D, LANGUAGE | D
UNION ALL
SELECT AUTHOR I D, NULL, GCOUNT(*)
FROM BOOK

GROUP BY AUTHOR I D
SELECT NULL, LANGUAGE I D, COUNT(*)
FROM BOCK

GROUP BY LANGUAGE | D

UNION' ALL

SELECT NULL, NULL, COUNT(*)

FROM BOCK

GROUP BY ()

The CUBE function is just syntax sugar for a more complex GROUPING SETS specification. In general:

- This
CUBE (A, B, O

- Is just short for this
GROUPI NG SETS ((A, B, ©, (A B), (A O, (B, O, (A, (B, (O, ()

Dialect support
This example using jO0Q:

sel ect (BOOK. AUTHOR | D, BOOK. LANGUAGE_I D, count ()).fron{BOOK) . gr oupBy(cube(BOOK. AUTHOR | D, BOOK. LANGUAGE_I D))

Translates to the following dialect specific expressions:

© 2009 - 2024 by Data Geekery™ GmbH. Page 91 /720

The jOOQ User Manual 4.3.4.7.4. GROUP BY GROUPING SETS

Aurora Postgres, DB2, DuckDB, Hana, Oracle, Postgres, SQLServer, Snowflake, Sybase,
Teradata, Trino, Vertica

SELECT
BOOK. AUTHOR_I D,
BOOK. LANGUAGE_I D,
count (*)
FROM BOOK
GROUP BY CUBE (BOOK. AUTHOR | D, BOOK. LANGUAGE_I D)

ASE, Access, Aurora MySQL, BigQuery, ClickHouse, CockroachDB, Derby,
Exasol, Firebird, H2, HSQLDB, Informix, MariaDB, MemSQL, MySQL, Redshift,
SQLDataWarehouse, SQLite, YugabyteDB

/* UNSUPPORTED */

4.3.4.7.4. GROUP BY GROUPING SETS

In reports, it may be useful to run multiple aggregations across multiple dimensions of the data in one
g0. GROUPING SETS is one way to do this.

SELECT AUTHOR_ I D, LANGUAGE | D, COUNT(*) create. sel ect (BOOK. AUTHOR | D, BOOK. LANGUAGE | D, count ())

FROM BOOK . f rom(BOOK)

GROUP BY GROUPI NG SETS ((AUTHOR I D), (LANGUAGE_ ID)) . groupBy(groupi ngSet s(BOOK. AUTHOR_| D, BOOK. LANGUAGE_I D))
.fetch();

The above is a more concise (and possibly more performant) form of writing the following UNION ALL
query:

SELECT AUTHCR I D, NULL AS LANGUAGE_| D, COUNT(*)
FROM BOOK

GROUP BY AUTHCR I D

UNI ON ALL

SELECT NULL, LANGUAGE | D, COUNT(*)

FROM BOOK

GROUP BY LANGUAGE I D

Note that the most common GROUPING SETS specifications have a dedicated, special syntax:

- ROLLUP
- CUBE

Dialect support
This example using jOOQ:

sel ect (BOOK. AUTHOR | D, BOOK. LANGUAGE | D, count ()). fromBOOK) . gr oupBy(groupi ngSet s(BOOK. AUTHOR | D, BOOK. LANGUAGE_|I D))

Translates to the following dialect specific expressions:
© 2009 - 2024 by Data Geekery™ GmbH. Page 92 /720

The jOOQ User Manual 4.3.4.7.5. GROUP BY empty grouping set

Aurora Postgres, DB2, DuckDB, Hana, Oracle, Postgres, SQLServer, Snowflake, Sybase,
Teradata, Trino, Vertica

SELECT
BOOK. AUTHOR_I D,
BOOK. LANGUAGE_I D,
count (*)

FROM BOOK

GROUP BY GROUPI NG SETS (
(BOOK. AUTHOR I D) ,
(BOOK. LANGUAGE_I D)

)

ASE, Access, Aurora MySQL, BigQuery, ClickHouse, CockroachDB, Derby,
Exasol, Firebird, H2, HSQLDB, Informix, MariaDB, MemSQL, MySQL, Redshift,
SQLDataWarehouse, SQLite, YugabyteDB

/* UNSUPPORTED */

4.3.4.7.5. GROUP BY empty grouping set

A special kind of GROUPING SET is the empty grouping set, which can be achieved in standard SQL
and many SQL dialects using GROUP BY (). It is implicit, whenever an aggregate function is present in
a query, but not an explicit GROUP BY clause.

SELECT COUNT(*) create. sel ect Count ()

FROM BOOK . f rom(BOOK)

GROUP BY () . groupBy()
.fetch();

Dialect support
This example using jOO0Q:
sel ect Count () . f rom(BOXK) . gr oupBy()
Translates to the following dialect specific expressions:

Access

SELECT count (*)
FROM BOOK, (select count(*) dual from MSysResources) as enpty_groupi ng_dumy_tabl e
GROUP BY enpty_groupi ng_dunmy_t abl e. dual

© 2009 - 2024 by Data Geekery™ GmbH. Page 93 /720

The jOOQ User Manual 4.3.4.7.5. GROUP BY empty grouping set

ASE, BigQuery, SQLDataWarehouse

SELECT count (*)
FROM BOOK, (select 1 as dual) as enpty_groupi ng_dummy_tabl e
GROUP BY enpty_groupi ng_dunmy_t abl e. dual

Aurora MySQL, MemSQL

SELECT count (*)
FROM BOOK

GROUP BY (SELECT 1
FROM DUAL)

Aurora Postgres, ClickHouse, DB2, DuckDB, Exasol, H2, Oracle, Postgres, SQLServer,
Sybase, Teradata, Trino

SELECT count (*)
FROM BOOK
GROUP BY ()

CockroachDB, MariaDB, MySQL, Redshift, SQLite, Vertica, YugabyteDB

SELECT count (*)
FROM BOOK
GROUP BY (SELECT 1)

Derby, HSQLDB

SELECT count (*)
FROM BOOK
GROUP BY 0

Firebird

SELECT count (*)
FROM BOOK

GROUP BY (SELECT 1
FROMV RDB$DATABASE)

Hana, Snowflake

SELECT count (*)
FROM BOOK
GROUP BY GROUPI NG SETS (())

© 2009 - 2024 by Data Geekery™ GmbH. Page 94 /720

The jOOQ User Manual 4.3.4.8. HAVING clause

Informix

SELECT count (*)
FROM BOOK, (select 1 as dual from systables where tabid = 1) as enpty_groupi ng_dumy_tabl e
GROUP BY enpty_groupi ng_dunmy_t abl e. dual

4.3.4.8. HAVING clause

The HAVING clause is commonly used to further restrict data resulting from a previously issued GROUP
BY clause. An example, selecting only those authors that have written at least two books:

SELECT AUTHOR | D, COUNT(*) create. sel ect (BOOK. AUTHOR | D, count())
FROM BOOK . f r om(BOOK)
GROUP BY AUTHOR | D . gr oupBy(AUTHOR | D)
HAVI NG COUNT(*) >= 2 . havi ng(count (). ge(2))
.fetch();

According to the SQL standard, you may omit the GROUP BY clause and still issue a HAVING clause. This
will implicitly GROUP BY (). jJOOQ also supports this syntax. The following example selects one record,
only if there are at least 4 books in the books table:

SELECT COUNT(*) create. sel ect(count(*))

FROM BOOK . f rom(BOOK)

HAVI NG COUNT(*) >= 4 . havi ng(count (). ge(4))
.fetch();

4.3.4.9. WINDOW clause

The SQL:2003 standard supports a WINDOW clause that allows for specifying WINDOW frames for
reuse in SELECT clauses and ORDER BY clauses.

W ndowDef i niti on w = nanme("w').as(
or der By(PECPLE. FI RST_NAME)) ;

create. sel ect(

SELECT | ag(AUTHOR. FI RST_NAME, 1).over(w).as("prev"),
LAG(first_name, 1) OVER w "prev", AUTHOR. FI RST_NAME,
first_nane, | ead(AUTHOR. FI RST_NAME, 1).over(w).as("next"))
LEAD(first_nane, 1) OVER w "next" . f ron{ AUTHOR)

FROM aut hor . W ndow(w)

W NDOW w AS (ORDER first_name) . or der By(AUTHOR. FI RST_NAME. desc())

ORDER BY first_nane DESC .fetch();

Note that in order to create such a window definition, we need to first create a name reference using
DSL.name().

Even if only PostgreSQL and Sybase SQL Anywhere natively support this great feature, jOOQ can
emulate it by expanding any org.joog.WindowDefinition and org.joog.WindowSpecification types that
you pass to the window() method - if the database supports window functions at all.

Some more information about window functions and the WINDOW clause can be found on our blog:
https://blog.joog.org/probably-the-coolest-sgl-feature-window-functions/

© 2009 - 2024 by Data Geekery™ GmbH. Page 95/720

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/impl/DSL.html#name(java.lang.String...)
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/WindowDefinition.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/WindowSpecification.html
https://blog.jooq.org/probably-the-coolest-sql-feature-window-functions/

The jOOQ User Manual 4.3.4.10. ORDER BY clause

4.3.4.10. ORDER BY clause

Databases are allowed to return data in any arbitrary order, unless you explicitly declare that order in
the ORDER BY clause. In jOOQ, this is straight-forward:

SELECT AUTHOR I D, TITLE create. sel ect (BOOK. AUTHOR | D, BOOK. Tl TLE)

FROM BOOK . f r on(BOOK)

ORDER BY AUTHOR_ I D ASC, TITLE DESC . or der By(BOOK. AUTHOR | D. asc(), BOOK. Tl TLE. desc())
.fetch();

Any jOOQ column expression (or field) can be transformed into an org.jooqg.SortField by calling the asc()
and desc() methods.

Ordering by field index

The SQL standard allows for specifying integer literals (literals, not bind values!) to reference column
indexes from the projection (SELECT clause). This may be useful if you do not want to repeat a lengthy
expression, by which you want to order - although most databases also allow for referencing aliased
column references in the ORDER BY clause. An example of this is given here:

SELECT AUTHOR I D, TITLE create. sel ect (BOOK. AUTHOR | D, BOOK. Tl TLE)

FROM BOOK . r om(BOOK)

ORDER BY 1 ASC, 2 DESC .orderBy(one().asc(), inline(2).desc())
.fetch();

Note, how one() is used as a convenience short-cut for inline(1)

Ordering and NULLS

A few databases support the SQL standard "null ordering" clause in sort specification lists, to define
whether NULL values should come first or last in an ordered result.

SELECT create. sel ect (
AUTHOR. FI RST_NANME, AUTHOR. FI RST_NAME,
AUTHOR. LAST_NAME AUTHOR. LAST_NANE)
FROM AUTHOR . fr o AUTHOR)
ORDER BY LAST_NAME ASC, . or der By(AUTHOR. LAST_NAME. asc(),
FI RST_NAME ASC NULLS LAST AUTHOR. FI RST_NAME. asc() . nul | sLast ())
.fetch();

If your database doesn't support this syntax, JOOQ emulates it using a CASE expression as follows

SELECT
AUTHOR. FI RST_NANME, AUTHOR LAST NANE
FROM AUTHOR
ORDER BY LAST_NAMVE ASC,
CASE WHEN FI RST_NAME 1S NULL
THEN 1 ELSE 0 END ASC,
FI RST_NAME ASC

Ordering using CASE expressions

Using CASE expressions in SQL ORDER BY clauses is a common pattern, if you want to introduce

some sort indirection / sort mapping into your queries. As with SQL, you can add any type of column
© 2009 - 2024 by Data Geekery™ GmbH. Page 96 /720

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/SortField.html

The jOOQ User Manual 4.3.4.10. ORDER BY clause

expression into your ORDER BY clause. For instance, if you have two favourite books that you always
want to appear on top, you could write:

SELECT * create.sel ect()
FROM BOOK . f rom(BOOK)
ORDER BY CASE TI TLE . order By(choose(BOOK. Tl TLE)
VWHEN ' 1984' THEN O . when("1984", 0)
WHEN ' Ani mal Farmi THEN 1 .when("Ani nal Farni', 1)
ELSE 2 END ASC .ot herwi se(2).asc())
.fetch();

But writing these things can become quite verbose. jOOQ supports a convenient syntax for specifying
sort mappings. The same query can be written in jJOOQ as such:

create.select()
. f r om(BOOK)
. order By(BOOK. Tl TLE. sort Asc("1984", "Aninmal Farni))
.fetch();

More complex sort indirections can be provided using a Map:

create. select()

. f rom(BOOK)

. order By(BOOK. TI TLE. sort (new HashMap<String, Integer>() {{
put ("1984", 1);
put (" Ani mal Farni, 13);
put (" The j COQ book", 10);

1))

.fetch();

Of course, you can combine this feature with the previously discussed NULLS FIRST / NULLS LAST
feature. So, if in fact these two books are the ones you like least, you can put all NULLS FIRST (all the
other books):

create.select()
. f r om(BOOK)
. order By(BOOK. TI TLE. sort Asc("1984", "Aninal Farni).nullsFirst())
.fetch();

jO0Q's understanding of SELECT .. ORDER BY

The SQL standard defines that a "query expression" can be ordered, and that query expressions can
contain UNION, INTERSECT and EXCEPT clauses, whose subqueries cannot be ordered. While this is
defined as such in the SQL standard, many databases allowing for the LIMIT clause in one way or
another, do not adhere to this part of the SQL standard. Hence, jOOQ allows for ordering all SELECT
statements, regardless whether they are constructed as a part of a UNION or not. Corner-cases are
handled internally by jOOQ, by introducing synthetic subselects to adhere to the correct syntax, where
this is needed.

Oracle's ORDER SIBLINGS BY clause

jOOQ also supports Oracle's SIBLINGS keyword to be used with ORDER BY clauses for hierarchical
queries using CONNECT BY

© 2009 - 2024 by Data Geekery™ GmbH. Page 97 /720

The jOOQ User Manual 4.3.4.11. LIMIT .. OFFSET clause

4.3.411. LIMIT .. OFFSET clause

While being extremely useful for every application that does pagination, or just to limit result sets
to reasonable sizes, this clause has not been standardised up until SQL:2008. Hence, there exist a
variety of possible implementations in various SQL dialects, concerning this limit clause. JOOQ chose to
implement the LIMIT .. OFFSET clause as understood and supported by MySQL, H2, HSQLDB, Postgres,
and SQLite. Here is an example of how to apply limits with jOOQ:

create.select().fronmBOOK).orderBy(BOOK. ID).limt(1).offset(2).fetch();

This will limit the result to 1 books skipping the first 2 books (offset 2). limit() is supported in all dialects,
offset() in all but Sybase ASE, which has no reasonable means to emulate it. This is how jOOQ trivially
emulates the above query in various SQL dialects with native OFFSET pagination support:

-- MySQL, H2, HSQLDB, Postgres, and SQLite
SELECT * FROM BOOK ORDER BY ID LIMT 1 OFFSET 2

- CUBRID supports a MySQL variant of the LIMT .. OFFSET cl ause
SELECT * FROM BOXK LIMT 2, 1

-- Derby, SQL Server 2012, Oracle 12c, the SQL: 2008 standard
SELECT * FROM BOOK ORDER BY | D OFFSET 2 ROAS FETCH NEXT 1 ROWS ONLY

- Inform x has SKIP .. FIRST support
SELECT SKIP 2 FIRST 1 * FROM BOOK ORDER BY | D

- Ingres (al nbst the SQL: 2008 standard)
SELECT * FROM BOOK ORDER BY | D OFFSET 2 FETCH FIRST 1 ROAS ONLY

- Firebird
SELECT * FROM BOOK ORDER BY I D ROWS 2 TO 3

- Sybase SQL Anywhere
SELECT TOP 1 START AT 3 * FROM BOOK ORDER BY | D

- DB2 (al nbst the SQL: 2008 standard, w thout OFFSET)
SELECT * FROM BOOK ORDER BY | D FETCH FI RST 1 ROWS ONLY

- Sybase ASE, SQL Server 2008 (without OFFSET)
SELECT TOP 1 * FROM BOOK ORDER BY | D

Things get a little more tricky in those databases that have no native idiom for OFFSET pagination (actual
qgueries may vary):

- DB2 (with OFFSET), SQ Server 2008 (with OFFSET)
SELECT * FROM (

SELECT BOCK. *,

ROW NUMBER() OVER (ORDER BY I D ASC) AS RN

FROM BOOK
) AS X
VHERE RN > 2
AND RN <= 3

- DB2 (with OFFSET), SQ Server 2008 (with OFFSET)
SELECT * FROM (
SELECT DI STINCT BOOK. | D, BOCK. TI TLE,
DENSE_RANK() OVER (ORDER BY I D ASC, TITLE ASC) AS RN
FROM BOOK
) AS X
VHERE RN > 2
AND RN <= 3

- Oracle 11g and |ess

SELECT *
FROM (
SELECT b.*, ROAUM RN
FROM (
SELECT *
FROM BOOK
ORDER BY | D ASC
) b

WHERE ROWNUM <= 3

)
WHERE RN > 2

© 2009 - 2024 by Data Geekery™ GmbH. Page 98 /720

The jOOQ User Manual 4.3.4.12. WITH TIES clause

As you can see, jOOQ will take care of the incredibly painful ROW_NUMBER() OVER() (or ROWNUM for
Oracle) filtering in subselects for you, you'll just have to write limit(1).offset(2) in any dialect.

SQL Server's ORDER BY, TOP and subqueries

As can be seen in the above example, writing correct SQL can be quite tricky, depending on the SQL
dialect. For instance, with SQL Server, you cannot have an ORDER BY clause in a subquery, unless you
also have a TOP clause. This is illustrated by the fact that JOOQ renders a TOP 100 PERCENT clause for
you. The same applies to the fact that ROW_NUMBER() OVER() needs an ORDER BY windowing clause,
even if you don't provide one to the jOOQ query. By default, JOOQ adds ordering by the first column
of your projection.

Keyset pagination

Note, the LIMIT clause can also be used with the SEEK clause for keyset pagination.

4.3.412. WITH TIES clause

The previous chapter talked about the LIMIT clause, which limits the result set to a certain number of
rows. The SQL standard specifies the following syntax:

OFFSET m{ ROWN| ROAS }
FETCH { FIRST | NEXT } n { ROW| ROWS } { ONLY | WTH TIES }

By default, most users will use the semantics of the ONLY keyword, meaning a LIMIT 5 expression (or
FETCH NEXT 5 ROWS ONLY expression) will result in at most 5 rows. The alternative clause WITH TIES
will return at most 5 rows, except if the 5th row and the 6th row (and so on) are "tied" according to the
ORDER BY clause, meaning that the ORDER BY clause does not deterministically produce a 5th or 6th
row. For example, let's look at our book table:

SELECT * DSL. usi ng(confi gurati on)
FROM book . sel ect Fr on{ BOOK)
ORDER BY actor_id . or der By(BOOK. ACTOR | D)
FETCH NEXT 1 ROAS W TH TI ES limit(1).withTies()
.fetch();
Resulting in:
id actor_id title
1 1 1984
2 1 Ani mal Farm

We're now getting two rows because both rows "tied" when ordering them by ACTOR_ID. The database
cannot really pick the next 1 row, so they're both returned. If we omit the WITH TIES clause, then only
a random one of the rows would be returned.

Not all databases support WITH TIES. Oracle 12c supports the clause as specified in the SQL standard,
and SQL Server knows TOP n WITH TIES without OFFSET support.

© 2009 - 2024 by Data Geekery™ GmbH. Page 99/ 720

The jOOQ User Manual 4.3.4.13. SEEK clause

4.3.4.13. SEEK clause

One of the previous chapters talked about OFFSET pagination using LIMIT .. OFFSET, or OFFSET .. FETCH
or some other vendor-specific variant of the same. This can lead to significant performance issues when
reaching a high page number, as all unneeded records need to be skipped by the database.

A much faster and more stable way to perform pagination is the so-called keyset pagination method
also called seek method. jOOQ supports a synthetic seek() clause, that can be used to perform keyset
pagination (learn about other synthetic sgl syntaxes). Imagine we have these data:

| ID| VALUE | PAGE_BOUNDARY |
[EEEER [EEER R |

AU .
474 |
533 |
640 |
776 |
815 |
947 |
37 |
287 |
450 |

<-- Before page 6

<-- Last on page 6

TWWWNNNNNNC
T OO0OPrPOO0OO0OORr O

Now, if we want to display page 6 to the user, instead of going to page 6 by using a record OFFSET, we
could just fetch the record strictly after the last record on page 5, which yields the values (533, 2). This
is how you would do it with SQL or with jOOQ:

DSL. usi ng(confi gurati on)
.select(T.1D, T.VALUE)

SELECT id, value .from(T)
FROM t .orderBy(T. VALUE, T.1D)
WHERE (value, id) > (2, 533) .seek(lastValue, lastld) // fromlast page: value = 2, id =
ORDER BY val ue, id 533
LIMT 5 Llimt(5)
.fetch();

As you can see, the jOOQ SEEK clause is a synthetic clause that does not really exist in SQL. However,
the jOOQ syntax is far more intuitive for a variety of reasons:

- ltreplaces OFFSET where you would expect

- It doesn't force you to mix regular predicates with "seek" predicates

- ltis typesafe

- It emulates row value expression predicates for you, in those databases that do not support
them

This query now yields:

| 1D| VALUE |

Note that you cannot combine the SEEK clause with the OFFSET clause.

More information about this great feature can be found in the jOOQ blog:

© 2009 - 2024 by Data Geekery™ GmbH. Page 100/ 720

The jOOQ User Manual 4.3.4.14, FOR UPDATE clause

- https://blog.joog.org/faster-sgl-paging-with-joog-using-the-seek-method/
- https://blog.joog.org/faster-sgl-pagination-with-keysets-continued/

Further information about offset pagination vs. keyset pagination performance can be found on our
partner page:

4.3.4.14. FOR UPDATE clause

For inter-process synchronisation and other reasons, you may choose to use the SELECT .. FOR UPDATE
clause to indicate to the database, that a set of cells or records should be locked by a given transaction
for subsequent updates. With jOOQ, this can be achieved as such:

SELECT * create. sel ect()

FROM BOOK . f r on{ BOOK)

VHERE ID = 3 . wher e(BOOK. | D. eq(3))

FOR UPDATE . for Updat e()
.fetch();

The above example will produce a record-lock, locking the whole record for updates. Some databases
also support cell-locks using FOR UPDATE OF ..

SELECT * create.select()

FROM BOOK . f rom(BOOK)

WHERE ID = 3 . wher e(BOXK. | D. eq(3))

FOR UPDATE OF TI TLE . forUpdat e() . of (BOOK. Tl TLE)
.fetch();

Oracle goes a bit further and also allows to specify the actual locking behaviour. It features these
additional clauses, which are all supported by jOOQ:

- FOR UPDATE NOWAIT: This is the default behaviour. If the lock cannot be acquired, the query
fails immediately

- FOR UPDATE WAIT n: Try to wait for [n] seconds for the lock acquisition. The query will fail only
afterwards

- FOR UPDATE SKIP LOCKED: This peculiar syntax will skip all locked records. This is particularly
useful when implementing queue tables with multiple consumers

With jJOOQ, you can use those Oracle extensions as such:

create. sel ect().fron(BOXK).where(BOX. |D.eq(3)).forUpdate().nowait().fetch();
create. sel ect().fronmBOXK).where(BOXK. |D.eq(3)).forUpdate().wait(5).fetch();
create. sel ect().fronm BOXK).where(BOX. | D.eq(3)).forUpdate().skipLocked().fetch();

FOR UPDATE in CUBRID and SQL Server

The SQL standard specifies a FOR UPDATE clause to be applicable for cursors. Most databases interpret
this as being applicable for all SELECT statements. An exception to this rule are the CUBRID and SQL
Server databases, that do not allow for any FOR UPDATE clause in a regular SQL SELECT statement.
jOOQ emulates the FOR UPDATE behaviour, by locking record by record with JDBC. JDBC allows for

© 2009 - 2024 by Data Geekery™ GmbH. Page 101 /720

https://blog.jooq.org/faster-sql-paging-with-jooq-using-the-seek-method/
https://blog.jooq.org/faster-sql-pagination-with-keysets-continued/
https://use-the-index-luke.com/no-offset
https://use-the-index-luke.com/no-offset

The jOOQ User Manual 4.3.4.15. Set operations

specifying the flags TYPE_SCROLL_SENSITIVE, CONCUR_UPDATABLE for any statement, and then using
ResultSet.updateXXX() methods to produce a cell-lock / row-lock. Here's a simplified example in JDBC:

try (
PreparedStat enent stnt = connecti on. prepar eSt at enent (
"SELECT * FROM author WHERE id IN (3, 4, 5)",
Resul t Set . TYPE_SCROLL_SENSI Tl VE,
Resul t Set . CONCUR_UPDATABLE) ;
Resul tSet rs = stnt.executeQuery()
) 1
while (rs.next()) {
/| UPDATE the primary key for rowlocks, or any other columms for cell-Iocks
rs. updateCbj ect (1, rs.getCbject(1));
rs. updat eRow() ;

// Do nore stuff with this record

The main drawback of this approach is the fact that the database has to maintain a scrollable cursor,
whose records are locked one by one. This can cause a major risk of deadlocks or race conditions if
the JDBC driver can recover from the unsuccessful locking, if two Java threads execute the following
statements:

-- thread 1
SELECT * FROM aut hor ORDER BY id ASC

-- thread 2
SELECT * FROM aut hor ORDER BY id DESC;

So use this technique with care, possibly only ever locking single rows!

Pessimistic (shared) locking with the FOR SHARE clause

Some databases (MySQL, Postgres) also allow to issue a non-exclusive lock explicitly using a FOR SHARE
clause. This is also supported by jOOQ

Optimistic locking in jJOOQ

Note, that jOOQ also supports optimistic locking, if you're doing simple CRUD. This is documented in
the section's manual about optimistic locking.

4.3.4.15. Set operations

SQL allows to perform set operations as understood in standard set theory on result sets. These
operations include unions, intersections, subtractions. For two subselects to be combinable by such a
set operator, each subselect must return a table expression of the same degree and type.

All of these set operations come with 2 flavours:

- DISTINCT (the default): Removing duplicates after applying the set operation
- ALL: Retaining duplicates after applying the set operation

© 2009 - 2024 by Data Geekery™ GmbH. Page 102 /720

The jOOQ User Manual 4.3.4.15.1. Type safety

4.3.4.15.1. Type safety

Two subselects of degree less than 22 that are combined by a set operator are required to be of
the same degree and, in most databases, also of the same type. JOOQ 3.0's introduction of Typesafe
Record[N] types helps compile-checking these constraints:

I/ Sonme sanpl e SELECT statenents

Sel ect <Record2<I nteger, String>> sl
Sel ect <Recor d1<I nt eger >> s2
Sel ect <Recor d2<I nteger, |nteger>> s3
Sel ect <Record2<I nteger, String>> s4

sel ect (BOOK. | D, BOCK. TI TLE) . f r on{ BOOK) ;
sel ect One();

sel ect (one(), zero());

sel ect (one(), inline("abc"));

/'l Let's try to conbine them

sl.union(s2); // Doesn't conpile because of a degree mi smatch. Expected: Record2<...>, got: Recordl<...>
sl.union(s3); // Doesn't conpile because of a type mismatch. Expected: <Integer, String> got: <Integer, |nteger>
sl.union(s4); // OK The two Record[N] types match

4.3.4.15.2. Projection rowtype

Much like most dialects use only the first set operation subquery's column names and types for the
resulting row type, so does jOOQ.

Since jOOQ does not know which row is produced by which union subquery, it cannot disambiguate
these rows in case the projection row type isn't exactly identical. As such, the ad-hoc converter in the
following example is ignored:

Resul t <Recor d1<I nteger>> result =
create. sel ect (BOXK. | D)
. f r om(BOOK)
. uni on(
/1 This has no effect
sel ect (AUTHOR. | D. convert Fron(i -> -i))
. from(AUTHOR))
.fetch();

While this can lead to subtle bugs, it makes perfect sense, knowing that a Converter is always applied
at the client side of the execution.

4.3.4.15.3. Differences to standard SQL

As previously mentioned in the manual's section about the ORDER BY clause, jJOOQ has slightly changed
the semantics of these set operators. While in SQL, a set operation subselect may not immediately
contain any ORDER BY clause or LIMIT clause (unless you wrap the subselect into a derived table), jOOQ
allows you to do so. In order to select both the youngest and the oldest author from the database, you
can issue the following statement with jOOQ (rendered to the MySQL dialect):

(SELECT * FROM AUTHOR create. sel ect Fr onm(AUTHOR)
ORDER BY DATE_OF_BIRTH ASC LIM T 1) . or der By(AUTHOR. DATE_OF_BI RTH. asc()). linit(1)
UNI ON . uni on(
(SELECT * FROM AUTHOR sel ect Fr om(AUTHOR)
ORDER BY DATE_OF_BIRTH DESC LIM T 1) . or der By(AUTHOR. DATE_OF_BI RTH. desc()). linit(1))
ORDER BY 1 .orderBy(1)
.fetch();

© 2009 - 2024 by Data Geekery™ GmbH. Page 103 /720

The jOOQ User Manual 4.3.4.15.3. Differences to standard SQL

In case your database doesn't support ordered UNION subselects, the subselects are nested in derived
tables.

SELECT * FROM (
SELECT * FROM AUTHOR
ORDER BY DATE_OF_BIRTH ASC LIMT 1
)
UNI ON
SELECT * FROM (
SELECT * FROM AUTHOR
ORDER BY DATE_OF_BI RTH DESC LIM T 1

)
ORDER BY 1

Dialect support
This example using jOOQ:

sel ect (BOOK. I D). f ron{ BOOK) . or der By(BOOK. I D). |'i mi t (1). uni on(sel ect (AUTHOR. | D) . f r on{ AUTHOR) . or der By(AUTHOR. I D). | i mi t (1)) . order By(1)

Translates to the following dialect specific expressions:

ASE, Access, SQLDataWarehouse, Sybase

(
SELECT TOP 1 BOXK. I D
FROM BOOK
ORDER BY BOX. | D

)

UNI ON (
SELECT TOP 1 AUTHOR. | D
FROM AUTHOR
ORDER BY AUTHOR. | D

)

ORDER BY 1

Aurora MySQL, Aurora Postgres, CockroachDB, DuckDB, Exasol, HSQLDB, Hana, MySQL,
Redshift, Snowflake, Vertica, YugabyteDB

SELECT BOCK. I D
FROM BOOK
ORDER BY BOCK. | D
LIMT 1

)

UNI ON (
SELECT AUTHCR. | D
FROM AUTHOR
ORDER BY AUTHCR. | D
LIMT 1

)
ORDER BY 1

© 2009 - 2024 by Data Geekery™ GmbH. Page 104 /720

The jOOQ User Manual 4.3.4.15.3. Differences to standard SQL

BigQuery, ClickHouse

SELECT BOXK. | D
FROVI BOOK

ORDER BY BOXK. I D
LIMT 1

)

UNION DI STINCT (
SELECT AUTHOR. | D
FROM AUTHOR
ORDER BY AUTHOR. | D
LIMT 1

)
ORDER BY 1

DB2

(
SELECT BOXK. I D
FROM BOOK
ORDER BY BOX. | D
)
UNI ON (
SELECT AUTHOR. | D
FROM AUTHOR
ORDER BY AUTHOR. | D
FETCH NEXT 1 ROAS ONLY
)
ORDER BY 1

Derby, H2, MariaDB, Oracle, Postgres, Trino

SELECT BOX. | D

FROM BOOK

ORDER BY BOXK. | D

FETCH NEXT 1 ROAS ONLY

)
UNI ON (
SELECT AUTHCR. | D
FROM AUTHOR
ORDER BY AUTHCR. | D
FETCH NEXT 1 ROAS ONLY

)
ORDER BY 1

Firebird

SELECT BOXK. | D

FROVI BOOK

ORDER BY BOXK. I D

FETCH NEXT 1 ROWS ONLY
UNI ON

SELECT AUTHOR. | D

FROM AUTHOR

ORDER BY AUTHOR. | D

FETCH NEXT 1 ROWS ONLY
ORDER BY 1

© 2009 - 2024 by Data Geekery™ GmbH. Page 105/720

The jOOQ User Manual

Informix

(
SELECT BOXK. | D
FROVI BOOK
ORDER BY BOXK. I D

)

UNION (
SELECT *
FROM (

SELECT FIRST 1 AUTHOR | D

FROM AUTHOR
ORDER BY AUTHOR. | D
) x

)
ORDER BY 1

MemSQL

SELECT
-
FROM (
(
SELECT BOOK. | D
FROM BOCK
ORDER BY BOOK. | D
LIMT 1

)
UNION (
SELECT AUTHCR | D
FROM AUTHOR
ORDER BY AUTHOR | D
LIMT 1
)
)t
ORDER BY 1

SQLite

SELECT *

FROM (
SELECT BOX. | D
FROM BOOK
ORDER BY BOXK. | D
LIMT 1

) X

UNI ON

SELECT *

FROM (
SELECT AUTHOR. | D
FROM AUTHOR
ORDER BY AUTHOR. | D
LIMT 1

) X

ORDER BY 1

© 2009 - 2024 by Data Geekery™ GmbH.

4.3.4.15.3. Differences to standard SQL

Page 106 /720

The jOOQ User Manual 4.3.4.15.4. UNION

SQLServer

SELECT TCP 1 BOX. I D
FROVI BOOK

ORDER BY BOXK. I D
OFFSET 0 ROAS

FETCH NEXT 1 ROWS ONLY

)

UNION (
SELECT TOP 1 AUTHCR. | D
FROM AUTHOR
ORDER BY AUTHOR. | D

)
ORDER BY 1

Teradata

(
SELECT BOXK. I D
FROVI BOOK
ORDER BY BOX. | D
)
UNION (
SELECT *
FROM (
SELECT TOP 1 AUTHOR. I D
FROVI AUTHOR
ORDER BY AUTHOR. | D
) X
)
ORDER BY 1

4.3.4.15.4. UNION

A UNION operation combines two subquery results of compatible row type into a single result. While
UNION removes all duplicate records resulting from this combination, UNION ALL leaves subselect
results as they are. Typically, you should prefer UNION ALL over UNION, if you don't really need to
remove duplicates, see also this section of the manual. The following example shows how to use such
a UNION operation in jOOQ.

SELECT * FROM BOOK WHERE ID = 3 create. sel ect Fr on(BOOXK) . wher e(BOOK. | D. eq(3))

UNI ON ALL .uni onAl | (

SELECT * FROM BOOK WHERE ID = 5 create. sel ect Fron(BOOXK) . wher e(BOOK. | D. eq(5)))
.fetch();

Dialect support
This example using jO0Q:

sel ect (BOOK. I D) . f ron{ BOOK) . uni on(sel ect (AUTHOR. | D) . f r on{ AUTHOR)) . or der By (BOOK. | D)

Translates to the following dialect specific expressions:

ASE, Access, Aurora MySQL, Aurora Postgres, CockroachDB, DB2, Derby, DuckDB,
Exasol, H2, HSQLDB, Hana, Informix, MariaDB, MySQL, Oracle, Postgres, Redshift,

© 2009 - 2024 by Data Geekery™ GmbH. Page 107 /720

The jOOQ User Manual 4.3.4.15.5. INTERSECT

SQLDataWarehouse, SQLServer, SQLite, Snowflake, Sybase, Teradata, Trino, Vertica,
YugabyteDB

SELECT BOXK. | D
FROVI BOOK

UNI ON

SELECT AUTHOR. I D
FROVI AUTHOR
ORDER BY I D

BigQuery, ClickHouse

SELECT BOX. | D
FROM BOOK

UNI ON DI STI NCT
SELECT AUTHOR. I D
FROM AUTHOR
ORDER BY I D

Firebird

SELECT BOXK. | D
FROM BOOK

UNI ON

SELECT AUTHOR. | D
FROM AUTHOR
ORDER BY 1

MemSQL

SELECT
.

FROM (
SELECT BOOK. | D
FROM BOCK
UNI ON
SELECT AUTHCR | D
FROM AUTHOR

) t

ORDER BY | D

4.3.4.15.5. INTERSECT

INTERSECT is the operation that produces only those values that are returned by both subselects. By
default, this removes duplicate rows. Use INTERSECT ALL in order to retain them, and require duplicates
to appear in both subqueries.

SELECT | D FROM BOOK create. sel ect (BOOK. | D) . f r om(BOOK)

| NTERSECT ALL .intersectAll(

SELECT | D FROM AUTHOR create. sel ect (AUTHOR. | D). f r on{ AUTHOR))
.fetch();

© 2009 - 2024 by Data Geekery™ GmbH. Page 108 /720

The jOOQ User Manual 4.3.4.15.5. INTERSECT

Dialect support
This example using jOOQ:
sel ect (BOOK. I D). fron{ BOOK) . i nt er sect (sel ect (AUTHOR. | D) . f r om{ AUTHOR)) . or der By (BOOK. | D)

Translates to the following dialect specific expressions:

ASE, Aurora Postgres, CockroachDB, DB2, Derby, DuckDB, Exasol, H2, HSQLDB, Hana,
Informix, MariaDB, MySQL, Oracle, Postgres, SQLDataWarehouse, SQLServer, SQLite,
Snowflake, Sybase, Teradata, Trino, Vertica, YugabyteDB

SELECT BOXK. | D
FROM BOOK

| NTERSECT

SELECT AUTHOR. | D
FROM AUTHOR
ORDER BY I D

BigQuery, ClickHouse

SELECT BOXK. | D
FROVI BOOK

| NTERSECT DI STI NCT
SELECT AUTHOR. | D
FROM AUTHOR

ORDER BY I D

MemSQL

SELECT
-

FROM (
SELECT BOOK. | D
FROM BOCK
| NTERSECT
SELECT AUTHOR. | D
FROM AUTHOR

) t

ORDER BY | D

Access, Aurora MySQL, Firebird, Redshift

/* UNSUPPORTED */

© 2009 - 2024 by Data Geekery™ GmbH. Page 109 /720

The jOOQ User Manual 4.3.4.15.6. EXCEPT

4.3.4.15.6. EXCEPT

EXCEPT (or MINUS in Oracle) is the operation that returns only those values that are returned exclusively
in the first subselect. By default, this removes duplicate rows. Use EXCEPT ALL in order to retain them,
and require duplicates to appear in both subqueries.

SELECT | D FROM BOOK create. sel ect (BOOK. | D). f r om(BOOK)

EXCEPT ALL .except Al'l (

SELECT | D FROM AUTHOR create. sel ect (AUTHOR. | D). f r on{ AUTHOR))
.fetch();

Dialect support
This example using jOOQ:

sel ect (BOOK. I D). f r on{ BOOK) . except (sel ect (AUTHOR. | D) . f r on{ AUTHOR)) . or der By (BOOK. | D)

Translates to the following dialect specific expressions:

ASE, Aurora Postgres, CockroachDB, DB2, Derby, DuckDB, Exasol, H2, HSQLDB,
Hana, Informix, MariaDB, MySQL, Postgres, SQLDataWarehouse, SQLServer, SQLite,
Snowflake, Sybase, Teradata, Trino, Vertica, YugabyteDB

SELECT BOXXK. | D
FROM BOOK

EXCEPT

SELECT AUTHOR. | D
FROM AUTHOR
ORDER BY I D

BigQuery, ClickHouse

SELECT BOXK. | D
FROM BOOK

EXCEPT DI STI NCT
SELECT AUTHOR. | D
FROM AUTHOR
ORDER BY I D

MemSQL

SELECT
.

FROM (
SELECT BOOK. | D
FROM BOCK
EXCEPT
SELECT AUTHCR | D
FROM AUTHOR

)t

ORDER BY | D

© 2009 - 2024 by Data Geekery™ GmbH. Page 110/720

The jOOQ User Manual 4.3.4.16. Lexical and logical SELECT clause order

Oracle

SELECT BOXK. | D
FROVI BOOK

M NUS

SELECT AUTHOR. | D
FROM AUTHOR
ORDER BY I D

Access, Aurora MySQL, Firebird, Redshift

/* UNSUPPORTED */

4.3.4.16. Lexical and logical SELECT clause order

SQL has a lexical and a logical order of SELECT clauses. The lexical order of SELECT clauses is inspired
by the English language. As SQL statements are commands for the database, it is natural to express a
statement in an imperative tense, such as "SELECT this and that!".

Logical SELECT clause order

The logical order of SELECT clauses, however, does not correspond to the syntax. In fact, the logical
order is this:

- The FROM clause: First, all data sources are defined and joined

- The WHERE clause: Then, data is filtered as early as possible

- The CONNECT BY clause: Then, data is traversed iteratively or recursively, to produce new tuples

- The GROUP BY clause: Then, data is reduced to groups, possibly producing new tuples if
grouping functions like ROLLUP(), CUBE(), GROUPING SETS() are used

- The HAVING clause: Then, data is filtered again

- The SELECT clause: Only now, the projection is evaluated. In case of a SELECT DISTINCT
statement, data is further reduced to remove duplicates

- UNION, INTERSECT and EXCEPT clauses: Optionally, the above is repeated for several UNION-
connected subqueries. Unless this is a UNION ALL clause, data is further reduced to remove
duplicates

- The ORDER BY clause: Now, all remaining tuples are ordered

- The LIMIT clause: Then, a paginating view is created for the ordered tuples

- The FOR UPDATE clause: Finally, pessimistic locking is applied

The SQL Server documentation also explains this, with slightly different clauses:

© 2009 - 2024 by Data Geekery™ GmbH. Page 111 /720

https://msdn.microsoft.com/en-us/library/ms189499.aspx

The jOOQ User Manual 4.3.5. The INSERT statement

- FROM

- ON

- JOIN

- WHERE

-~ GROUP BY
- WITH CUBE or WITH ROLLUP
- HAVING

- SELECT

- DISTINCT
- ORDER BY
- TOP

As can be seen, databases have to logically reorder a SQL statement in order to determine the best
execution plan.

Alternative syntaxes: LINQ, SLICK

Some "higher-level" abstractions, such as C#'s LINQ or Scala's SLICK try to inverse the lexical order of
SELECT clauses to what appears to be closer to the logical order. The obvious advantage of moving
the SELECT clause to the end is the fact that the projection type, which is the record type returned by
the SELECT statement can be re-used more easily in the target environment of the internal domain
specific language.

A LINQ example:

/'l LINQto-SQL | ooks sonmewhat similar to SQU
Il AS cl ause /1 FROM cl ause
From p I'n db. Products

/'l WHERE cl ause
Where p. UnitslnStock <= p.ReorderLevel AndAl so Not p.Discontinued

/'l SELECT cl ause
Sel ect p

A SLICK example:

// "for" is the "entry-point" to the DSL
val q = for {

/1l FROM cl ause WHERE cl ause
c <- Coffees if c.suplD === 101

/| SELECT cl ause and projection to a tuple
} yield (c.nanme, c.price)

While this looks like a good idea at first, it only complicates translation to more advanced SQL statements
while impairing readability for those users that are used to writing SQL. jOOQ is designed to look just
like SQL. This is specifically true for SLICK, which not only changed the SELECT clause order, but also
heavily "integrated" SQL clauses with the Scala language.

For these reasons, the JOOQ DSL APl is modelled in SQL's lexical order.

4.3.5. The INSERT statement

The INSERT statement is used to insert new records into a database table. The following sections
describe the various operation modes of the JOOQ INSERT statement.

© 2009 - 2024 by Data Geekery™ GmbH. Page 112/720

The jOOQ User Manual 4.3.5.1. INSERT .. VALUES

4.3.5.1. INSERT .. VALUES

INSERT .. VALUES with a single row

Records can either be supplied using a VALUES() constructor, or a SELECT statement. jJOOQ supports
both types of INSERT statements. An example of an INSERT statement using a VALUES() constructor
is given here:

I NSERT | NTO AUTHOR create.insertl|nto(AUTHOR
(1D, FIRST_NAME, LAST_NAME) AUTHOR. | D, AUTHOR. FI RST_NAME, AUTHOR. LAST_NAME)
VALUES (100, 'Hermann', 'Hesse'); .val ues(100, "Hermann", "Hesse")

.execute();

Note that for explicit degrees up to 22, the VALUES() constructor provides additional typesafety. The
following example illustrates this:

I nsert Val uesSt ep3<Aut hor Record, Integer, String, String> step =
create.insertlnto(AUTHOR, AUTHOR | D, AUTHOR FI RST_NAME, AUTHOR. LAST_NAME);
step.val ues("A", "B", "C');
[/ "~~~ Doesn't conpile, the expected type is |nteger

INSERT .. VALUES with multiple rows

The SQL standard specifies that multiple rows can be supplied to the VALUES() constructor in an INSERT
statement. Here's an example of a multi-record INSERT

| NSERT | NTO AUTHOR create.insert|nto(AUTHOR,
(1D, FIRST_NAME, LAST_NANE) AUTHOR. | D, AUTHOR. FI RST_NAME, AUTHOR. LAST_NAME)
VALUES (100, 'Hermann', 'Hesse'), .val ues(100, "Hermann", "Hesse")
(101, 'Alfred', 'Doblin'); .val ues(101, "Alfred", "Doblin")
. execute()

jOOQ tries to stay close to actual SQL. In detail, however, Java's expressiveness is limited. That's why the
values() clause is repeated for every record in multi-record inserts.

Some RDBMS do not support inserting several records in a single statement. In those cases, jOOQ
emulates multi-record INSERTs using the following SQL:

I NSERT | NTO AUTHOR create.insertl|nto(AUTHOR
(1D, FIRST_NAME, LAST_NAME) AUTHOR. | D, AUTHOR. FI RST_NAME, AUTHOR. LAST_NAME)
SELECT 100, 'Hermann', 'Hesse' FROM DUAL UNI ON ALL .val ues(100, "Hermann", "Hesse")
SELECT 101, 'Alfred', 'Doblin" FROM DUAL; .values(101, "Alfred", "Doblin")
.execute();

4.3.5.2. INSERT .. DEFAULT VALUES

A lesser-known syntactic feature of SQL is the INSERT .. DEFAULT VALUES statement, where a single
record is inserted, containing only DEFAULT values for every row. It is written as such:

© 2009 - 2024 by Data Geekery™ GmbH. Page 113/720

The jOOQ User Manual 4.3.5.3. INSERT .. SET

I NSERT | NTO AUTHOR create.insertl|nto(AUTHOR)
DEFAULT VALUES; . def aul t Val ues()
.execute();

This can make a lot of sense in situations where you want to "reserve" a row in the database for
an subsequent UPDATE statement within the same transaction. Or if you just want to send an event
containing trigger-generated default values, such as IDs or timestamps.

The DEFAULT VALUES clause is not supported in all databases, but jJOOQ can emulate it using the
equivalent statement:

I NSERT | NTO AUTHOR create.insertlnto(
(1D, FIRST_NAME, LAST_NAME, ...) AUTHOR, AUTHOR. | D, AUTHOR FI RST_NAME,
VALUES (AUTHOR. LAST_NAME, ...)
DEFAULT, . val ues(
DEFAULT, def aul t Val ue(AUTHOR. | D),
DEFAULT, ...); def aul t Val ue(AUTHOR. FI RST_NAME) ,

def aul t Val ue(AUTHOR. LAST_NAME), ...)
.execute();

The DEFAULT keyword (or DSL#defaultValue() method) can also be used for individual columns only,
although that will have the same effect as leaving the column away entirely.

4.3.5.3. INSERT .. SET

MySQL (and some other RDBMS) allow for using a non-SQL-standard, UPDATE-like syntax for INSERT
statements. This is also supported in jOOQ (and emulated for all databases), should you prefer that
syntax. The above INSERT statement can also be expressed as follows:

create.insert!nto(AUTHOR)
.set (AUTHOR I D, 100)
. set (AUTHOR. FI RST_NAME, " Her mann")
. set (AUTHOR. LAST_NAME, "Hesse")
. newRecor d()
.set (AUTHOR I D, 101)
. set (AUTHOR. FI RST_NAME, "Al fred")
. set (AUTHOR. LAST_NAME, "Doblin")
.execute();

As you can see, this syntax is a bit more verbose, but also more readable, as every field can be matched
with its value. Internally, the two syntaxes are strictly equivalent.

4.3.5.4. INSERT .. SELECT

In some occasions, you may prefer the INSERT SELECT syntax, for instance, when you copy records
from one table to another:

create.insertlnto(AUTHOR ARCHI VE)
. sel ect (sel ect Fr om(AUTHOR) . wher e(AUTHOR. DECEASED. i sTrue()))
.execute();

© 2009 - 2024 by Data Geekery™ GmbH. Page 114/720

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/impl/DSL.html#defaultValue()

The jOOQ User Manual 4.3.5.5. INSERT .. ON DUPLICATE KEY UPDATE

4.3.5.5. INSERT .. ON DUPLICATE KEY UPDATE

The MySQL database supports a very convenient way to INSERT or UPDATE a record. This is a non-
standard extension to the SQL syntax, which is supported by jOOQ and emulated in other RDBMS,
where this is possible (e.g. if they support the SQL standard MERGE statement). Here is an example
how to use the ON DUPLICATE KEY UPDATE clause:

// Add a new author called "Koontz" with ID 3.
/1 1f that IDis already present, update the author's nane
create.insertlnto(AUTHOR, AUTHOR | D, AUTHOR. LAST_NAME)

.val ues(3, "Koontz")

.onDupl i cat eKeyUpdat e()

. set (AUTHOR. LAST_NAME, "Koontz")

. execute();

Dialect support
This example using jOOQ:

i nsertlnto(AUTHOR, AUTHOR | D, AUTHOR. LAST_NAME).val ues(3, "X').onDuplicateKeyUpdate().set(AUTHOR LAST_NAME, "X')

Translates to the following dialect specific expressions:

Aurora MySQL, MariaDB, MemSQL, MySQL

I NSERT | NTO AUTHCR (1D, LAST_NAVE)
VALUES (
3,
o5
)
ON DUPLI CATE KEY UPDATE
AUTHOR. LAST_NAME = ' X'

Aurora Postgres, CockroachDB, DuckDB, Postgres, YugabyteDB

I NSERT | NTO AUTHCR (1D, LAST_NAME)
VALUES (

3,

"5

)
ON CONFLI CT (1 D)
DO UPDATE
SET
LAST_NAME = ' X'

© 2009 - 2024 by Data Geekery™ GmbH. Page 115/720

The jOOQ User Manual 4.3.5.5. INSERT .. ON DUPLICATE KEY UPDATE

DB2

MERGE | NTO AUTHOR
USI NG (
SELECT 3, ' X'
FROM SYS| BM DUAL
) t (ID, LAST_NANE)
ON AUTHOR. ID = t.ID
WHEN MATCHED THEN UPDATE SET
AUTHOR LAST_NAME = ' X'
WHEN NOT MATCHED THEN | NSERT (1D, LAST_NANE)
VALUES (
t.1D,
t. LAST_NAME
)

Derby

MERGE | NTO AUTHOR
USI NG SYSI BM SYSDUMMYL
ON AUTHOR. ID = 3
VHEN MATCHED THEN UPDATE SET
AUTHOR LAST_NAME = ' X'
VHEN NOT MATCHED THEN | NSERT (1D, LAST_NAVE)
VALUES (
3,
o5

Exasol

MERGE | NTO AUTHOR
USI NG (
SELECT 3, ' X'
) t (1D, LAST_NAME)
ON AUTHCR. ID = t.ID
WHEN MATCHED THEN UPDATE SET
AUTHOR LAST_NAME = ' X
WHEN NOT MATCHED THEN | NSERT (1D, LAST_NANE)
VALUES (
t.1D,
t. LAST_NAMVE
)

Firebird

MERGE | NTO AUTHOR
USI NG (
SELECT 3, ' X'
FROM RDB$DATABASE
) t (ID, LAST_NANE)
ON AUTHOR. ID = t. 1D
WHEN MATCHED THEN UPDATE SET
AUTHOR LAST_NAME = ' X'
VHEN NOT MATCHED THEN | NSERT (1D, LAST_NANE)
VALUES (
t.1D,
t. LAST_NAMVE
)

© 2009 - 2024 by Data Geekery™ GmbH. Page 116/720

The jOOQ User Manual 4.3.5.5. INSERT .. ON DUPLICATE KEY UPDATE

H2

MERGE | NTO AUTHOR
USI NG (
SELECT
31D,
"X LAST_NAMVE
)t
ON AUTHOR. ID = t.ID
WHEN MATCHED THEN UPDATE SET
AUTHOR LAST_NAME = ' X'
VHEN NOT MATCHED THEN | NSERT (1D, LAST_NANE)
VALUES (
t.1D,
t. LAST_NAMVE
)

Hana

MERGE | NTO AUTHOR
USI NG (
(
SELECT
31D,
"X LAST_NAMVE
FROM SYS. DUMWY

)
)t
ON AUTHOR ID = t.ID
WHEN MATCHED THEN UPDATE SET

AUTHOR. LAST_NAME = ' X'

VHEN NOT MATCHED THEN | NSERT (1D, LAST_NANE)
VALUES (

t.1D,

t. LAST_NAVE
)

HSQLDB

MERGE | NTO AUTHOR
USI NG (
SELECT 3, ' X'
FROM (VALUES(1)) AS dual (dual)
) t (1D, LAST_NAME)
ON AUTHCR. ID = t.ID
WHEN MATCHED THEN UPDATE SET
AUTHOR LAST_NAME = ' X
WHEN NOT MATCHED THEN | NSERT (1D, LAST_NANE)
VALUES (
t.1D,
t. LAST_NAMVE
)

© 2009 - 2024 by Data Geekery™ GmbH. Page 117/720

The jOOQ User Manual 4.3.5.5. INSERT .. ON DUPLICATE KEY UPDATE

Oracle

MERGE | NTO AUTHOR
USI NG (

SELECT
31D,
"X LAST_NAMVE
)
)t
ON (AUTHOR ID = t.1D)
WHEN MATCHED THEN UPDATE SET
AUTHOR LAST_NAME = ' X'
WHEN NOT MATCHED THEN | NSERT (1D, LAST_NANE)
VALUES (
t.1D,
t. LAST_NAMVE
)

Snowflake

MERGE | NTO AUTHOR
USI NG (
SELECT 3, 'X
) t (1D, LAST_NANE)
ON AUTHCR. ID = t.ID
WHEN MATCHED THEN UPDATE SET
LAST_NAME = ' X'
VHEN NOT MATCHED THEN | NSERT (1D, LAST_NANE)
VALUES (
t.1D,
t. LAST_NAME
)

SQLite

I NSERT | NTO AUTHCR (1D, LAST_NAME)
VALUES (

3,

"5

)
ON CONFLI CT
DO UPDATE
SET
LAST_NAME = ' X'

SQLServer

MERGE | NTO AUTHOR
USI NG (
SELECT 3, 'X
) t (1D, LAST_NANE)
ON AUTHOR ID = t.ID
VHEN MATCHED THEN UPDATE SET
AUTHOR LAST_NAME = ' X'
VHEN NOT MATCHED THEN | NSERT (1D, LAST_NAME)
VALUES (
t.1D,
t. LAST_NAMVE
IE

© 2009 - 2024 by Data Geekery™ GmbH. Page 118/720

The jOOQ User Manual 4.3.5.6. INSERT .. ON DUPLICATE KEY IGNORE

Sybase

MERGE | NTO AUTHOR
USI NG (
SELECT 3, ' X
FROM SYS. DUMW
) t (ID, LAST_NANE)
ON AUTHOR. ID = t.ID
WHEN MATCHED THEN UPDATE SET
AUTHOR LAST_NAME = ' X'
WHEN NOT MATCHED THEN | NSERT (1D, LAST_NANE)
VALUES (
t.1D,
t. LAST_NAME
)

Teradata

MERGE | NTO AUTHOR

USI NG (
SELECT 3, 'X
FROM (
SELECT 1 AS "dual "
) AS "dual "

) t (1D, LAST_NAVE)
ON AUTHOR ID = t.ID
WHEN MATCHED THEN UPDATE SET
LAST_NAME = ' X'
VHEN NOT MATCHED THEN | NSERT (1D, LAST_NAME)
VALUES (
t.1D,
t. LAST_NAVE
)

ASE, Access, BigQuery, ClickHouse, Informix, Redshift, SQLDataWarehouse, Trino,
Vertica

/* UNSUPPORTED */

4.3.5.6. INSERT .. ON DUPLICATE KEY IGNORE

The MySQL database also supports an INSERT IGNORE INTO clause. This is supported by jOOQ using
the more convenient SQL syntax variant of ON DUPLICATE KEY IGNORE:

// Add a new author called "Koontz" with ID 3.
/1 1f that IDis already present, ignore the | NSERT statenent
create.insertlnto(AUTHOR, AUTHOR | D, AUTHOR. LAST_NAME)

.val ues(3, "Koontz")

.onDupl i cat eKeyl gnore()

. execute();

If the underlying database doesn't have any way to "ignore" failing INSERT statements, (e.g. MySQL via
INSERT IGNORE), jJOOQ can emulate the statement using a MERGE statement, or using INSERT .. SELECT
WHERE NOT EXISTS.

© 2009 - 2024 by Data Geekery™ GmbH. Page 119/720

The jOOQ User Manual 4.3.5.6. INSERT .. ON DUPLICATE KEY IGNORE

(1) The MySQL INSERT IGNORE statement ignores more constraint violations than just duplicate
keys, so the emulation isn't exactly equivalent, see #5211

Dialect support
This example using jOOQ:

i nsertlnto(AUTHOR, AUTHOR. | D, AUTHOR. LAST_NAME).val ues(3, "X').onDuplicateKeyl gnore()

Translates to the following dialect specific expressions:

Access

I NSERT | NTO AUTHOR (I D, LAST_NAME)
SELECT t.v0O, t.vl
FROM (
SELECT
3 vo,
"X vl
FROM (
SELECT count (*) dual
FROM MBysResour ces
) AS dual
WHERE NOT EXI STS (
SELECT 1 one
FROM AUTHOR
WHERE AUTHOR. ID = 3
)
) t

ASE, Redshift, SQLDataWarehouse, Trino, Vertica

I NSERT | NTO AUTHOR (1D, LAST_NAME)
SELECT t.v0, t.vl

FROM (
SELECT
3 vo,
'Xovl
VHERE NOT EXI STS (
SELECT 1 one
FROM AUTHOR

WHERE AUTHOR. ID = 3
)
)t

Aurora MySQL, MariaDB, MySQL

I NSERT | GNORE | NTO AUTHCR (I D, LAST_NANE)
VALUES (

3,

o5
)

© 2009 - 2024 by Data Geekery™ GmbH. Page 120/720

https://github.com/jOOQ/jOOQ/issues/5211

The jOOQ User Manual 4.3.5.6. INSERT .. ON DUPLICATE KEY IGNORE

Aurora Postgres, CockroachDB, DuckDB, Postgres, SQLite, YugabyteDB

I NSERT | NTO AUTHOR (I D, LAST_NAME)
VALUES (

3,

o5

)
ON CONFLI CT
DO NOTHI NG

BigQuery

I NSERT | NTO AUTHOR (1D, LAST_NANE)
SELECT t.v0, t.vl
FROM (
SELECT
3 vo,
"X vl
FROM UNNEST([STRUCT(1 AS dual)]) AS dual
WHERE NOT EXI STS (
SELECT 1 one
FROM AUTHOR
WHERE AUTHOR. ID = 3
)
) t

ClickHouse

I NSERT | NTO AUTHCR (1D, LAST_NAME)
VALUES (

3,

"5

DB2

MERGE | NTO AUTHOR
USI NG (

SELECT 3, ' X

FROM SYS| BM DUAL
) t (ID, LAST_NANE)
ON AUTHOR. ID = t. 1D
WHEN NOT MATCHED THEN | NSERT (1D, LAST_NANE)
VALUES (

t.1D,

t. LAST_NAMVE

)

Derby

MERGE | NTO AUTHOR
USI NG SYSI BM SYSDUMMYL
ON AUTHOR. ID = 3
VWHEN NOT MATCHED THEN | NSERT (1D, LAST_NAVE)
VALUES (

3,

o5

© 2009 - 2024 by Data Geekery™ GmbH. Page 121/720

The jOOQ User Manual 4.3.5.6. INSERT .. ON DUPLICATE KEY IGNORE

Exasol, MemSQL

I NSERT | NTO AUTHOR (I D, LAST_NAME)
SELECT t.v0, t.vl
FROM (
SELECT
3 vo,
"X vl
FROM DUAL
WHERE NOT EXI STS (
SELECT 1 one
FROM AUTHOR
WHERE AUTHOR. ID = 3
)
)t

Firebird

MERGE | NTO AUTHOR
USI NG (
SELECT 3, 'X
FROM RDBSDATABASE
) t (1D, LAST_NANE)
ON AUTHCR. ID = t.ID
VHEN NOT MATCHED THEN | NSERT (1D, LAST_NANE)
VALUES (
t.1D,
t. LAST_NAVE
)

H2

MERGE | NTO AUTHOR
USI NG (
SELECT
31D,
"X LAST_NANE
)t
ON AUTHCR ID = t.ID
WHEN NOT MATCHED THEN | NSERT (1D, LAST_NANE)
VALUES (
t.1D,
t. LAST_NAMVE
)

Hana

MERGE | NTO AUTHOR
USI NG (
(
SELECT
31D,
"X LAST_NAMVE
FROM SYS. DUMW
)
)t
ON AUTHOR. ID = t.ID
WHEN NOT MATCHED THEN | NSERT (1D, LAST_NANE)
VALUES (
t.1D,
t. LAST_NAMVE
)

© 2009 - 2024 by Data Geekery™ GmbH. Page 122/720

The jOOQ User Manual 4.3.5.6. INSERT .. ON DUPLICATE KEY IGNORE

HSQLDB

MERGE | NTO AUTHOR
USI NG (
SELECT 3, 'X
FROM (VALUES(1)) AS dual (dual)
) t (1D, LAST_NAME)
ON AUTHOR. ID = t.ID
WHEN NOT NMATCHED THEN | NSERT (I D, LAST_NAME)
VALUES (
t. 1D,
t. LAST_NAVE

)

Informix

I NSERT | NTO AUTHOR (1D, LAST_NANE)
SELECT t.vO, t.vl
FROM (
SELECT
3 vo,
"X vl
FROM (
SELECT 1 AS dual
FROM syst abl es
WHERE (tabid = 1)
) AS dual
WHERE NOT EXI STS (
SELECT 1 one
FROM AUTHOR
WHERE AUTHOR. ID = 3
)
)t

Oracle

MERGE | NTO AUTHOR
USI NG (

SELECT
31D,
"X LAST_NANE

)
)t
ON (AUTHOR ID = t. D)
VHEN NOT MATCHED THEN | NSERT (1D, LAST_NAME)
VALUES (

t.1D,

t. LAST_NAMVE

)

Snowflake

MERGE | NTO AUTHOR
USI NG (

SELECT 3, ' X'
) t (ID, LAST_NANE)
ON AUTHOR. ID = t. 1D
WHEN NOT MATCHED THEN | NSERT (1D, LAST_NANE)
VALUES (

t.1D,

t. LAST_NAMVE

)

© 2009 - 2024 by Data Geekery™ GmbH. Page 123/720

The jOOQ User Manual 4.3.5.7. INSERT .. ON CONFLICT

SQLServer

MERGE | NTO AUTHOR
USI NG (
SELECT 3, 'X
) t (1D, LAST_NANE)
ON AUTHCR ID = t.ID
VHEN NOT MATCHED THEN | NSERT (1D, LAST_NAME)
VALUES (
t.1D,
t. LAST_NAMVE
IE

Sybase

MERGE | NTO AUTHOR
USI NG (
SELECT 3, 'X
FROM SYS. DUMWY
) t (1D, LAST_NAVE)
ON AUTHOR ID = t.ID
VHEN NOT MATCHED THEN | NSERT (1D, LAST_NANE)
VALUES (
t.1D,
t. LAST_NAMVE
)

Teradata

MERCE | NTO AUTHOR

USI NG (
SELECT 3, ' X
FROM (
SELECT 1 AS "dual "

) AS "dual "
) t (ID, LAST_NAME)
ON AUTHCR ID = t.ID
WHEN NOT MATCHED THEN | NSERT (1D, LAST_NAME)
VALUES (
t.1D,
t. LAST_NAMVE
)

4.3.5.7. INSERT .. ON CONFLICT

The PostgreSQL database offers an alternative syntax to MySQL's vendor specific INSERT .. ON
DUPLICATE KEY syntax, which allows for specifying an explicit (reference by constraint name) or implicit
(reference by column list) unique constraint for conflict resolution.

// Add a new author called "Koontz" with ID 3.
/1 1f that IDis already present, update the author's nane
create.insertlnto(AUTHOR, AUTHOR | D, AUTHOR. LAST_NAME)

.val ues(3, "Koontz")

.onConflict (AUTHOR. | D)

. doUpdat e()

. set (AUTHOR. LAST_NAME, "Koontz")

. execute();

© 2009 - 2024 by Data Geekery™ GmbH. Page 124 /720

The jOOQ User Manual 4.3.5.7. INSERT .. ON CONFLICT

Dialect support

This example using jOOQ:

insertlnto(AUTHOR, AUTHOR. I D, AUTHOR. LAST_NAME).val ues(3, "X').onConflict(AUTHOR I D). doUpdate().set (AUTHOR LAST_NAME, "X')

Translates to the following dialect specific expressions:

Aurora Postgres, CockroachDB, DuckDB, Postgres, SQLite, YugabyteDB

I NSERT | NTO AUTHCR (1D, LAST_NAME)
VALUES (

3,

"5

)
ON CONFLI CT (1 D)
DO UPDATE
SET
LAST_NAME = ' X'

DB2

MERGE | NTO AUTHOR
USI NG (
SELECT 3, 'X
FROM SYS| BM DUAL
) t (ID, LAST_NANE)
ON AUTHOR. ID = t.ID
WHEN MATCHED THEN UPDATE SET
AUTHOR LAST_NAME = ' X'
VHEN NOT MATCHED THEN | NSERT (1D, LAST_NANE)
VALUES (
t.1D,
t. LAST_NAMVE
)

Derby

MERGE | NTO AUTHOR
USI NG SYSI BM SYSDUMWY1
ON AUTHOR. ID = 3
WHEN MATCHED THEN UPDATE SET

AUTHOR LAST_NAME = ' X'
VHEN NOT MATCHED THEN | NSERT (1D, LAST_NANE)
VALUES (

3,

o5

© 2009 - 2024 by Data Geekery™ GmbH. Page 125/720

The jOOQ User Manual 4.3.5.7. INSERT .. ON CONFLICT

Exasol

MERGE | NTO AUTHOR
USI NG (
SELECT 3, ' X'
) t (ID, LAST_NANE)
ON AUTHOR. ID = t.ID
WHEN MATCHED THEN UPDATE SET
AUTHOR LAST_NAME = ' X'
VHEN NOT MATCHED THEN | NSERT (1D, LAST_NANE)
VALUES (
t.1D,
t. LAST_NAMVE

)

Firebird

MERGE | NTO AUTHOR
USI NG (
SELECT 3, 'X
FROM RDBSDATABASE
) t (1D, LAST_NANE)
ON AUTHCR. ID = t.ID
WHEN MATCHED THEN UPDATE SET
AUTHOR LAST_NAME = ' X'
VHEN NOT MATCHED THEN | NSERT (1D, LAST_NANE)
VALUES (
t.1D,
t. LAST_NAME
)

H2

MERGE | NTO AUTHOR
USI NG (
SELECT
31D,
"X LAST_NANE
)t
ON AUTHCR ID = t.ID
VHEN MATCHED THEN UPDATE SET
AUTHOR LAST_NAME = ' X'
VHEN NOT MATCHED THEN | NSERT (1D, LAST_NAME)
VALUES (
t.1D,
t. LAST_NAMVE
)

Hana

MERGE | NTO AUTHOR
USI NG (
(
SELECT
3 1D
' X' LAST_NAME
FROM SYS. DUMWY

)
)t
ON AUTHCR. ID = t.ID
WHEN MATCHED THEN UPDATE SET

AUTHOR LAST_NAME = ' X'

VHEN NOT MATCHED THEN | NSERT (1D, LAST_NANE)
VALUES (

t.1D,

t. LAST_NAME
)

© 2009 - 2024 by Data Geekery™ GmbH. Page 126/720

The jOOQ User Manual 4.3.5.7. INSERT .. ON CONFLICT

HSQLDB

MERGE | NTO AUTHOR
USI NG (
SELECT 3, 'X
FROM (VALUES(1)) AS dual (dual)
) t (1D, LAST_NAME)
ON AUTHOR. ID = t.ID
WHEN MATCHED THEN UPDATE SET
AUTHOR. LAST_NAME = ' X'
WHEN NOT NMATCHED THEN | NSERT (I D, LAST_NAME)
VALUES (
t. 1D,
t. LAST_NAVE
)

Oracle

MERGE | NTO AUTHOR
USI NG (
(
SELECT
31D,
"X LAST_NAMVE
)
)t
ON (AUTHOR ID = t. D)
WHEN MATCHED THEN UPDATE SET
AUTHOR LAST_NAME = ' X
VHEN NOT MATCHED THEN | NSERT (1D, LAST_NANE)
VALUES (
t.1D,
t. LAST_NAMVE
)

SQLServer

MERGE | NTO AUTHOR
USI NG (
SELECT 3, 'X
) t (1D, LAST_NAME)
ON AUTHOR. ID = t.ID
VWHEN MATCHED THEN UPDATE SET
AUTHOR. LAST_NAME = ' X'
WHEN NOT MATCHED THEN | NSERT (1D, LAST_NANE)
VALUES (
t.ID,
t. LAST_NAMVE
)i

Sybase

MERGE | NTO AUTHOR
USI NG (
SELECT 3, ' X'
FROM SYS. DUMW
) t (ID, LAST_NANE)
ON AUTHOR. ID = t. 1D
WHEN MATCHED THEN UPDATE SET
AUTHOR LAST_NAME = ' X'
WHEN NOT MATCHED THEN | NSERT (1D, LAST_NANE)
VALUES (
t.1D,
t. LAST_NAME
)

© 2009 - 2024 by Data Geekery™ GmbH. Page 127/720

The jOOQ User Manual 4.3.5.8. INSERT .. RETURNING

Teradata

MERGE | NTO AUTHOR
USI NG (
SELECT 3, 'X
FROM (
SELECT 1 AS "dual "
) AS "dual "
) t (1D, LAST_NAME)
ON AUTHOR. ID = t.ID
WHEN MATCHED THEN UPDATE SET
LAST_NAME = ' X
WHEN NOT NMATCHED THEN | NSERT (I D, LAST_NAME)
VALUES (
t. 1D,
t. LAST_NAVE
)

ASE, Access, Aurora MySQL, BigQuery, ClickHouse, Informix, MariaDB, MemSQL,
MySQL, Redshift, SQLDataWarehouse, Snowflake, Trino, Vertica

/* UNSUPPORTED */

4.3.5.8. INSERT .. RETURNING

The Postgres database has native support for an INSERT .. RETURNING clause. This is a very powerful
concept that is emulated for all other dialects using JDBC's getGeneratedKeys() method. Take this
example:

// Add another author, with a generated |ID

Record record =

create.insertlnto(AUTHOR, AUTHOR FI RST_NAME, AUTHOR. LAST_NANE)
.val ues("Charlotte", "Roche")
. returni ngResul t (AUTHOR. | D)
.fetchOne();

System out . println(record. get Val ue(AUTHOR. I D)) ;

I/ For some RDBMB, this also works when inserting several values
/1 The follow ng should return a 2x2 table
Resul t<?> result =
create.insertlnto(AUTHOR, AUTHOR FI RST_NAME, AUTHOR. LAST_NAME)
.val ues("Johann Wl fgang", "von Goethe")
.val ues("Friedrich", "Schiller")
/1l You can request any field. Also trigger-generated val ues
.returningResul t (AUTHOR. | D, AUTHOR. CREATI ON_DATE)
.fetch();

Some databases have poor support for returning generated keys after INSERTs. In those cases, jOOQ
might need to issue another SELECT statement in order to fetch an @@identity value. Be aware, that
this can lead to race-conditions in those databases that cannot properly return generated ID values.
For more information, please consider the jOOQ Javadoc for the returningResult() clause.

Dialect support
This example using jO0Q:

insert!nto(AUTHOR, AUTHOR. LAST_NAME) . val ues(" Doe"). returni ngResul t (AUTHOR. | D)

© 2009 - 2024 by Data Geekery™ GmbH. Page 128/720

https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Statement.html#getGeneratedKeys()

The jOOQ User Manual 4.3.6. The UPDATE statement

Translates to the following dialect specific expressions:

ASE, Access, Aurora MySQL, BigQuery, ClickHouse, Derby, Exasol, HSQLDB, Hana,
Informix, MemSQL, MySQL, Oracle, Redshift, Snowflake, Sybase, Teradata, Trino, Vertica

I NSERT | NTO AUTHOR (LAST_NAVME)
VALUES (' Doe')

Aurora Postgres, CockroachDB, DuckDB, Firebird, Postgres, SQLite, YugabyteDB

I NSERT | NTO AUTHOR (LAST_NAVE)
VALUES (' Doe')
RETURNI NG AUTHCR. | D

DB2, H2

SELECT I D

FROM FI NAL TABLE (
I NSERT | NTO AUTHCR (LAST_NAME)
VALUES (' Doe')

) AUTHOR

MariaDB

I NSERT | NTO AUTHOR (LAST_NAME)
VALUES (' Doe')
RETURNI NG | D

SQLDataWarehouse, SQLServer

I NSERT | NTO AUTHOR (LAST_NAME)
QUTPUT inserted. | D
VALUES (' Doe')

4.3.6. The UPDATE statement

The UPDATE statement is used to modify one or several pre-existing records in a database table.
UPDATE statements are only possible on single tables. Support for multi-table updates might be
implemented in the future. An example update query is given here:

UPDATE AUTHOR creat e. updat e(AUTHOR)
SET FI RST_NAME = ' Her nann', . set (AUTHOR. FI RST_NAME, " Her mann")
LAST_NAME = ' Hesse' . set (AUTHOR. LAST_NAME, "Hesse")
WHERE I D = 3; . wher e(AUTHOR. | D. eq(3))

.execute();

© 2009 - 2024 by Data Geekery™ GmbH. Page 129/720

The jOOQ User Manual 4.3.6.1. UPDATE .. SET

The following subsections discuss the various subclauses of the DELETE statement.

4.3.6.1. UPDATE .. SET

The SET clause allows for setting new values on updated records in a table.

Dialect support
This example using jOOQ:

updat e(BOOK) . set (BOOK. TI TLE, "New Title")

Translates to the following dialect specific expressions:

ASE, Access, Aurora MySQL, DB2, Derby, Exasol, Firebird, H2, HSQLDB, Informix,
MariaDB, MemSQL, MySQL, Oracle, SQLDataWarehouse, SQLServer, Sybase, Trino

UPDATE BOOK
SET
BOOK. TITLE = 'New Title'

Aurora Postgres, CockroachDB, DuckDB, Postgres, Redshift, SQLite, Snowflake,
Teradata, Vertica, YugabyteDB

UPDATE BOOK
SET
TITLE = "New Title'

BigQuery

UPDATE BOOK
SET

BOOK. TITLE = 'New Title'
VWHERE TRUE

ClickHouse

UPDATE BOOK
SET

TITLE = "New Title'
VWHERE TRUE

© 2009 - 2024 by Data Geekery™ GmbH. Page 130/720

The jOOQ User Manual 4.3.6.2. UPDATE .. SET ROWS

Hana

UPDATE BOOK
FROVI BOOK
SET
BOOK. TITLE = "New Title'

4.3.6.2. UPDATE .. SET ROWS

The SET clause allows for setting ROW value expressions on updated records in a table.

UPDATE AUTHOR creat e. updat e(AUTHOR)
SET (FI RST_NAME, LAST_NAME) = . set (r ow(AUTHOR FI RST_NAME, AUTHOR LAST_NAME),
(' Hermann', 'Hesse') row(" Her man", "Hesse"))
WHERE I D = 3; . wher e(AUTHOR. | D. eq(3))

.execute();

This can be particularly useful when using correlated subqueries in the SET clause, in case of which
multiple columns can be updated with a single subquery, instead of only 1. See also UPDATE .. FROM
for an alternative syntax for this scenario.

UPDATE AUTHOR creat e. updat e(AUTHOR)
SET (FI RST_NAME, LAST_NAME) = (. set (row(AUTHOR. FI RST_NAME, AUTHOR LAST_NAME) ,
SELECT PERSON. FI RST_NAME, PERSON. LAST_NAMVE sel ect (PERSON. FI RST_NAME, PERSON. LAST_NAME)
FROV PERSON . f r o PERSQN)
WHERE PERSON. | D = AUTHOR | D . wher e(PERSON. | D. eq(AUTHOR. | D))
))
WHERE I D = 3; . wher e(AUTHOR. | D. eq(3))

.execute();

The above row value expressions usages are completely typesafe.

Dialect support
This example using jOOQ:
updat e(BOOK) . set (r ow(BOOK. TI TLE, BOOK. LANGUAGE I D), row("New Title", 1))

Translates to the following dialect specific expressions:

ASE, Access, Aurora MySQL, Derby, Exasol, Firebird, Informix, MariaDB, MemSQL,
MySQL, SQLDataWarehouse, SQLServer, Sybase

UPDATE BOOK

SET
BOOK. TITLE = 'New Title',
BOOK. LANGUAGE ID = 1

© 2009 - 2024 by Data Geekery™ GmbH. Page 131/720

The jOOQ User Manual 4.3.6.2. UPDATE .. SET ROWS

Aurora Postgres, CockroachDB, DB2, H2, HSQLDB, Trino

UPDATE BOOK
SET
(TITLE, LANGUAGE ID) = ('New Title', 1)

BigQuery

UPDATE BOOK
SET
BOOK. TITLE = 'New Title',
BOOK. LANGUAGE ID = 1
WHERE TRUE

ClickHouse

UPDATE BOOK
SET
TITLE = "New Title',
LANGUAGE ID = 1
VHERE TRUE

DuckDB, Redshift, SQLite, Showflake, Teradata, Vertica

UPDATE BOOK

SET
TITLE = "New Title',
LANGUAGE_ID = 1

Hana

UPDATE BOOK
FROM BOOK
SET
(TITLE, LANGUAGE ID) = ('New Title', 1)

Oracle

UPDATE BOOK
SET
(TITLE, LANGUAGE ID) = (
SELECT 'New Title', 1
)

© 2009 - 2024 by Data Geekery™ GmbH. Page 132/720

The jOOQ User Manual 4.3.6.3. UPDATE .. FROM

Postgres, YugabyteDB

UPDATE BOOK
SET
(TITLE, LANGUAGE ID) = RON (' New Title', 1)

4.3.6.3. UPDATE .. FROM

Some databases, including for example PostgreSQL and SQL Server, support joining additional tables
to an UPDATE statement using a vendor-specific FROM clause. This is supported as well by jOOQ:

UPDATE BOOK_ARCHI VE creat e. updat e(BOOK_ARCH! VE)

SET . set (BOOK_ARCHI VE. TI TLE, BOOK. TI TLE)
BOOK_ARCHI VE. TI TLE = BOOK. TI TLE . f r on(BOOK)

FROM BOOK . wher e(BOOK_ARCHI VE. | D. eq(BOXK. | D))

WHERE BOOK_ARCHI VE. | D = BOXK. | D .execute();

In many cases, such a joined update statement can be emulated using a correlated subqguery, or using
updatable views. For example, most databases allow for using scalar subselects in UPDATE statements
in one way or another. jOOQ models this through a set(Field<T>, Select<? extends Record1<T>>)
method in the UPDATE DSL API, for convenience (see the section about scalar subgueries for more
details):

UPDATE AUTHOR creat e. updat e(AUTHOR)
SET FI RST_NAME = (. set (AUTHOR. FI RST_NANE,
SELECT FI RST_NAVME sel ect (PERSON. FI RST_NAME)
FROM PERSON . f r o PERSQN)
WHERE PERSON. | D = AUTHCR. | D . wher e(PERSON. | D. eq(AUTHCR. | D))
))
WHERE | D = 3; . wher e(AUTHOR. | D. eq(3))

.execute();

Dialect support
This example using jOOQ:

updat e(BOOK_TO_BOOK_STORE) . set (BOOK_TO_BOOK_STCRE. STOCK,
0) . f r on{ BOOK) . wher e(BOOK_TO_BOCK_STCORE. BOOK_I D. eq(BOOK. | D)) . and(BOOK. AUTHCR | D. eq(1))

Translates to the following dialect specific expressions:

ASE, BigQuery, Oracle, SQLServer, Sybase

UPDATE BOOK_TO_BOOK_STORE
SET
BOOK_TO_BOOK_STORE. STOCK = 0
FROM BOOK
VHERE (
BOOK_TO_BOOK_STORE. BOOK_I D = BOCK. | D
AND BOOK. AUTHCR I D = 1
)

© 2009 - 2024 by Data Geekery™ GmbH. Page 133/720

The jOOQ User Manual 4.3.6.3. UPDATE .. FROM

Aurora Postgres, CockroachDB, Postgres, SQLite, Snowflake

UPDATE BOOK_TO_BOOK_STORE
SET
STOCK = 0
FROM BOOK
VHERE (
BOOK_TO_BOOK_STORE. BOOK_I D = BOCK. | D
AND BOCK. AUTHOR I D = 1
)

DB2, Derby, Exasol, Firebird, H2, HSQLDB

MERGE | NTO BOOK_TO BOCK_STORE

USI NG BOOK

ON (
BOOK_TO_BOOK_STORE. BOCK_| D = BOOK. | D
AND BOCK. AUTHOR I D = 1

)

WHEN MATCHED THEN UPDATE SET
BOOK_TO_BOOK_STORE. STOCK = 0

Hana

UPDATE BOOK_TO_BOOK_STORE
FROM BOOK_TO_BOOK_STORE, BOOK
SET
BOOK_TO_BOOK_STORE. STOCK = 0
VHERE (
BOOK_TO_BOOK_STORE. BOOK_I D = BOCK. | D
AND BOCK. AUTHOR I D = 1

)

Teradata, Vertica

MERGE | NTO BOOK_TO BOOK_STCRE
USI NG BOOK
ON (
BOOK_TO_BOOK_STORE. BOOK_I D = BOCK. | D
AND BOCK. AUTHOR I D = 1
)
WHEN MATCHED THEN UPDATE SET
STOCK = 0

Access, Aurora MySQL, ClickHouse, DuckDB, Informix, MariaDB, MemSQL, MySQL,
Redshift, SQLDataWarehouse, Trino, YugabyteDB

/* UNSUPPORTED */

© 2009 - 2024 by Data Geekery™ GmbH. Page 134/720

The jOOQ User Manual 4.3.6.4. UPDATE .. WHERE

4.3.6.4. UPDATE .. WHERE

The WHERE clause allows for adding a conditional expressions to the UPDATE statement, which restricts
the rows to be updated.

Dialect support
This example using jOOQ:

updat e(BOK) . set (BOOK. TI TLE, "New Title"). wher e(BOOK. I D. eq(1))

Translates to the following dialect specific expressions:

ASE, Access, Aurora MySQL, BigQuery, DB2, Derby, Exasol, Firebird, H2, HSQLDB,
Informix, MariaDB, MemSQL, MySQL, Oracle, SQLDataWarehouse, SQLServer, Sybase,
Trino

UPDATE BOOK
SET

BOOK. TITLE = 'New Title'
WHERE BOOK. ID = 1

Aurora Postgres, CockroachDB, DuckDB, Postgres, Redshift, SQLite, Snowflake,
Teradata, Vertica, YugabyteDB

UPDATE BOOK
SET

TITLE = "'New Title'
WHERE BOXK. ID = 1

ClickHouse

UPDATE BOOK
SET

TITLE = "New Title'
WHERE ID = 1

Hana

UPDATE BOOK
FROM BOOK
SET
BOOK. TITLE = "'New Title'
WHERE BOOK. ID = 1

© 2009 - 2024 by Data Geekery™ GmbH. Page 135/720

The jOOQ User Manual 4.3.6.5. UPDATE .. RETURNING

4.3.6.5. UPDATE .. RETURNING

Various dialect support a RETURNING clause or something similar on their UPDATE statements, similar
as the RETURNING clause in INSERT statements. This is useful to fetch trigger-generated values in one
g0. An example is given here:

- Fetch a trigger-generated val ue String title = create. updat e(BOOK)
UPDATE BOOK .set (BOOK. TI TLE, "Ani nal Farnt)
SET TITLE = ' Ani mal Farm . wher e(BOOK. | D. eq(5))
WHERE ID = 5 . returni ng(BOOK. TI TLE)
RETURNI NG TI TLE .fetchOne() . get Val ue(BOX. TI TLE) ;

Dialect support
This example using jOOQ:

updat e(BOOK) . set (BOOK. TI TLE, “New Title").returni ngResul t (BOXK. | D)

Translates to the following dialect specific expressions:

Aurora Postgres, CockroachDB, Postgres, SQLite, YugabyteDB

UPDATE BOOK
SET

TITLE = "New Title'
RETURNI NG BOOX. | D

DB2, H2

SELECT | D
FROM FI NAL TABLE (
UPDATE BOOK
SET
BOOK. TITLE = ' New Titl e’
) BOOK

Firebird

UPDATE BOOK
SET

BOOK. TITLE = "New Title'
RETURNI NG BOXK. | D

© 2009 - 2024 by Data Geekery™ GmbH. Page 136/720

The jOOQ User Manual 4.3.7. The DELETE statement

MariaDB

I NSERT | NTO BOXK (
ID,
AUTHCR | D,
TITLE,
PUBLI SHED_I N,
LANGUAGE_I D

)
SELECT
BOX. I D,
BOOK. AUTHOR _I D,
BOXK. TI TLE,
BOOK. PUBLI SHED_I N,
BOOK. LANGUAGE_I D
FROVI BOOK
ON DUPLI CATE KEY UPDATE
BOOK. TITLE = "New Title'
RETURNI NG | D

Oracle

DECLARE
00 DBVS_SQL. NUVBER TABLE;
c0 sys_refcursor;
BEG N
UPDATE BOOK
SET
BOOK. TITLE = 'New Title'
RETURNI NG BOXK. | D
BULK COLLECT | NTO 00;
? 1= SQLYRONCOUNT;
OPEN c0 FOR SELECT * FROM TABLE(00);
? 1= c0;
END;

SQLServer

UPDATE BOOK
SET

BOOK. TITLE = 'New Title'
QUTPUT inserted. | D

ASE, Access, Aurora MySQL, BigQuery, ClickHouse, Derby, DuckDB, Exasol, HSQLDB,
Hana, Informix, MemSQL, MySQL, Redshift, SQLDataWarehouse, Snowflake, Sybase,
Teradata, Trino, Vertica

/* UNSUPPORTED */

4.3.7. The DELETE statement

The DELETE statement removes records from a database table. DELETE statements are only possible
on single tables. Support for multi-table deletes might be implemented in the future. An example delete
query is given here:

© 2009 - 2024 by Data Geekery™ GmbH. Page 137/720

The jOOQ User Manual 4.3.7.1. DELETE .. WHERE

DELETE AUTHOR create. del et e(AUTHOR)
WHERE | D = 100; . wher e(AUTHOR. | D. eq(100))
.execute();

The following subsections discuss the various subclauses of the DELETE statement.

43.7.1. DELETE .. WHERE

The WHERE clause allows for adding a conditional expressions to the DELETE statement, which restricts
the rows to be deleted.

Dialect support
This example using jOOQ:

del et eFr on{ BOOK) . wher e(BOOK. I D.in(1, 2, 3))

Translates to the following dialect specific expressions:

ASE, Access, Aurora MySQL, Aurora Postgres, CockroachDB, DB2, Derby, DuckDB,
Exasol, Firebird, H2, HSQLDB, Hana, Informix, MariaDB, MemSQL, MySQL, Oracle,
Postgres, Redshift, SQLDataWarehouse, SQLServer, SQLite, Snowflake, Sybase,
Teradata, Trino, Vertica, YugabyteDB

DELETE FROM BOOK

WHERE BOOK. ID IN (
1, 2, 3

)

BigQuery

DELETE FROM BOCK
VHERE (
BOCK. ID IN (
1, 2, 3

)
AND TRUE
)

ClickHouse

DELETE FROM BOOK
VHERE (
IDIN (
1, 2, 3

)
AND TRUE

© 2009 - 2024 by Data Geekery™ GmbH. Page 138/720

The jOOQ User Manual 4.3.7.2. DELETE .. RETURNING

4.3.7.2. DELETE .. RETURNING

The RETURNING clause allows for returning expressions based on the deleted rows.

Dialect support
This example using jOOQ:

del et eFr on{ BOOXK) . wher e(BOOK. | D. eq(1)) . ret ur ni ngResul t (BOOK. Tl TLE)

Translates to the following dialect specific expressions:

Aurora Postgres, CockroachDB, Firebird, Postgres, SQLite, YugabyteDB

DELETE FROM BOOK
WHERE BOOK. ID = 1
RETURNI NG BOCK. TI TLE

DB2, H2

SELECT TITLE

FROM QLD TABLE (
DELETE FROM BOOK
WHERE BOOK. I D = 1

) BOOK

MariaDB

DELETE FROM BOOK
WHERE BOOK. ID = 1
RETURNI NG TI TLE

Oracle

DECLARE
00 DBVS_SQL. VARCHAR2_TABLE;
c0 sys_refcursor;
BEG N
DELETE FROM BOOK
WHERE BOOK. ID = 1
RETURNI NG BOXK. Tl TLE
BULK COLLECT | NTO 00;
? 1= SQLYRONCOUNT;
OPEN c0 FOR SELECT * FROM TABLE(00);
? .= c0;
END;

© 2009 - 2024 by Data Geekery™ GmbH. Page 139/720

The jOOQ User Manual 4.3.8. The MERGE statement

SQLServer

DELETE FROM BOOXK
QUTPUT del eted. TI TLE
WHERE BOXK. ID = 1

ASE, Access, Aurora MySQL, BigQuery, ClickHouse, Derby, DuckDB, Exasol, HSQLDB,
Hana, Informix, MemSQL, MySQL, Redshift, SQLDataWarehouse, Snowflake, Sybase,
Teradata, Trino, Vertica

/* UNSUPPORTED */

4.3.8. The MERGE statement

The MERGE statement is one of the most advanced standardised SQL constructs, which is supported
by DB2, HSQLDB, Oracle, SQL Server and Sybase (MySQL has the similar INSERT .. ON DUPLICATE KEY
UPDATE construct)

The point of the standard MERGE statement is to take a TARGET table, and merge (INSERT, UPDATE)
data from a SOURCE table into it. DB2, Oracle, SQL Server and Sybase also allow for DELETING some
data and for adding many additional clauses. With jOOQ 3.11.12, only Oracle's MERGE extensions are
supported. Here is an example:

-- Check if there is already an author called 'Htchcock' creat e. mer gel nt o(AUTHOR)
- If there is, renane himto John. If there isn't add him .using(create. sel ect One())
MERGE | NTO AUTHOR . On(AUTHOR LAST_NAME. eq(" Hi t chcock"))
USI NG (SELECT 1 FROM DUAL) . whenMat chedThenUpdat e()
ON (LAST_NAME = ' Hitchcock') . set (AUTHOR. FI RST_NAME, "John")
WHEN MATCHED THEN UPDATE SET FI RST_NAME = ' John' . whenNot Mat chedThenl nser t (AUTHOR. LAST_NAME)
WHEN NOT NMATCHED THEN | NSERT (LAST_NAME) VALUES (' Hitchcock'); .val ues("Hitchcock")

.execute();

MERGE Statement (H2-specific syntax)

The H2 database ships with a somewhat less powerful but a little more intuitive syntax for its own
version of the MERGE statement. An example more or less equivalent to the previous one can be seen
here:

-- Check if there is already an author called 'Hitchcock' create. ner gel nt o(AUTHOR,
- If there is, renane himto John. If there isn't add him AUTHOR. FI RST_NAME,
AUTHOR. LAST_NANE)
MERGE | NTO AUTHOR (FI RST_NAME, LAST_NAME) . key(AUTHOR. LAST_NAME)
KEY (LAST_NAME) .val ues("John", "Hitchcock")
VALUES (' John', 'Hitchcock") .execute();

This syntax can be fully emulated by jOOQ for all other databases that support the SQL standard MERGE
statement. For more information about the H2 MERGE syntax, see the documentation here:
https://www.h2database.com/html/grammar.html#merge

© 2009 - 2024 by Data Geekery™ GmbH. Page 140/720

https://www.h2database.com/html/grammar.html#merge

The jOOQ User Manual 4.4, SQL Statements (DDL)

Typesafety of VALUES() for degrees up to 22

Much like the INSERT statement, the MERGE statement's VALUES() clause provides typesafety for
degrees up to 22, in both the standard syntax variant as well as the H2 variant.

4.4, SQL Statements (DDL)

The Data Definition Language (DDL) is used to CREATE, ALTER, and DROP various object types in the
database catalog. jOOQ supports an increasing number of these operations natively, and also adds
synthetic operation support for convenience.

While many DDL statements are supported natively, and have a 1:1 correspondence to the jOOQ API's
representation, dialects differ in many subtle ways when it comes to DDL statement support. These
differences may include:

- Different keywords to mean the same thing. For example, the keywords ALTER, CHANGE, or
MODIFY may be used when altering columns or other attributes in a table.

- Different statements instead of subclauses. For example, some dialects may choose to support
RENAME [object type] .. TO .. statements instead of making the rename operation a subclause of
ALTER [object type] .. RENAME TO ..

- Some syntax may not be supported, or not be supported consistently, such as the various
IF EXISTS and IF NOT EXISTS clauses. Emulations are possible using the dialect's procedural
language

Because of these many differences, the jOOQ manual will not list each individual native SQL
representation of each jOOQ API call. Also, some optional clauses may exist, such as the IF EXISTS or
OR REPLACE clauses, which can easily be discovered from the API. The manual will omit documenting
these clauses in every example.

4.4.7. The ALTER statement

ALTER statements are used to alter properties of existing objects in the database catalog.

4.4.1.1. ALTER INDEX

The only property of an index that can be changed, currently, is its name. In order to alter an index's
name, use:

// Renaning the index
create. al terlndex("ol d_i ndex").renanmeTo("new_ i ndex") . execute();

© 2009 - 2024 by Data Geekery™ GmbH. Page 141 /720

The jOOQ User Manual 4.4.1.2. ALTER SCHEMA

4.4.1.2. ALTER SCHEMA

The only property of a schema that can be changed, currently, is its name. In order to alter an schema's
name, use:

// Renaning the schenma
create. al ter Schema("ol d_schema").renameTo(" new_schena"). execute();

Dialect support
This example using jOOQ:

al ter Schema("s").renameTo("t")

Translates to the following dialect specific expressions:

Aurora Postgres, CockroachDB, H2, HSQLDB, Postgres, Redshift, Snowflake, Vertica

ALTER SCHEVA s RENAME TO t

ClickHouse

RENAVE DATABASE s TO t

Hana

RENAVE SCHEMA s TO t

ASE, Access, Aurora MySQL, BigQuery, DB2, Derby, DuckDB, Exasol, Firebird, Informix,
MariaDB, MemSQL, MySQL, Oracle, SQLDataWarehouse, SQLServer, SQLite, Sybase,
Teradata, Trino, YugabyteDB

/* UNSUPPORTED */

IF EXISTS

A popular subclause of DDL statements that JOOQ can usually emulate, is the IF EXISTS clause:

© 2009 - 2024 by Data Geekery™ GmbH. Page 142 /720

The jOOQ User Manual 4.4.1.3. ALTER SEQUENCE

// Renaning the schenma
create. al ter Schemal f Exi st s("ol d_schema").renameTo(" new_schena"). execute();

Dialect support
This example using jOOQ:

al t er Schenal f Exi sts("s").renameTo("t")

Translates to the following dialect specific expressions:

H2, Snowflake

ALTER SCHEMA | F EXI STS s RENAME TO t

Hana

DO BEG N
DECLARE EXI T HANDLER FOR SQL_ERROR CODE 362 BEG N END;
EXECUTE | MVEDI ATE *
RENAVE SCHEMA s TO t

END;

ASE, Access, Aurora MySQL, Aurora Postgres, BigQuery, ClickHouse, CockroachDB,
DB2, Derby, DuckDB, Exasol, Firebird, HSQLDB, Informix, MariaDB, MemSQL, MySQL,
Oracle, Postgres, Redshift, SQLDataWarehouse, SQLServer, SQLite, Sybase, Teradata,
Trino, Vertica, YugabyteDB

/* UNSUPPORTED */

4.4.1.3. ALTER SEQUENCE

The following types of statements are supported when altering a sequence:

Alter sequence properties

jOOQ supports a variety of sequence properties through meta data and DDL.

/'l Let the sequence restart with M NVALUE or with a specific val ue
create. al ter Sequence(S_AUTHOR ID).restart().execute();

© 2009 - 2024 by Data Geekery™ GmbH. Page 143 /720

The jOOQ User Manual 4.4.1.4. ALTER TABLE

RENAME

Like most object types, sequences can be renamed:

// Renaning the sequence
create. al ter Sequence("ol d_sequence").renaneTo("new_sequence"). execute();

4.4.1.4. ALTER TABLE

The ALTER TABLE statement is certainly the most powerful among DDL statements, as tables are the
most important object type in a database catalog. The following types of statements are supported
when altering a table:

ADD

In most dialects, tables can contain two types of objects:

- Columns
- Constraints

These types of objects can be added to a table using the following API:

/1 Adding a single colum to a table
create.alterTabl e("tabl e").add("col um", | NTEGER). execute();

/| Adding several colums to a table in one go
create.alterTabl e("tabl e").add(fiel d(nane("col uml"), |NTEGER), field(name("colum?2"), |NTECER)).execute();

/1 Addi ng an unnanmed constraint to a table

create.alterTabl e("tabl e").add(primaryKey("id")).execute();

create.al terTabl e("tabl e"). add(uni que("user_nane")). execute();

create. al terTabl e("tabl e"). add(f orei gnKey("aut hor_id").references("author")).execute();

create. al terTabl e("tabl e"). add(check(!l ength(field(name("user_nane"), VARCHAR)).gt(5))).execute();

/'l Adding a naned constraint to a table
create.alterTabl e("tabl e"). add(constraint("pk").primaryKey("id")).execute();
create.alterTabl e("tabl e").add(constraint ("uk").unique("user_nanme")).execute();

create.alterTabl e("tabl e").add(constraint("fk").forei gnKey("author_id").references("author")).execute();
create.al terTabl e("tabl e").add(constraint("ck").check(length(field(nane("user_nane"), VARCHAR)).gt(5))).execute();

There exists alternative APl representing optional keywords, such as e.g. addColumn(), which have been
omitted from the examples.

Note that some dialects also consider indexes to be a part of a table, but JOOQ does not yet support
ALTER TABLE subclauses modifying indexes. Consider CREATE INDEX, ALTER INDEX, or DROP INDEX,
instead.

ALTER

Both of the above objects can be altered in a table using the following API:

© 2009 - 2024 by Data Geekery™ GmbH. Page 144/720

The jOOQ User Manual 4.4.1.5. ALTER VIEW

I/ Specify a new default value for a colum
create.al terTable("table").alter("colum").default_(1).execute();

/1l Specify the not null constraint on a colum
create. alterTabl e("table").alter("col unm"). set Not Nul | (). execute();
create. alterTabl e("table").alter("col unm"). dropNot Nul | (). execute();

// Set a new data type on the colum
create. alterTabl e("table").alter("col um"). set (VARCHAR(50)) . execute();

There exists alternative APl representing optional keywords, such as e.g. alterColumn(), which have been
omitted from the examples.

COMMENT

For convenience, jOOQ supports MySQL's COMMENT syntax also on ALTER TABLE, which corresponds
to the more standard COMMENT ON TABLE statement

/1l Specify a new comment on a table
create. al terTabl e("tabl e"). comment ("a comment describing the table").execute();

DROP

Both columns and constraints can also be dropped from tables using this API:

/'l Drop a single colum
create.alterTabl e("tabl e").drop("colum").execute();

/'l Drop several columms in one go
create.alterTabl e("table").drop("col uml", "colum2").execute();

/'l Add CASCADE or RESTRICT cl auses when dropping colums (or constraints)
create.alterTabl e("tabl e"). drop("col um"). cascade(). execute();
create.alterTable("table").drop("colum").restrict().execute();

/'l Drop a constraint
create.alterTabl e("tabl e"). dropConstraint ("uk").execute();

RENAME

Like most object types, tables, columns, and constraints can be renamed:

/'l Renane a table
create. al terTabl e("ol d_tabl e").renameTo("new_ t abl e"). execute();

/'l Rename a col um
create. al terTabl e("tabl e").renameCol um("ol d_col unm"). t o(" new_col um") . execute();

/1 Rename a constraint
create. al terTabl e("tabl e").renanmeConstraint("old_constraint").to("new constraint").execute();

/1l Rename a index (as a convenience for the ALTER | NDEX st atenent)
create. al terTabl e("tabl e").renanmel ndex("ol d_i ndex").to("new_i ndex"). execute();

4.4.1.5. ALTER VIEW

The ALTER VIEW statement allows of altering existing views. It supports the following subclauses:

© 2009 - 2024 by Data Geekery™ GmbH. Page 145/720

The jOOQ User Manual 4.4.15.17. ALTER VIEW .. COMMENT

4.4.7.5.1. ALTER VIEW .. COMMENT

This statement allows for changing the comment associated with a view. It is an alias for the COMMENT
ON VIEW statement

Dialect support
This example using jOOQ:

alterView("v").conment ("new conment ")

Translates to the following dialect specific expressions:

Aurora Postgres, Firebird, Postgres, Teradata, Trino, Vertica, YugabyteDB

COMMVENT ON VIEWV IS ' new commrent’

BigQuery

ALTER VI EWv SET OPTI ONS (DESCRI PTION = ' new conment ')

DB2, H2, HSQLDB, Oracle

COMMENT ON TABLE v IS ' new conment'’

Snowflake

ALTER VI EWv SET COMMENT = ‘new conment'

SQLServer

BEG N TRY
DECLARE @ varchar (nmax) = schema_nane();

EXEC sp_addext endedproperty ' MS_Description', 'new conment', 'schema’', @, 'view, 'v', DEFAULT, DEFAULT
END TRY

BEG N CATCH

EXEC sp_updat eext endedproperty ' MS_Description', 'new comment', 'schema’', @, 'view, 'v', DEFAULT, DEFAULT
END CATCH

© 2009 - 2024 by Data Geekery™ GmbH. Page 146/720

The jOOQ User Manual 4.4.1.5.2. ALTER VIEW .. RENAME

ASE, Access, Aurora MySQL, ClickHouse, CockroachDB, Derby, DuckDB, Exasol, Hana,
Informix, MariaDB, MemSQL, MySQL, Redshift, SQLDataWarehouse, SQLite, Sybase

/* UNSUPPORTED */

4.41.5.2. ALTER VIEW .. RENAME

This statement allows for renaming a view.

Dialect support
This example using jO0Q:

alterView("v").renaneTo("new_nanme")

Translates to the following dialect specific expressions:

ASE, SQLServer

EXEC sp_renane v, new_name

Aurora Postgres, CockroachDB, DuckDB, H2, Postgres, Snowflake, Trino, Vertica

ALTER VI EW v RENAME TO new_nane

Exasol, Teradata

RENAME VI EWvV TO new_nane

HSQLDB, YugabyteDB

ALTER TABLE v RENAME TO new_nane

© 2009 - 2024 by Data Geekery™ GmbH. Page 147 /720

The jOOQ User Manual 4.4.1.53. ALTER VIEW IF EXISTS

Oracle

RENAME v TO new_name

Access, Aurora MySQL, BigQuery, ClickHouse, DB2, Derby, Firebird, Hana, Informix,
MariaDB, MemSQL, MySQL, Redshift, SQLDataWarehouse, SQLite, Sybase

/* UNSUPPORTED */

4.4.1.5.3. ALTER VIEW IF EXISTS

A popular subclause of DDL statements that JOOQ can usually emulate, is the IF EXISTS clause:

Dialect support
This example using jOOQ:

al terView f Exi sts("v").renameTo(" new_nane")

Translates to the following dialect specific expressions:

Aurora Postgres, CockroachDB, DuckDB, H2, Postgres

ALTER VIEW |F EXI STS v RENAME TO new_nane

Oracle

BEG N
EXECUTE | MVEDI ATE *
RENAME v TO new_name

EXCEPTI ON
WHEN ot hers THEN
I F sglerrm LI KE ' ORA-00942% THEN NULL;
ELSIF sql errm LI KE ' ORA- 04043% THEN NULL;
ELSE RAI SE;
END | F;
END;

Snowflake

ALTER VI EW v RENAME TO new_nane

© 2009 - 2024 by Data Geekery™ GmbH. Page 148 /720

The jOOQ User Manual 4.4.2. The COMMENT statement

SQLServer

BEG N TRY
EXEC sp_renane v, new_name
END TRY
BEG N CATCH
| F error_nunber () != 15225 THROW
END CATCH

YugabyteDB

ALTER TABLE |F EXISTS v RENAME TO new_nane

ASE, Access, Aurora MySQL, BigQuery, ClickHouse, DB2, Derby, Exasol, Firebird,
HSQLDB, Hana, Informix, MariaDB, MemSQL, MySQL, Redshift, SQLDataWarehouse,
SQLite, Sybase, Teradata, Trino, Vertica

/* UNSUPPORTED */

4.4.2. The COMMENT statement

The COMMENT statement can be used to store a description for an object from the database catalog.

It is available for the following types of object:

4.42.17. COMMENT ON TABLE

This statement is used to comment on a table.

Dialect support
This example using jOOQ:

comment OnTabl e("tabl e").is("the conment")

Translates to the following dialect specific expressions:

Aurora MySQL, MariaDB, MemSQL, MySQL

ALTER TABLE table COMMENT = 'the comment'’

© 2009 - 2024 by Data Geekery™ GmbH. Page 149 /720

The jOOQ User Manual 4.4.2.2. COMMENT ON VIEW

Aurora Postgres, CockroachDB, DB2, DuckDB, Exasol, Firebird, H2, HSQLDB, Hana,
Oracle, Postgres, Teradata, Trino, Vertica, YugabyteDB

COWENT ON TABLE table IS 'the coment’

BigQuery

ALTER TABLE table SET OPTIONS (DESCRI PTION = 'the conment')

ClickHouse

ALTER TABLE table MODI FY COMMVENT 'the comment’

Snowflake

ALTER TABLE tabl e SET COMMENT = 'the comment’

SQLServer

BEG N TRY

DECLARE @ var char (max) = schema_nanme();

EXEC sp_addext endedproperty ' MS_Description', 'the conment', 'schema', @, 'table', 'table', DEFAULT, DEFAULT
END TRY
BEG N CATCH

EXEC sp_updat eext endedproperty ' MS_Description', 'the conment', 'schema', @, 'table', 'table', DEFAULT, DEFAULT
END CATCH

ASE, Access, Derby, Informix, Redshift, SQLDataWarehouse, SQLite, Sybase

/* UNSUPPORTED */

4.4.2.2. COMMENT ON VIEW

This statement is used to comment on a view.

Dialect support

This example using jOOQ:

© 2009 - 2024 by Data Geekery™ GmbH. Page 150/ 720

The jOOQ User Manual 4.4.2.2. COMMENT ON VIEW

comment OnVi ew("view').is("the comment")

Translates to the following dialect specific expressions:

Aurora Postgres, Firebird, Hana, Postgres, Teradata, Trino, Vertica, YugabyteDB

COMMENT ON VIEWvView IS 'the comrent’

BigQuery

ALTER VI EW vi ew SET OPTI ONS (DESCRI PTION = 'the comment')

ClickHouse

ALTER TABLE vi ew MODI FY COMMENT ' the comment'’

DB2, DuckDB, H2, HSQLDB, Oracle

COMMENT ON TABLE view IS 'the comment’

Snowflake

ALTER VI EWvi ew SET COMMENT = 'the comment’

SQLServer

BEG N TRY

DECLARE @ var char (max) = schema_nanme();

EXEC sp_addext endedproperty ' MS_Description', 'the conment', 'schema', @, 'view, 'view,b DEFAULT, DEFAULT
END TRY
BEG N CATCH

EXEC sp_updat eext endedproperty ' MS_Description', 'the comment', 'schena', @, 'view, 'view,b DEFAULT, DEFAULT
END CATCH

ASE, Access, Aurora MySQL, CockroachDB, Derby, Exasol, Informix, MariaDB, MemSQlL,
MySQL, Redshift, SQLDataWarehouse, SQLite, Sybase

/* UNSUPPORTED */

© 2009 - 2024 by Data Geekery™ GmbH. Page 151/720

The jOOQ User Manual 4.4.2.3. COMMENT ON COLUMN

4.4.2.3. COMMENT ON COLUMN

This statement is used to comment on a column.

Dialect support
This example using jOOQ:

coment OnCol utm(nanme("tabl e", "colum")).is("the comment")

Translates to the following dialect specific expressions:

Aurora Postgres, CockroachDB, DB2, DuckDB, Exasol, Firebird, H2, HSQLDB, Hana,
Oracle, Postgres, Teradata, Trino, Vertica, YugabyteDB

COMMVENT ON COLUWN table.colum IS ‘the comment’

ClickHouse

ALTER TABLE tabl e COMVENT COLUWN col umm ' the conment’

Snowflake

ALTER TABLE table ALTER COLUWN col unm COMMENT ' the comment’

SQLServer

BEG N TRY

DECLARE @ var char (max) = schema_nane();

EXEC sp_addext endedproperty ' M5 _Description', 'the coment', 'schema', @, 'table', 'table', 'colum', 'colum’
END TRY
BEG N CATCH

EXEC sp_updat eext endedproperty ' MS_Description', 'the corment', 'schenma', @, 'table', 'table', 'colum’', 'colum’
END CATCH

ASE, Access, Aurora MySQL, BigQuery, Derby, Informix, MariaDB, MemSQL, MySQL,
Redshift, SQLDataWarehouse, SQLite, Sybase

/* UNSUPPORTED */

© 2009 - 2024 by Data Geekery™ GmbH. Page 152 /720

The jOOQ User Manual 4.4.3. The CREATE statement

4.4.3. The CREATE statement

The CREATE statement is the most important DDL statement. It allows for creating new objects in the
database catalog.

4.4.3.1. CREATE INDEX

The CREATE INDEX statement allows for creating indexes on table columns.

CREATE INDEX

In its simplest form, the statement can be used like this:

/Il Create an index on a single colum
create. createl ndex("index").on("table", "colum").execute();

Il Create an index on several colums
create. createl ndex("index").on("table", "columl", "colum2").execute();

CREATE UNIQUE INDEX

In many dialects, there is a possibility of creating a unique index, which acts like a constraint (see ALTER
TABLE or CREATE TABLE), but is not really a constraint. Most dialects will create an index automatically
to enforce a UNIQUE constraint, so using a constraint instead may seem a bit cleaner. A UNIQUE INDEX
is created like this:

// Create an index on a single colum
create. creat eUni quel ndex("i ndex").on("table", "colum").execute();

Il Create an index on several colums
create. creat eUni quel ndex("i ndex").on("table", "colum1l", "colum2").execute();

Sorted indexes

In most dialects, indexes have their columns sorted ascendingly by default. If you wish to create an
index with a differing sort order, you can do so by providing the order explicitly:

I/l Create a sorted index on several columms

create. createl ndex("index").on(
tabl e(nane("table")),
field(name("columl")).asc(),
field(name("col um2")). desc()

). execute();

Covering indexes (with INCLUDE clause)

A few dialects support an INCLUDE clause when creating an index. This can be useful to create covering
indexes. These are indexes that "cover" the needs of an entire query, such that no secondary lookup

© 2009 - 2024 by Data Geekery™ GmbH. Page 153 /720

The jOOQ User Manual 4.4.3.2. CREATE SCHEMA

needs to be done in a heap table or clustered index, after finding only parts of the projection in the
index data structure. The data from the columns of the INCLUDE clause will be located only in the index
leaf nodes (useful for projections), not in the index tree structure (useful for searches), which reduces
index maintenance overhead, and index size.

If a dialect does not support this clause, JOOQ will simply add the INCLUDE columns into the ordinary
index column list.

I/l Create a covering index with included col ums
create. createl ndex("index").on("table", "search_colum").include("projection_colum").execute();

Partial indexes (with WHERE clause)

A few dialects support a WHERE clause when creating an index. This is very useful to drastically reduce
the size of an index, and thus index maintenance, if only parts of the data of a column need to be
included in the index.

I/l Create a partial index
create. createl ndex("index").on("table", "colum").where(field(name("colum")).gt(0)).execute();

4.4.3.2. CREATE SCHEMA

The CREATE SCHEMA statement is used to create a new schema in the database catalog.

I/l Create a schema
create. createSchema("new_schena"). execute();

Dialect support
This example using jOOQ:

creat eSchema("s")

Translates to the following dialect specific expressions:

Aurora Postgres, CockroachDB, DB2, Derby, DuckDB, Exasol, H2, HSQLDB, Hana,
MariaDB, MemSQL, MySQL, Postgres, Redshift, SQLDataWarehouse, SQLServer,
Snowflake, Vertica, YugabyteDB

CREATE SCHEMA s

ClickHouse

CREATE DATABASE s

© 2009 - 2024 by Data Geekery™ GmbH. Page 154 /720

The jOOQ User Manual 4.4.3.3. CREATE SEQUENCE

Oracle

CREATE USER s NO AUTHENTI CATI ON QUOTA UNLI M TED ON USERS

ASE, Access, Aurora MySQL, BigQuery, Firebird, Informix, SQLite, Sybase, Teradata,
Trino

/* UNSUPPORTED */

4.4.3.3. CREATE SEQUENCE

The CREATE SEQUENCE statement is used to create a new sequence in the database catalog.

Il Create a sequence with default flags
create. creat eSequence("sequence"). execute();

Dialect support
This example using jO0Q:

creat eSequence("s")

Translates to the following dialect specific expressions:

Aurora Postgres, CockroachDB, DB2, Firebird, H2, HSQLDB, Hana, Informix, MariaDB,
Oracle, Postgres, Snowflake, Sybase, Vertica, YugabyteDB

CREATE SEQUENCE s

Derby, SQLServer

CREATE SEQUENCE s START WTH 1

ASE, Access, Aurora MySQL, BigQuery, ClickHouse, DuckDB, Exasol, MemSQL, MySQL,
Redshift, SQLDataWarehouse, SQLite, Teradata, Trino

/* UNSUPPORTED */

© 2009 - 2024 by Data Geekery™ GmbH. Page 155/720

The jOOQ User Manual 4.4.3.3.1. CREATE SEQUENCE IF NOT EXISTS

4.4.3.3.1. CREATE SEQUENCE IF NOT EXISTS

A popular subclause of DDL statements that JOOQ can usually emulate, is the IF EXISTS clause:

Dialect support
This example using jOOQ:

cr eat eSequencel f Not Exi sts("s")

Translates to the following dialect specific expressions:

Aurora Postgres, CockroachDB, H2, HSQLDB, Informix, MariaDB, Oracle, Postgres,
Snowflake, Sybase, Vertica, YugabyteDB

CREATE SEQUENCE | F NOT EXI STS s

DB2

BEG N
DECLARE CONTI NUE HANDLER FOR SQLSTATE ' 42710' BEG N END;
EXECUTE | MVEDI ATE '
CREATE SEQUENCE s

END

Firebird

EXECUTE BLOCK
AS
BEG N
EXECUTE STATEMENT '
CREATE SEQUENCE s

WHEN sql code -607 DO

BEG N END
END

Hana

DO BEG N
DECLARE EXI T HANDLER FOR SQL_ERRCR CCDE 324 BEG N END;
EXECUTE | MVEDI ATE
CREATE SEQUENCE s

END;

© 2009 - 2024 by Data Geekery™ GmbH. Page 156 /720

The jOOQ User Manual 4.4.3.4. CREATE TABLE

SQLServer

BEG N TRY

CREATE SEQUENCE s START WTH 1
END TRY
BEG N CATCH

| F error_nunber() != 2714 THROW
END CATCH

ASE, Access, Aurora MySQL, BigQuery, ClickHouse, Derby, DuckDB, Exasol, MemSQL,
MySQL, Redshift, SQLDataWarehouse, SQLite, Teradata, Trino

/* UNSUPPORTED */

4.4.3.4. CREATE TABLE

Arguably the most used DDL statement is the CREATE TABLE statement.

The following subsections discuss various usages of CREATE TABLE, as well as the relevant bits of meta
data that can be added to a table.

4.4.3.4.7. Columns

All tables contain at least one column (except for some esoteric cases in PostgreSQL), and all SQL
dialects support creating such tables:

/1l Create a new table with a colum

create. createTabl e("tabl e")
.colum("col 1", | NTEGER)
.execute();

Dialect support
This example using jO0Q:
creat eTabl e("tabl e"). col um("col 1", | NTEGER)
Translates to the following dialect specific expressions:

Access, DB2, Firebird, Hana, Informix, Teradata

CREATE TABLE table (
col 1 integer

)

© 2009 - 2024 by Data Geekery™ GmbH. Page 157 /720

https://blog.jooq.org/creating-tables-dum-and-dee-in-postgresql/

The jOOQ User Manual 4.43.4.1. Columns

ASE, Sybase

CREATE TABLE table (
coll int NULL
)

Aurora MySQL, Aurora Postgres, Derby, DuckDB, Exasol, H2, HSQLDB, MariaDB,
MemSQL, MySQL, Postgres, Redshift, SQLDataWarehouse, SQLServer, Trino, Vertica,
YugabyteDB

CREATE TABLE table (
col1 int

)

BigQuery

CREATE TABLE table (
col1l int64
)

ClickHouse

CREATE TABLE table (
col 1 Nul | abl e(i nteger)

)
ENG NE Log()

CockroachDB

CREATE TABLE table (
coll int4
)

Oracle, Snowflake

CREATE TABLE table (
col 1 nunber (10)
)

© 2009 - 2024 by Data Geekery™ GmbH. Page 158 /720

The jOOQ User Manual

SQLite

CREATE TABLE "table" (
coll int

)

4.4.3.4.2. Nullability

4.43.4.2. Nullability

Nullability is a property of a data type, and as such can be attached to the data type using various
methods. The default nullability is RDBMS specific, so if you want to be vendor agnostic about nullability

in your DDL, better always state it explicitly, for example:

/1 Specify nullability on colums

create. createTabl e("table")
.col um("vendor_specific_default", |NTECGER)
.colum("explicit_nullable", INTEGER nullable(false))
.colum("explicit_not_nullable", INTEGER nullable(true))
.execute();

Dialect support
This example using jOOQ:

creat eTabl e("tabl e")

.col um("vendor _specific_default", | NTEGER)
.columm("explicit_nullable", |NTEGER nullable(false))
.colum("explicit_not_nullable", |INTEGER nullable(true))

Translates to the following dialect specific expressions:

Access, DB2, Hana, Informix, Teradata

CREATE TABLE table (
vendor _speci fic_defaul t integer,
explicit_nullable integer NOT NULL,
explicit_not_nullable integer NULL

)

ASE, Sybase

CREATE TABLE table (
vendor _speci fic_default int NULL,
explicit_nullable int NOT NULL,
explicit_not_nullable int NULL

)

© 2009 - 2024 by Data Geekery™ GmbH.

Page 159/720

The jOOQ User Manual 4.4.3.4.2. Nullability

Aurora MySQL, Aurora Postgres, DuckDB, Exasol, MariaDB, MemSQL, MySQL, Postgres,
Redshift, SQL.DataWarehouse, SQLServer, Vertica, YugabyteDB

CREATE TABLE table (
vendor _specific_default int,
explicit_nullable int NOT NULL,
explicit_not_nullable int NULL

BigQuery

CREATE TABLE table (
vendor _speci fic_defaul t int64,
explicit_nullable int64 NOT NULL,
explicit_not_nullable int64

)

ClickHouse

CREATE TABLE table (
vendor _speci fic_default Nullable(integer),
explicit_nullable integer,
explicit_not_nullable Nullable(integer)

)
ENG NE Log()

CockroachDB

CREATE TABLE table (
vendor _specific_default int4,
explicit_nullable int4 NOT NULL,
explicit_not_nullable int4 NULL
)

Derby, H2, HSQLDB

CREATE TABLE table (
vendor _specific_default int,
explicit_nullable int NOT NULL,
explicit_not_nullable int

)

Firebird

CREATE TABLE table (
vendor _speci fic_default integer,
explicit_nullable integer NOT NULL,
explicit_not_nullable integer

)

© 2009 - 2024 by Data Geekery™ GmbH. Page 160/ 720

The jOOQ User Manual

Oracle, Snowflake

CREATE TABLE table (

vendor _speci fic_default nunber(10),
explicit_nullable nunber(10) NOT NULL,
explicit_not_nullable nunmber(10) NULL

)

SQLite

CREATE TABLE "table" (
vendor _specific_default int,
explicit_nullable int NOT NULL,
explicit_not_nullable int NULL
)

Trino

CREATE TABLE table (
vendor _specific_default int,
explicit_nullable int,
explicit_not_nullable int

)

4.4.3.4.3. Defaults

4.4.3.4.3. Defaults

The DEFAULT expression on a column definition defines what value the column should contain if it is
omitted in an INSERT statement, or if an explicit DEFAULT expression is used in INSERT or UPDATE. By

default, this is NULL in most dialects

Il Create a new table with a colum with a default expression

create. createTabl e("table")

.colum("col um1", | NTEGER defaul t Val ue(1))

. execute();

To trigger this DEFAULT expression, you can run this, for example:

// Insert a row using the default expression
create.insertlnto(tabl e(name("table"))). defaul tVal ues().execute();

Dialect support
This example using jO0Q:

createTabl e("tabl e")

.colum("col um1", | NTECGER defaultVal ue(1))

Translates to the following dialect specific expressions:

© 2009 - 2024 by Data Geekery™ GmbH.

Page 161 /720

The jOOQ User Manual 4.4.3.4.3. Defaults

Access, DB2, Firebird, Hana, Informix, Teradata

CREATE TABLE table (
col um1l integer DEFAULT 1
)

ASE

CREATE TABLE table (
columl int DEFAULT 1 NULL
)

Aurora MySQL, Aurora Postgres, Derby, DuckDB, Exasol, H2, HSQLDB, MariaDB,
MemSQL, MySQL, Postgres, Redshift, SQLDataWarehouse, SQLServer, Vertica,
YugabyteDB

CREATE TABLE table (
columl int DEFAULT 1
)

BigQuery

CREATE TABLE table (
columl int64 DEFAULT 1
)

ClickHouse

CREATE TABLE table (
columl Nul | abl e(integer) DEFAULT 1

)
ENG NE Log()

CockroachDB

CREATE TABLE table (
columl int4 DEFAULT 1
)

© 2009 - 2024 by Data Geekery™ GmbH. Page 162 /720

The jOOQ User Manual 4.4.3.4.4. |dentities

Oracle, Snowflake

CREATE TABLE table (
col um1 nunber (10) DEFAULT 1
)

SQLite

CREATE TABLE "tabl e" (
colunml int DEFAULT (1)
)

Sybase

CREATE TABLE table (
columl int NULL DEFAULT 1
)

Trino

/* UNSUPPORTED */

4.4.3.4.4. |dentities

An IDENTITY is a special type of DEFAULT on a column, which is computed only on INSERT, and should
usually not be replaced by user content. It computes a new value for a surrogate key. Most dialects
default to using some system sequence based IDENTITY, though a UUID or some other unique value
might work as well.

In jOOQ, it is currently only possible to specify whether a column is an IDENTITY at all, not to influence
the value generation algorithm.

/Il Create a new table with a colum with a default expression
create. createTabl e("table")

.colum("col um1", |NTEGER identity(true))

.execute();

Whether an IDENTITY also needs to be explicitly NOT NULL or a PRIMARY KEY is vendor specific. Ideally,
both of these properties are set as well on identities.

Dialect support

This example using jOOQ:

© 2009 - 2024 by Data Geekery™ GmbH. Page 163 /720

The jOOQ User Manual

creat eTabl e("tabl e")
.colum("col um1", | NTEGER identity(true))

Translates to the following dialect specific expressions:

Access

CREATE TABLE table (
col uml AUTO NCREMENT NOT NULL
)

ASE, Exasol

CREATE TABLE table (
columl int | DENTITY NOT NULL

Aurora MySQL, MariaDB, MemSQL, MySQL

CREATE TABLE table (
columl int NOT NULL AUTO_| NCREMENT
)

Aurora Postgres

CREATE TABLE table (
col uml SERI AL4 NOT NULL

)

CockroachDB

CREATE TABLE table (
columl integer DEFAULT (unique_rowid() %2 ~ 31) NOT NULL
)

DB2, Firebird

CREATE TABLE table (
columl integer GENERATED BY DEFAULT AS | DENTI TY NOT NULL
)

© 2009 - 2024 by Data Geekery™ GmbH.

4.4.3.4.4. |dentities

Page 164 /720

The jOOQ User Manual 4.4.3.4.4. |dentities

Derby, Postgres, YugabyteDB

CREATE TABLE table (
columl int GENERATED BY DEFAULT AS | DENTI TY NOT NULL

)

H2

CREATE TABLE table (
columl int NOT NULL GENERATED BY DEFAULT AS | DENTI TY
)

Hana, Teradata

CREATE TABLE table (
columl integer NOT NULL GENERATED BY DEFAULT AS | DENTITY
)

HSQLDB

CREATE TABLE table (
columl int GENERATED BY DEFAULT AS | DENTI TY(START WTH 1) NOT NULL

Informix

CREATE TABLE table (
columl SERIAL NOT NULL
)

Oracle

CREATE TABLE table (
col uml nunber (10) GENERATED BY DEFAULT AS | DENTI TY(START WTH 1) NOT NULL
)

Redshift, SQLDataWarehouse, SQLServer

CREATE TABLE table (
columl int IDENTITY(1, 1) NOT NULL
)

© 2009 - 2024 by Data Geekery™ GmbH. Page 165/720

The jOOQ User Manual

Snowflake

CREATE TABLE table (
col um1 nunber (10) | DENTI TY NOT NULL
)

SQLite

CREATE TABLE "table" (
columl integer PRI MARY KEY AUTO NCREMENT NOT NULL
)

Sybase

CREATE TABLE table (
columl int NOT NULL | DENTITY
)

Vertica

CREATE TABLE table (
columl I DENTITY(1, 1) NOT NULL

BigQuery, ClickHouse, DuckDB, Trino

/* UNSUPPORTED */

4.4.3.4.5. Primary key

4.4.3.4.5. Primary key

In a normalised database, all tables should have a PRIMARY KEY. In jOOQ, numerous features are
enabled by tables that have one, including for example UpdatableRecords. To create a table with a

primary key, write any of these:

© 2009 - 2024 by Data Geekery™ GmbH.

Page 166 /720

https://en.wikipedia.org/wiki/Database_normalization

The jOOQ User Manual 4.4.3.4.5. Primary key

/|l Create a new table with colums and unnamed constraints
create.createTabl e("table")
.colum("col umm1", | NTEGER)
.constraints(
pri maryKey("col um1")
)

.execute();

I/l Create a new table with columms and nanmed constraints (recommended if you want to alter the constraint)
create. createTabl e("table")
.colum("col um1l", | NTEGER)
.constraints(
constraint("pk").primaryKey("columi")
)

. execute();

Dialect support
This example using jOOQ:

createTabl e("tabl e")
.col um("col um1", | NTEGER)
.constraints(
constraint("pk").primaryKey("colum1")
)

Translates to the following dialect specific expressions:

Access, Firebird, Hana

CREATE TABLE table (

col um1 i nteger,

CONSTRAI NT pk PRI MARY KEY (col unml)
)

ASE, Sybase

CREATE TABLE table (
columl int NULL,
CONSTRAI NT pk PRI MARY KEY (col unmil)

)

Aurora MySQL, Aurora Postgres, Derby, DuckDB, Exasol, H2, HSQLDB, Postgres,
Redshift, YugabyteDB

CREATE TABLE table (
columl int,
CONSTRAI NT pk PRI MARY KEY (col unm1l)

)

BigQuery

CREATE TABLE table (
col um1l int 64

)

© 2009 - 2024 by Data Geekery™ GmbH. Page 167 /720

The jOOQ User Manual 4.4.3.4.5. Primary key

ClickHouse

CREATE TABLE table (
col um1 i nteger,
PRI MARY KEY (col unm1l)

)
ENG NE Mer geTree()

CockroachDB

CREATE TABLE table (

columl int4,

CONSTRAI NT pk PRI MARY KEY (col unml)
)

DB2, Teradata

CREATE TABLE table (

columl integer NOT NULL,

CONSTRAI NT pk PRI MARY KEY (col unmil)
)

Informix

CREATE TABLE table (

col um1 integer,

PRI MARY KEY (col unml) CONSTRAINT pk
)

MariaDB, MemSQL, MySQL, SQLServer

CREATE TABLE table (

columl int NOT NULL,

CONSTRAI NT pk PRI MARY KEY (col unml)
)

Oracle, Snowflake

CREATE TABLE table (

col um1 nunber (10),

CONSTRAI NT pk PRI MARY KEY (col unmil)
)

© 2009 - 2024 by Data Geekery™ GmbH. Page 168 /720

The jOOQ User Manual 4.4.3.4.6. Unique constraints

SQLDataWarehouse

CREATE TABLE table (

columl int,

CONSTRAI NT pk PRI MARY KEY NONCLUSTERED (col unml) NOT ENFORCED
)

SQLite

CREATE TABLE "table" (

columl int,

CONSTRAI NT pk PRI MARY KEY (col unml)
)

Trino

CREATE TABLE table (
columl int

)

Vertica

CREATE TABLE table (

columl int,

dummy int,

CONSTRAI NT pk PRI MARY KEY (col unm1l)
)

4.4.3.4.6. Unique constraints

A candidate key that is not ideal for a Primary key should still be declared UNIQUE to enforce
uniqueness, as well as for query performance reasons. In jJOOQ, this can be done with the following
approaches:

Il Create a new table with col ums and unnamed constraints
create. createTabl e("table")
.colum("col um1", | NTEGER)
.col um("col um2", | NTEGER)
.col um("col um3", | NTEGER)
.constraints(
uni que("col um1"),
uni que(" col um2", "col um3")
)

.execute();

I/l Create a new table with colums and naned constraints (recomended if you want to alter the constraint)
create. createTabl e("table")
.col um("col um1", | NTEGER)
.col um("col um2", | NTEGER)
.col um("col um3", | NTEGER)
.constraints(
constraint ("uk1").uni que("columi"),
constraint ("uk2").uni que("colum2", "colum3")
)

.execute();

© 2009 - 2024 by Data Geekery™ GmbH. Page 169 /720

The jOOQ User Manual

Dialect support
This example using jOOQ:

createTabl e("tabl e")
.colum("col um1l", | NTEGER)
.constraints(
constraint ("uk").unique("columi")
)

Translates to the following dialect specific expressions:

Access, DB2, Firebird, Hana, Teradata

CREATE TABLE table (

col uml i nt eger,

CONSTRAI NT uk UNI QUE (col um1)
)

ASE, Sybase

CREATE TABLE table (

columl int NULL,

CONSTRAI NT uk UNI QUE (col um1)
)

4.4.3.4.6. Unique constraints

Aurora MySQL, Aurora Postgres, Derby, DuckDB, Exasol, H2, HSQLDB, MariaDB,

MemSQL, MySQL, Postgres, Redshift, SQLServer, Vertica, YugabyteDB

CREATE TABLE table (

columl int,

CONSTRAI NT uk UNI QUE (col uml)
)

BigQuery

CREATE TABLE table (
col uml int 64

)

ClickHouse

CREATE TABLE table (
col uml Nul | abl e(i nteger)

)
ENG NE Log()

© 2009 - 2024 by Data Geekery™ GmbH.

Page 170/720

The jOOQ User Manual 4.4.3.4.7. Foreign keys

CockroachDB

CREATE TABLE table (

columl int4,

CONSTRAI NT uk UNI QUE (col um1)
)

Informix

CREATE TABLE table (

col um1 integer,

UNI QUE (col uiml) CONSTRAINT uk
)

Oracle, Snowflake

CREATE TABLE table (

col um1 nunber (10),

CONSTRAI NT uk UNI QUE (col unmil)
)

SQLDataWarehouse

CREATE TABLE table (

columl int,

CONSTRAI NT uk UNI QUE (col unm1) NOT ENFORCED
)

SQLite

CREATE TABLE "table" (

columl int,

CONSTRAI NT uk UNI QUE (col uml)
)

Trino

CREATE TABLE table (
columl int

)

4.4.3.4.7. Foreign keys

A foreign key is a tool that helps further normalise your database by guaranteeing that a referenced

value exists in a parent table. In our sample database, it enforces the integrity of the BOOK. AUTHOR_ID
© 2009 - 2024 by Data Geekery™ GmbH. Page 171/720

https://en.wikipedia.org/wiki/Database_normalization

4.4.3.4.7. Foreign keys

The jOOQ User Manual
reference. Besides integrity, it can be a very useful tool for optimising more sophisticated execution

plans, e.g. to support JOIN elimination. In JOOQ, create foreign keys like this:

/|l Create a new table with colums and unnanmed constraints

create. createTabl e("tabl e")
.colum("col um1l", | NTEGER)

.constraints(
f orei gnKey("col um1").references("other_table", "other_columl")

.execute();
I/l Create a new table with colunms and named constraints (recommended if you want to alter the constraint)

create.createTabl e("table")
.colum("col umm1", | NTEGER)

.constraints(
constraint("fk").foreignKey("col umml").references("other_table", "other_columil")

)
.execute();

jOOQ's code generator will pick up foreign keys for a variety of purposes, including navigational
methods, the ON KEY joins and most prominently, the very powerful implicit joins.

Dialect support
This example using jOOQ:

createTabl e("tabl e")
.col um("col um1", | NTEGER)

.constraints(
constraint("fk").foreignKey("col umi").references("other_table", "other_columil")

Translates to the following dialect specific expressions:

Access, DB2, Firebird, Hana, Teradata

CREATE TABLE table (

col um1 i nteger,
CONSTRAI NT fk FOREI GN KEY (col uml) REFERENCES ot her_tabl e (other_col uml)

)

ASE, Sybase

CREATE TABLE table (

col uml int NULL,
CONSTRAI NT fk FOREIGN KEY (col utml) REFERENCES ot her _tabl e (other_col unmml)

)

Aurora MySQL, Aurora Postgres, Derby, DuckDB, Exasol, H2, HSQLDB, MariaDB,
MemSQL, MySQL, Postgres, Redshift, SQLDataWarehouse, SQLServer, Vertica,

YugabyteDB

CREATE TABLE table (

columl int,
CONSTRAI NT fk FOREI GN KEY (col uml) REFERENCES ot her _tabl e (other_col um1)

)

Page 172/720

© 2009 - 2024 by Data Geekery™ GmbH.

https://blog.jooq.org/join-elimination-an-essential-optimiser-feature-for-advanced-sql-usage/

The jOOQ User Manual

BigQuery

CREATE TABLE table (
columl int64
)

ClickHouse

CREATE TABLE table (
col uml Nul | abl e(i nt eger)

)
ENG NE Log()

CockroachDB

CREATE TABLE table (
columl int4,
CONSTRAI NT fk FOREIGN KEY (col utml) REFERENCES ot her _tabl e (other_col unmml)

)

Informix

CREATE TABLE table (
col um1 i nteger,
FOREI GN KEY (col uimm1) REFERENCES ot her _tabl e (other_col unml) CONSTRAINT fk

)

Oracle, Snowflake

CREATE TABLE table (
col um1 nunber (10),
CONSTRAI NT fk FOREI GN KEY (col uml) REFERENCES ot her_tabl e (other_col uml)

)

SQLite

CREATE TABLE "table" (
columl int,
CONSTRAI NT fk FOREIGN KEY (col utml) REFERENCES ot her _tabl e (other_col unml)

)

Trino

CREATE TABLE table (
columl int

)

© 2009 - 2024 by Data Geekery™ GmbH.

4.4.3.4.7. Foreign keys

Page 173/720

The jOOQ User Manual 4.4.3.4.8. Check constraints

4.4.3.4.8. Check constraints

A CHECK constraint is a simple, yet very effective means of enforcing data integrity on a row basis. Want
to ensure a number is only ever positive? Use a CHECK constraint.

/|l Create a new table with colums and unnanmed constraints
create. createTabl e("tabl e")
.colum("col umm1", | NTEGER)
.constraints(
check(fiel d(nane("col unm1"), | NTECER). gt (0))
)

. execute();

I/l Create a new table with columms and named constraints (recommended if you want to alter the constraint)
create. createTabl e("tabl e")
.colum("col um1l", | NTEGER)
.constraints(
constraint("chk").check(field(name("colum1l"), |NTEGER).gt(0))
)

.execute();

Just like the previous constraints, this one can be used by the optimiser to remove some redundant
predicates, see e.g. this blog post.

Dialect support
This example using jOOQ:

createTabl e("tabl e")
.col um("col um1", | NTEGER)
.constraints(
constraint("chk").check(field(name("colum1"), |NTEGER).gt(0))
)

Translates to the following dialect specific expressions:

Access, DB2, Firebird, Hana, Teradata

CREATE TABLE table (

col um1 i nteger,

CONSTRAI NT chk CHECK (col uml > 0)
)

ASE, Sybase

CREATE TABLE table (

col uml int NULL,

CONSTRAI NT chk CHECK (col uml > 0)
)

© 2009 - 2024 by Data Geekery™ GmbH. Page 174 /720

https://blog.jooq.org/10-cool-sql-optimisations-that-do-not-depend-on-the-cost-model/

The jOOQ User Manual

4.4.3.4.8. Check constraints

Aurora Postgres, Derby, H2, HSQLDB, MariaDB, MySQL, Postgres, SQLServer, Vertica,

YugabyteDB

CREATE TABLE table (

columl int,

CONSTRAI NT chk CHECK (col uml > 0)
)

ClickHouse

CREATE TABLE table (
columl Nul | abl e(i nteger),
CONSTRAI NT chk CHECK (col uml > 0)

)
ENG NE Log()

CockroachDB

CREATE TABLE table (

columl int4,

CONSTRAI NT chk CHECK (col utml > 0)
)

Informix

CREATE TABLE table (

col um1 i nteger,

CHECK (col umml > 0) CONSTRAI NT chk
)

Oracle

CREATE TABLE table (

col um1 nunber (10),

CONSTRAI NT chk CHECK (col uml > 0)
)

SQLite

CREATE TABLE "table" (

columl int,

CONSTRAI NT chk CHECK (col utml > 0)
)

© 2009 - 2024 by Data Geekery™ GmbH.

Page 175/720

The jOOQ User Manual 4.43.49. From a SELECT

Aurora MySQL, BigQuery, DuckDB, Exasol, MemSQL, Redshift, SQLDataWarehouse,
Snowflake, Trino

/* UNSUPPORTED */

44349, FromaSELECT

Occasionally, creating a table from a SELECT statement is very useful, copying the source table's data
types and data.

I/l Create a new table froma source SELECT st atenent
create. createTabl e("book_ar chi ve")
.as(sel ect (BOOK. | D, BOOK. Tl TLE) . f r om(BOOK))
.execute();

/'l Create a new table froma source SELECT statenent and specify that data should be included, explicitly
create. createTabl e("book_archive")

.as(sel ect (BOOK. | D, BOOK. Tl TLE) . f r om(BOOK))

. Wi t hDat a()

.execute();

/] Create a new table froma source SELECT statenent and specify that data shoul d be excluded, explicitly
create. createTabl e("book_ar chive")

.as(sel ect (BOOK. | D, BOOK. Tl TLE) . f r om(BOOK))

. Wi t hNoDat a()

.execute();

Dialect support
This example using jOOQ:

creat eTabl e("book_ar chi ve")
.as(sel ect (BOOK. I D, BOOK. TI TLE) . f r om(BOCK))
. Wi t hNoDat a()

Translates to the following dialect specific expressions:

ASE, Access, SQLDataWarehouse, SQLServer

SELECT BOOK. | D, BOXK. TI TLE
| NTO book_ar chi ve

FROM BOOK

WHERE 1 = 0

Aurora MySQL, MemSQL, Oracle, Redshift, SQLite, Vertica

CREATE TABLE book_ar chi ve
AS

SELECT BOOK. | D, BOOK. TI TLE
FROM BOOK

WHERE 1 = 0

© 2009 - 2024 by Data Geekery™ GmbH. Page 176/720

The jOOQ User Manual 4.43.49. From a SELECT

Aurora Postgres, Derby, Exasol, Postgres, YugabyteDB

CREATE TABLE book_ar chi ve
AS

SELECT BOCK. | D, BOOK. TI TLE
FROM BOOK

W TH NO DATA

CockroachDB, DuckDB, H2, MariaDB, MySQL, Snowflake

CREATE TABLE book_ar chi ve
AS

SELECT BOK. | D, BOXK. TI TLE
FROM BOOK

VWHERE FALSE

DB2

CREATE TABLE book_ar chi ve

AS (
SELECT BOXK. | D, BOXK. TI TLE
FROM BOOK

) W TH NO DATA

HSQLDB, Hana

CREATE TABLE book_ar chi ve

AS (
SELECT BOCK. | D, BOOK. TI TLE
FROM BOOK

)
W TH NO DATA

Teradata

CREATE TABLE book_ar chive

AS (
SELECT BOXK. | D, BOXK. TI TLE
FROM BOOK
WHERE 1 = 0

)
W TH DATA

BigQuery, ClickHouse, Firebird, Informix, Sybase, Trino

/* UNSUPPORTED */

© 2009 - 2024 by Data Geekery™ GmbH. Page 1777720

The jOOQ User Manual 4.4.3.4.10. Temporary tables

4.4.3.4.10. Temporary tables

Many dialects support different notions of "temporary" tables, i.e. tables whose data and/or meta data
is stored only temporarily. The details of these temporary are implementation specific. JOOQ supports
the following syntaxes, both with explicit column lists or as CREATE TABLE AS SELECT:

// Create a new tenporary table

create. creat eTenpor aryTabl e("book_ar chi ve")
.colum("col umm1", | NTEGER)
.execute();

// Create a new tenporary table

create. creat ed obal Tenpor ar yTabl e("book_ar chi ve")
.colum("col umm1", | NTEGER)
.execute();

Dialect support
This example using jOOQ:

creat eTenpor ar yTabl e("book_ar chi ve")
.col um("col um1", | NTEGER)

Translates to the following dialect specific expressions:

Aurora MySQL, Aurora Postgres, DuckDB, MariaDB, MemSQL, MySQL, Postgres,
Redshift, YugabyteDB

CREATE TEMPORARY TABLE book_archive (
columl int

)

ClickHouse

CREATE TEMPORARY TABLE book_ar chive (
columl Nul | abl e(i nt eger)

)
ENG NE Log()

CockroachDB

CREATE GLOBAL TEMPORARY TABLE book_ar chive (
columl int4

)

© 2009 - 2024 by Data Geekery™ GmbH. Page 178 /720

The jOOQ User Manual 4.4.3.5. CREATE VIEW

Firebird, Hana, Teradata

CREATE GLOBAL TEMPORARY TABLE book_ar chive (
col um1 i nteger

)

Oracle, Snowflake

CREATE GLOBAL TEMPORARY TABLE book_archive (
col um1 nunber (10)
)

Vertica

CREATE GLOBAL TEMPORARY TABLE book_ar chive (
columl int

)

ASE, Access, BigQuery, DB2, Derby, Exasol, H2, HSQLDB, Informix, SQL.DataWarehouse,
SQLServer, SQLite, Sybase, Trino

/* UNSUPPORTED */

4.4.3.5. CREATE VIEW

This statement allows for creating a VIEW in the database catalog:

Il Create a new view

create. createVi ew "books_and_aut hors", "author_id", "first_nane", "last_nane", "book_id", "title")
.as(sel ect (AUTHOR | D, AUTHOR FI RST_NAME, AUTHOR LAST_NAME, BOOK.|D, BOOK. TI TLE)
. from(AUTHOR)
.j oi n(BOOK) . on(AUTHOR. | D. eq(BOOK. AUTHOR | D)))
.execute();

Dialect support
This example using jOOQ:
createView("a", "id").as(select(AUTHOR I D). fron{ AUTHOR))

Translates to the following dialect specific expressions:

ASE, Access, Aurora MySQL, Aurora Postgres, BigQuery, CockroachDB, DB2, Derby,
DuckDB, Exasol, Firebird, H2, HSQLDB, Hana, Informix, MariaDB, MySQL, Oracle,

© 2009 - 2024 by Data Geekery™ GmbH. Page 179/720

The jOOQ User Manual

4.4.3.5.17. OR REPLACE

Postgres, Redshift, SQLDataWarehouse, SQLServer, SQLite, Snowflake, Sybase,

Teradata, Vertica, YugabyteDB

CREATE VI EW a(i d)
AS

SELECT AUTHOR. | D
FROM AUTHOR

ClickHouse, MemSQL

CREATE VI EW a
AS
SELECT t.id
FROM (
SELECT AUTHCR. ID i d
FROM AUTHOR
)t

Trino

CREATE VI EW a
AS
SELECT t.id
FROM (
SELECT AUTHOR. | D
FROM AUTHOR
)yt (id)

4.4.3.5.1. OR REPLACE

Many dialects support a convenient OR REPLACE clause that allows for dropping any pre-existing view

by the same name in a single statement.

I/l Create a new view

create.createO Repl aceView "early_authors", "author_id", "first_nane",
.as(sel ect (AUTHOR | D, AUTHOR FI RST_NAME, AUTHOR. LAST_NANE)

. from(AUTHOR)

/1 Any inserted or updated authors nust continue to satisfy this condition

. wher e(AUTHOR. 1 D. 1 t (200)))
.execute();

Dialect support

This example using jOOQ:

createOr Repl aceView("a", "id").as(select(AUTHOR I D). fronm(AUTHOR))

Translates to the following dialect specific expressions:

© 2009 - 2024 by Data Geekery™ GmbH.

Page 180/720

The jOOQ User Manual 4.4.3.5.1. OR REPLACE

ASE, Aurora Postgres, BigQuery, CockroachDB, DB2, DuckDB, Exasol, H2, Hana,
MariaDB, MySQL, Oracle, Postgres, Vertica, YugabyteDB

CREATE OR REPLACE VI EW a(i d)
AS

SELECT AUTHOR. | D

FROM AUTHOR

ClickHouse

CREATE OR REPLACE VI EW a
AS
SELECT t.id
FROM (
SELECT AUTHOR. ID id
FROM AUTHOR
) t

Firebird, SQLServer

CREATE CR ALTER VI EW a(i d)
AS

SELECT AUTHCR. | D

FROM AUTHOR

Teradata

REPLACE VI EW a(i d)
AS

SELECT AUTHOR. | D
FROM AUTHOR

Trino

CREATE CR REPLACE VI EW a
AS
SELECT t.id
FROM (
SELECT AUTHOR. | D
FROM AUTHOR
) t (id)

Access, Aurora MySQL, Derby, HSQLDB, Informix, MemSQL, Redshift,
SQLDataWarehouse, SQLite, Snowflake, Sybase

/* UNSUPPORTED */

© 2009 - 2024 by Data Geekery™ GmbH. Page 181 /720

The jOOQ User Manual 4.4.3.5.2. WITH CHECK OPTION

4.4.3.5.2. WITH CHECK OPTION

A CREATE VIEW statement of an updatable view can have a WITH CHECK OPTION clause appended to
it, to make sure that any INSERT or UPDATE statement will produce rows that are also visible through
this view.

Il Create a new view

create.createView "early_authors", "author_id", "first_nane", "last_nane")
.as(sel ect (AUTHOR. | D, AUTHOR. FI RST_NAME, AUTHOR LAST_NANME)
. fr om(AUTHOR)

/1 Any inserted or updated authors must continue to satisfy this condition
. wher e(AUTHOR | D. | t (200))

/l The flag is set on the Select object, not the view
.wi t hCheckOption())
. execute();

(') Theflag is set on the SELECT object, not the CREATE VIEW statement, asit is also made
available to inline views.

Dialect support
This example using jOOQ:
createView("a", "id").as(select(AUTHOR I D). fron{ AUTHOR).w t hCheckOpti on())

Translates to the following dialect specific expressions:

ASE, DB2, Firebird, Hana, Informix, MariaDB, MySQL, Oracle, Postgres, SQLServer,
Sybase, Teradata

CREATE VI EW a(i d)
AS

SELECT AUTHCR. I D

FROM AUTHOR

W TH CHECK OPTI ON

Access, Aurora MySQL, Aurora Postgres, BigQuery, ClickHouse, CockroachDB, Derby,
DuckDB, Exasol, H2, HSQLDB, MemSQL, Redshift, SQLDataWarehouse, SQLite,
Snowflake, Trino, Vertica, YugabyteDB

/* UNSUPPORTED */

© 2009 - 2024 by Data Geekery™ GmbH. Page 182 /720

The jOOQ User Manual 4.4.3.5.3. WITH READ ONLY

4.4.3.5.3. WITH READ ONLY

A CREATE VIEW statement of an updatable view can have a WITH READ ONLY clause appended to it,
to make sure that it cannot be updated.

Il Create a new view

create.createView("authors", "author_id", "first_nane", "last_nanme")
.as(sel ect (AUTHOR | D, AUTHOR. FI RST_NAME, AUTHOR. LAST_NANE)
. from(AUTHOR)
.wi t hReadOnl y())
. execute();

(') Theflag is set on the SELECT object, not the CREATE VIEW statement, asit is also made
available to inline views.

Dialect support
This example using jOOQ:

createView("a", "id").as(select(AUTHOR I D). fron{ AUTHOR).w t hReadOnl y())

Translates to the following dialect specific expressions:

Access

CREATE VI EW a(i d)
AS
SELECT AUTHOR. | D
FROM AUTHOR
UNI ON
SELECT NULL
FROM (
SELECT count (*) dual
FROM MSysResour ces
) AS dual
WHERE 1 = 0

ASE, Redshift, SQLDataWarehouse, SQLServer, SQLite, Vertica

CREATE VI EW a(i d)
AS

SELECT AUTHCR. | D
FROM AUTHOR

UNI ON

SELECT NULL
VWHERE 1 = 0

© 2009 - 2024 by Data Geekery™ GmbH. Page 183/720

The jOOQ User Manual 4.4.3.5.3. WITH READ ONLY

Aurora MySQL

CREATE VI EW a(i d)
AS

SELECT AUTHOR. | D
FROM AUTHOR

UNI ON

SELECT NULL

FROM DUAL

VWHERE 1 = 0

Aurora Postgres, Postgres, YugabyteDB

CREATE VI EW a(i d)

AS

SELECT AUTHOR. | D

FROM AUTHOR

UNI ON

SELECT CAST(NULL AS int)
VWHERE FALSE

BigQuery

CREATE VI EW a(i d)

AS

SELECT AUTHOR. | D

FROM AUTHOR

UNI ON DI STI NCT

SELECT NULL

FROM UNNEST([STRUCT(1 AS dual)]) AS dual
WHERE FALSE

CockroachDB, H2, MariaDB, MySQL, Snowflake

CREATE VI EW a(i d)
AS

SELECT AUTHOR. | D
FROM AUTHOR

UNI ON

SELECT NULL
VHERE FALSE

DB2

CREATE VI EW a(i d)
AS

SELECT AUTHCR. | D
FROM AUTHOR

UNI ON

SELECT NULL

FROM SYS| BM DUAL
VHERE 1 = 0

© 2009 - 2024 by Data Geekery™ GmbH. Page 184 /720

The jOOQ User Manual 4.4.3.5.3. WITH READ ONLY

Derby

CREATE VI EW a(i d)

AS

SELECT AUTHOR. | D

FROM AUTHOR

UNI ON

SELECT CAST(NULL AS int)
FROM SYSI BM SYSDUMWY1
VHERE FALSE

Exasol

CREATE VI EW a(i d)
AS

SELECT AUTHCR. | D
FROM AUTHOR

UNI ON

SELECT NULL

FROM DUAL

VHERE FALSE

Firebird

CREATE VI EW a(i d)
AS

SELECT AUTHCR. | D
FROM AUTHOR

UNI ON

SELECT NULL

FROM RDBSDATABASE
WHERE 1 = 0

Hana, Oracle

CREATE VI EW a(i d)
AS

SELECT AUTHOR. | D
FROM AUTHOR

W TH READ ONLY

HSQLDB

CREATE VI EW a(i d)

AS

SELECT AUTHOR. | D

FROVI AUTHOR

UNI ON

SELECT CAST(NULL AS int)

FROM (VALUES(1)) AS dual (dual)
VWHERE FALSE

© 2009 - 2024 by Data Geekery™ GmbH. Page 185/720

The jOOQ User Manual 4.4.3.5.3. WITH READ ONLY

Informix

CREATE VI EW a(i d)

AS

SELECT AUTHOR. | D

FROM AUTHOR

UNI ON

SELECT NULL

FROM (
SELECT 1 AS dual
FROM syst abl es
WHERE (tabid = 1)

) AS dual

WHERE 1 = 0

MemSQL

CREATE VI EW a
AS
SELECT t.id
FROM (
SELECT
e
FROM (
SELECT AUTHOR. I D i d
FROM AUTHOR
UNI ON
SELECT NULL
FROM DUAL
WHERE 1 = 0
) t
) t

Sybase

CREATE VI EW a(i d)
AS

SELECT AUTHCR. | D
FROM AUTHOR

UNI ON

SELECT NULL

FROM SYS. DUMWY
WHERE 1 = 0

Teradata

CREATE VI EW a(i d)
AS
SELECT AUTHOR. | D
FROM AUTHOR
UNI ON
SELECT NULL
FROM (
SELECT 1 AS "dual "
) AS "dual "
WHERE 1 = 0

ClickHouse, DuckDB, Trino

/* UNSUPPORTED */

© 2009 - 2024 by Data Geekery™ GmbH. Page 186/720

The jOOQ User Manual 4.4.4, The DROP statement

4.4.4. The DROP statement

The DROP statement is used to drop objects from the database catalog.

4.4.4.7. DROP INDEX

This statement is used to drop an INDEX from the database catalog.

// Drop an index (for indexes stored in the schema nanespace, i.e. nost dialects)
create. dropl ndex("i ndex") . execute();

/'l Drop an index (for indexes stored in the table nanespace, e.g. MySQ., SQ. Server)
create. dropl ndex("index").on("tabl e").execute();

CASCADE

It is possible to supply a CASCADE or RESTRICT clause, explicitly

/'l Specify the CASCADE / RESTRICT cl auses explicitly
create. dropl ndex("i ndex"). cascade() . execute();
create.dropl ndex("index").restrict().execute();

Dialect support
This example using jO0Q:

dropl ndex("i")

Translates to the following dialect specific expressions:

ASE, Access, Aurora MySQL, Aurora Postgres, ClickHouse, CockroachDB, DB2, Derby,
DuckDB, Firebird, H2, HSQLDB, Hana, Informix, MariaDB, MemSQL, MySQL, Oracle,
Postgres, SQLDataWarehouse, SQLServer, SQLite, Sybase, Teradata, YugabyteDB

DROP | NDEX i

BigQuery, Exasol, Redshift, Snowflake, Trino, Vertica

/* UNSUPPORTED */

© 2009 - 2024 by Data Geekery™ GmbH. Page 187 /720

The jOOQ User Manual 4.4.4.1.17. DROP INDEX IF EXISTS

4.4.4.17.1. DROP INDEX [F EXISTS

For idempotent execution of DDL scripts, the useful IF EXISTS clause is supported by jOOQ.

// Drop an index
create. dropl ndex| f Exi sts("i ndex").execute();

Dialect support
This example using jOOQ:

dr opl ndex! f Exi st s("i ndex")

Translates to the following dialect specific expressions:

Access

DROP | NDEX i ndex

Aurora Postgres, ClickHouse, CockroachDB, DuckDB, H2, HSQLDB, Informix, MariaDB,
Oracle, Postgres, Sybase, YugabyteDB

DROP | NDEX | F EXI STS i ndex

DB2

BEG N
DECLARE CONTI NUE HANDLER FOR SQLSTATE ' 42704' BEG N END;
EXECUTE | MVEDI ATE '
DROP | NDEX i ndex

END

Firebird

EXECUTE BLOCK
AS
BEG N
EXECUTE STATEMENT '
DROP | NDEX i ndex

WHEN sql code -607 DO

BEG N END
END

© 2009 - 2024 by Data Geekery™ GmbH. Page 188 /720

The jOOQ User Manual 4.4.4.1.1. DROP INDEX IF EXISTS

Hana

DO BEG N
DECLARE EXI T HANDLER FOR SQL_ERROR _CODE 261 BEG N END;
EXECUTE | MVEDI ATE '
DROP | NDEX i ndex

END;

MySQL

CREATE PROCEDURE bl ock_1710278038766_6183580()

MODI FI ES SQL DATA

BEG N
DECLARE CONTI NUE HANDLER FOR SQLSTATE ' 42000' BEG N END;
DROP | NDEX i ndex;

END;

CALL bl ock_1710278038766_6183580() ;

DROP PROCEDURE bl ock_1710278038766_6183580;

SQLDataWarehouse

BEG N TRY
DROP | NDEX i ndex
END TRY
BEG N CATCH
| F error_nunber() != 3701 BEG N
DECLARE @Error Message NVARCHAR(4000) = ERROR_MESSAGE();
DECLARE @rrorSeverity |INT = ERROR SEVERI TY();
DECLARE @rrorState | NT = ERROR _STATE();
RAI SERROR (@Error Message, @ErrorSeverity, @rrorState);
END;
END CATCH

SQLite

DROP | NDEX | F EXI STS "i ndex"

SQLServer

BEG N TRY
DROP | NDEX i ndex
END TRY
BEG N CATCH
IF error_nunber() != 3701 THROW
END CATCH

ASE, Aurora MySQL, BigQuery, Derby, Exasol, MemSQL, Redshift, Snowflake, Teradata,
Trino, Vertica

/* UNSUPPORTED */

© 2009 - 2024 by Data Geekery™ GmbH. Page 189/720

The jOOQ User Manual 4.4.4.2. DROP SCHEMA

4.4.4.2. DROP SCHEMA

This statement is used to drop an SCHEMA from the database catalog.

/1l Drop a schema
create. dropSchema("schema") . execute();

CASCADE

It is possible to supply a CASCADE or RESTRICT clause, explicitly

I/ Specify the CASCADE / RESTRICT cl auses explicitly
create. dropSchema("schema") . cascade(). execute();
create. dropSchema("schema").restrict().execute();

Dialect support
This example using jO0Q:

dropSchena("s")

Translates to the following dialect specific expressions:

Aurora Postgres, CockroachDB, DuckDB, Exasol, H2, HSQLDB, Hana, MariaDB,
MemSQL, MySQL, Postgres, Redshift, SQLDataWarehouse, SQLServer, Snowflake,
Vertica, YugabyteDB

DROP SCHEMA s

ClickHouse

DROP DATABASE s

DB2, Derby

DROP SCHEMA s RESTRI CT

© 2009 - 2024 by Data Geekery™ GmbH. Page 190/ 720

The jOOQ User Manual 4.4.42.1. DROP SCHEMA IF EXISTS

Oracle

DROP USER s

ASE, Access, Aurora MySQL, BigQuery, Firebird, Informix, SQLite, Sybase, Teradata,
Trino

/* UNSUPPORTED */

4.4.42.1. DROP SCHEMA IF EXISTS

For idempotent execution of DDL scripts, the useful IF EXISTS clause is supported by jOOQ.

/1 Drop a schema
create. dropSchemal f Exi sts("schema") . execute();

Dialect support
This example using jO0Q:

dropSchenal f Exi st s("schena")

Translates to the following dialect specific expressions:

Aurora Postgres, CockroachDB, DuckDB, Exasol, H2, HSQLDB, MariaDB, MemSQL,
MySQL, Postgres, Redshift, Snowflake, Vertica, YugabyteDB

DROP SCHEMA | F EXI STS schenma

ClickHouse

DROP DATABASE | F EXI STS schema

© 2009 - 2024 by Data Geekery™ GmbH. Page 191 /720

The jOOQ User Manual 4.4.4.2.1. DROP SCHEMA IF EXISTS

DB2

BEG N
DECLARE CONTI NUE HANDLER FOR SQLSTATE ' 42704' BEG N END;
EXECUTE | MVEDI ATE '
DROP SCHEMA schena RESTRI CT

END

Hana

DO BEG N
DECLARE EXIT HANDLER FOR SQL_ERROR CODE 362 BEG N END;
EXECUTE | MVEDI ATE '
DROP SCHEMA schena

END;

Oracle

DROP USER | F EXI STS schena

SQLDataWarehouse

BEG N TRY
DROP SCHEMA schena
END TRY
BEG N CATCH
| F error_nunber() != 15151 BEG N
DECLARE @Error Message NVARCHAR(4000) = ERROR _MESSAGE();
DECLARE @rrorSeverity |NT = ERROR SEVERI TY();
DECLARE @ErrorState | NT = ERROR _STATE();
RAI SERROR (@rror Message, @ErrorSeverity, @rrorState);
END;
END CATCH

SQLServer

BEG N TRY
DROP SCHEMA schena
END TRY
BEG N CATCH
| F error_nunber() != 15151 THROW
END CATCH

ASE, Access, Aurora MySQL, BigQuery, Derby, Firebird, Informix, SQLite, Sybase,
Teradata, Trino

/* UNSUPPORTED */

© 2009 - 2024 by Data Geekery™ GmbH. Page 192/720

The jOOQ User Manual 4.4.4.3. DROP SEQUENCE

4.4.4.3. DROP SEQUENCE

This statement is used to drop an SEQUENCE from the database catalog.

/1 Drop a sequence
creat e. dropSequence("sequence") . execute();

Dialect support
This example using jOOQ:

dropSequence("s")

Translates to the following dialect specific expressions:

Aurora Postgres, CockroachDB, DB2, Firebird, H2, HSQLDB, Hana, Informix, MariaDB,
Oracle, Postgres, SQLServer, Snowflake, Sybase, Vertica, YugabyteDB

DROP SEQUENCE s

Derby

DROP SEQUENCE s RESTRI CT

ASE, Access, Aurora MySQL, BigQuery, ClickHouse, DuckDB, Exasol, MemSQL, MySQL,
Redshift, SQLDataWarehouse, SQLite, Teradata, Trino

/* UNSUPPORTED */

4.4.4.3.7. DROP SEQUENCE IF EXISTS

For idempotent execution of DDL scripts, the useful IF EXISTS clause is supported by jOOQ.

/'l Drop a sequence
create. dropSequencel f Exi st s("sequence") . execute();

© 2009 - 2024 by Data Geekery™ GmbH. Page 193 /720

The jOOQ User Manual 4.4.43.1. DROP SEQUENCE IF EXISTS

Dialect support
This example using jOOQ:

dr opSequencel f Exi st s("sequence")

Translates to the following dialect specific expressions:

Aurora Postgres, CockroachDB, H2, HSQLDB, Informix, MariaDB, Oracle, Postgres,
Snowflake, Vertica, YugabyteDB

DROP SEQUENCE | F EXI STS sequence

DB2

BEG N
DECLARE CONTI NUE HANDLER FOR SQLSTATE ' 42704' BEG N END;
EXECUTE | MVEDI ATE '
DROP SEQUENCE sequence

END

Firebird

EXECUTE BLOCK
AS
BEG N
EXECUTE STATEMENT '
DROP SEQUENCE sequence

WHEN sql code -607 DO

BEG N END
END

Hana

DO BEG N
DECLARE EXI T HANDLER FOR SQ._ERROR CODE 313 BEG N END;
EXECUTE | MVEDI ATE *
DROP SEQUENCE sequence

END;

SQLServer

BEG N TRY
DROP SEQUENCE sequence
END TRY
BEG N CATCH
| F error_nunber() != 3701 THROW
END CATCH

© 2009 - 2024 by Data Geekery™ GmbH. Page 194 /720

The jOOQ User Manual

Sybase

BEG N
DROP SEQUENCE sequence;
EXCEPTI ON
WHEN ot hers THEN
END; BEG N
DROP SEQUENCE sequence

WHEN sql code -607 DO
BEG N END
END;

4.4.4.4. DROP TABLE

ASE, Access, Aurora MySQL, BigQuery, ClickHouse, Derby, DuckDB, Exasol, MemSQL,

MySQL, Redshift, SQLDataWarehouse, SQLite, Teradata, Trino

/* UNSUPPORTED */

4.4.4.4, DROP TABLE

This statement is used to drop an TABLE from the database catalog.

// Drop a table
create. dropTabl e("tabl e"). execute();

CASCADE

It is possible to supply a CASCADE or RESTRICT clause, explicitly

/'l Specify the CASCADE / RESTRICT clauses explicitly
create.dropTabl e("tabl e"). cascade(). execute();
create.dropTabl e(“tabl e").restrict().execute();

Dialect support
This example using jOOQ:

dropTabl e("t")

Translates to the following dialect specific expressions:

All dialects

DROP TABLE t

© 2009 - 2024 by Data Geekery™ GmbH.

Page 195/720

The jOOQ User Manual 4.4.4.4.1. DROP TABLE IF EXISTS

444417 DROP TABLE IF EXISTS

For idempotent execution of DDL scripts, the useful IF EXISTS clause is supported by jOOQ.

I/l Drop a table
create. dropTabl el f Exi sts("tabl e"). execute();

Dialect support
This example using jOOQ:

dropTabl el f Exi sts("tabl e")

Translates to the following dialect specific expressions:

Access

DROP TABLE table

Aurora MySQL, Aurora Postgres, CockroachDB, DuckDB, Exasol, H2, HSQLDB, Informix,
MariaDB, MemSQL, MySQL, Oracle, Postgres, Snowflake, Sybase, Vertica, YugabyteDB

DROP TABLE | F EXI STS tabl e

DB2

BEG N
DECLARE CONTI NUE HANDLER FOR SQLSTATE ' 42704' BEG N END;
EXECUTE | MVEDI ATE '
DROP TABLE tabl e

END

Firebird

EXECUTE BLOCK
AS
BEG N
EXECUTE STATEMENT '
DROP TABLE table

WHEN sql code -607 DO

BEG N END
END

© 2009 - 2024 by Data Geekery™ GmbH. Page 196 /720

The jOOQ User Manual

Hana

DO BEG N
DECLARE EXI'T HANDLER FOR SQ._ERROR CODE 259 BEG N END;
EXECUTE | MVEDI ATE '
DROP TABLE tabl e

END;

SQLDataWarehouse

BEG N TRY
DROP TABLE table
END TRY
BEG N CATCH
IF error_nunber() != 3701 BEG N

DECLARE @rror Message NVARCHAR(4000) = ERROR_MESSAGE();

DECLARE @rrorSeverity |NT = ERROR SEVERI TY();
DECLARE @ErrorState | NT = ERROR _STATE();

RAI SERROR (@Error Message, @ErrorSeverity, @trrorState);

END;
END CATCH

SQLite

DROP TABLE | F EXI STS "t abl e"

SQLServer

BEG N TRY
DROP TABLE tabl e
END TRY
BEG N CATCH
| F error_nunber() != 3701 THROW
END CATCH

ASE, BigQuery, ClickHouse, Derby, Redshift, Teradata, Trino

/* UNSUPPORTED */

4.4.4.5. DROP VIEW

This statement is used to drop an VIEW from the database catalog.

I/ Drop a view
create. dropVi ew("view'). execute();

© 2009 - 2024 by Data Geekery™ GmbH.

4.4.4.5. DROP VIEW

Page 197/720

The jOOQ User Manual 4.4.4.5.1. DROP VIEW IF EXISTS

Dialect support
This example using jOOQ:

dropVi ew("v")

Translates to the following dialect specific expressions:

All dialects

DRCP VI EW v

4.4.4.5.1. DROP VIEW IF EXISTS

For idempotent execution of DDL scripts, the useful IF EXISTS clause is supported by jOOQ.

/'l Drop a view
create.dropVi ewl f Exi st s("vi ew'). execute();

Dialect support
This example using jOOQ:

dropVi ew f Exi sts("v")

Translates to the following dialect specific expressions:

Access

DROP VI EW v

Aurora MySQL, Aurora Postgres, BigQuery, ClickHouse, CockroachDB, DuckDB, Exasol,
H2, HSQLDB, Informix, MariaDB, MemSQL, MySQL, Oracle, Postgres, SQLite, Sybase,
Trino, Vertica, YugabyteDB

DROP VIEW I F EXI STS v

© 2009 - 2024 by Data Geekery™ GmbH. Page 198 /720

The jOOQ User Manual

DB2

BEG N
DECLARE CONTI NUE HANDLER FOR SQLSTATE ' 42704' BEG N END;
EXECUTE | MVEDI ATE '
DROP VI EW v

END

Firebird

EXECUTE BLOCK

AS
BEG N
EXECUTE STATEMENT '
DROP VI EW v
WHEN sql code -607 DO
BEG N END
END
Hana
DO BEG N

DECLARE EXI T HANDLER FOR SQL_ERROR CODE 321 BEG N END;
EXECUTE | MVEDI ATE *
DROP VI EW v

END;

SQLDataWarehouse

BEG N TRY
DROP VI EW v
END TRY
BEG N CATCH
| F error_nunber() != 3701 BEG N

DECLARE @Error Message NVARCHAR(4000) = ERROR _MESSAGE();

DECLARE @rrorSeverity |NT = ERROR SEVERI TY();
DECLARE @ErrorState | NT = ERROR _STATE();

RAI SERROR (@rror Message, @ErrorSeverity, @rrorState);

END;
END CATCH

SQLServer

BEG N TRY
DROP VI EW v
END TRY
BEG N CATCH
IF error_nunber() != 3701 THROW
END CATCH

© 2009 - 2024 by Data Geekery™ GmbH.

4.4.45.1. DROP VIEW IF EXISTS

Page 199/720

The jOOQ User Manual 4.4.5. The GRANT statement

ASE, Derby, Redshift, Snowflake, Teradata

/* UNSUPPORTED */

4.4.5 The GRANT statement

Databases that implement access control for their database catalog allow for using GRANT and REVOKE
privileges from org.joog.User and org.joog.Role objects. In jOOQ, this can be done as follows:

/'l Define privileges

Privilege select = privilege("select");
Privilege insert = privilege("insert");
User user = user("user");

/'l Grant privileges to a given user or role
create.grant(select, insert).on(BOXK).to(user).execute();

/1 Grant privileges to a given user or role with the grant option
create.grant(select, insert).on(BOOXK).to(user).w thG antOption().execute();

/1 Grant privileges to everyone
create.grant(select, insert).on(BOXK).toPublic().execute();

4.4.6. The REVOKE statement

Databases that implement access control for their database catalog allow for using GRANT and REVOKE
privileges from org.joog.User and org.joog.Role objects. In jJOOQ, this can be done as follows:

/1l Define privileges

Privilege select = privilege("select");
Privilege insert = privilege("insert");
User user = user("user");

/'l Revoke privileges froma given user or role
create.revoke(sel ect, insert).on(BOX).fron{user).execute();

/'l Revoke the grant option froma given user or role
create. revokeG ant Opti onFor (sel ect, insert).on(BOOXK).fron(user).execute();

I/ Revoke privileges from everyone
create.revoke(sel ect, insert).on(BOOK).fronPublic().execute();

4.4.7. The SET statement

Most databases support a variety of SET statements to set session specific environment variables.

© 2009 - 2024 by Data Geekery™ GmbH. Page 200/ 720

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/User.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Role.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/User.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Role.html

The jOOQ User Manual 4.4.7.1. SET CATALOG

4.4.7.1. SET CATALOG

Depending on whether your database product supports catalogs and schemas, the below SET
statement may be supported to set the current session's catalog (e.g. the database).

SET CATALOG cat al ognane; create. set Cat al og("cat al ognane") . execute();

Dialect support
This example using jOOQ:

set Cat al og("c")

Translates to the following dialect specific expressions:

Aurora MySQL, DuckDB, MariaDB, MemSQL, MySQL, SQLServer

ClickHouse

SET CATALGG c

Snowflake

USE DATABASE c

Teradata

DATABASE ¢

ASE, Access, Aurora Postgres, BigQuery, CockroachDB, DB2, Derby, Exasol, Firebird,
H2, HSQLDB, Hana, Informix, Oracle, Postgres, Redshift, SQLDataWarehouse, SQLite,
Sybase, Trino, Vertica, YugabyteDB

/* UNSUPPORTED */

© 2009 - 2024 by Data Geekery™ GmbH. Page 201 /720

The jOOQ User Manual 4.4.7.2. SET SCHEMA

4.4.7.2. SET SCHEMA

Depending on whether your database product supports catalogs and schemas, the below SET
statement may be supported to set the current session's schema.

SET SCHEMA schenmnane; create. set Schema("schemanane") . execute();

Dialect support
This example using jOOQ:

set Schema("c")

Translates to the following dialect specific expressions:

Aurora MySQL, DuckDB, MariaDB, MemSQL, MySQL, Snowflake

USE ¢

Aurora Postgres, CockroachDB, Postgres, Vertica, YugabyteDB

SET SEARCH _PATH = ¢

ClickHouse, DB2, Derby, H2, HSQLDB

SET SCHEMA ¢

Exasol

OPEN SCHEMA ¢

Oracle

ALTER SESSI ON SET CURRENT_SCHEMA = c

© 2009 - 2024 by Data Geekery™ GmbH. Page 202 /720

The jOOQ User Manual 4.4.8. The TRUNCATE statement

Teradata

DATABASE ¢

ASE, Access, BigQuery, Firebird, Hana, Informix, Redshift, SQLDataWarehouse,
SQLServer, SQLite, Sybase, Trino

/* UNSUPPORTED */

4.4.8. The TRUNCATE statement

Even if the TRUNCATE statement mainly modifies data, it is generally considered to be a DDL statement.
It is popular in many databases when you want to bypass constraints for table truncation. Databases
may behave differently, when a truncated table is referenced by other tables. For instance, they may
fail if records from a truncated table are referenced, even with ON DELETE CASCADE clauses in place.
Please, consider your database manual to learn more about its TRUNCATE implementation.

The TRUNCATE syntax is trivial:

create.truncat e(AUTHOR) . execute();

TRUNCATE is not supported by all dialects. jOOQ will execute a DELETE FROM AUTHOR statement
instead, which is roughly equivalent.

Dialect support
This example using jO0Q:

truncat e(AUTHOR)

Translates to the following dialect specific expressions:

Access, Firebird, SQLite, Teradata

DELETE FROM AUTHOR

ASE, Aurora MySQL, Aurora Postgres, BigQuery, ClickHouse, CockroachDB, Derby,
DuckDB, Exasol, H2, HSQLDB, Hana, Informix, MariaDB, MemSQL, MySQL, Oracle,

© 2009 - 2024 by Data Geekery™ GmbH. Page 203 /720

The jOOQ User Manual 4.4.9. Generating DDL from objects

Postgres, Redshift, SQLDataWarehouse, SQLServer, Snowflake, Sybase, Trino, Vertica,
YugabyteDB

TRUNCATE TABLE AUTHOR

DB2

TRUNCATE TABLE AUTHOR | MVEDI ATE

4.4.9. Generating DDL from objects

When using jOOQ's code generator, a whole set of meta data is generated with the generated artefacts,
such as schemas, tables, columns, data types, constraints, default values, etc.

This meta data can be used to generate DDL CREATE statements in any SQL dialect, in order to partially
restore the original schema again on a new database instance. This is particularly useful, for instance,
when working with an Oracle production database, and an H2 in-memory test database. The following
code produces the DDL for a schema:

// SCHEMA is the generated schena that contains a reference to all generated tables
Queries ddl =
DSL. usi ng(confi gurati on)

. ddI (SCHEMA) ;

for (Query query : ddl.queries()) {
System out. println(query);
}

When executing the above, you should see something like the following:

create table "PUBLIC'." AUTHOR" (
“ID" int not null,
"FI RST_NAME" varchar (50) null,
"LAST_NAME" varchar(50) not null,

constraint "PK_AUTHOR'
primary key ("1D")
)
create table "PUBLIC'."BOX"(
“ID" int not null,
"AUTHOR I D' int not null,
“TITLE" varchar(400) not null,

constraint "PK_BOOK"
primary key ("ID")
)

alter table "PUBLIC'."BOX"
add constraint "FK BOOK_AUTHOR | D"
foreign key ("AUTHOR |ID")
references "AUTHOR' ("ID")

Do note that these features only restore parts of the original schema. For instance, vendor-specific
storage clauses that are not available to jJOOQ's generated meta data cannot be reproduced this way.

© 2009 - 2024 by Data Geekery™ GmbH. Page 204 /720

The jOOQ User Manual 4.5. Catalog and schema expressions

4.5. Catalog and schema expressions

Most databases know some sort of namespace to group objects like tables, stored procedures,
seqguences and others into a common catalog or schema. jOOQ uses the types org.joog.Catalog and
org.joog.Schema to model these groupings, following SQL standard naming.

The catalog

A catalog is a collection of schemas. In many databases, the catalog corresponds to the database, or
the database instance. Most often, catalogs are completely independent and their tables cannot be
joined or combined in any way in a single query. The exception here is SQL Server and Sybase ASE,
which allow for fully referencing tables from multiple catalogs:

SELECT *
FROM [Cat al ogl] . [Schenml] . [Tabl el] AS [t1]
JO N [Catal 0g2] . [Schema2] . [Tabl e2] AS [t2] ON [t1].[ID = [t2].[ID]

Some dialects, including MariaDB, MemSQL, MySQL, use catalogs (databases) and schemas as the same
thing. JOOQ treats databases in those dialects as schemas instead.

By default, the Settings.renderCatalog flag is turned on. In case a database supports querying multiple
catalogs, JOOQ will generate fully qualified object names, including catalog name. For more information
about this setting, see the manual's section about settings

jOOQ's code generator generates subpackages for each catalog.

The schema

A schema is a collection of objects, such as tables. Most databases support some sort of schema
(except for some embedded databases like Access, Firebird, SQLite). In most databases, the schema is
an independent structural entity. In Oracle, the schema and the user / owner is mostly treated as the
same thing. An example of a query that uses fully qualified tables including schema names is:

SELECT *
FROM " Schemal". " Tabl e1" AS "t1"
JON "Schena2"."Tabl e2" AS "t2" ON "t1"."ID' = "t2"."ID"

By default, the Settings.renderSettings flag is turned on. jJOOQ will thus generate fully qualified object
names, including the setting name. For more information about this setting, see the manual's section

about settings

4.6. Table expressions

The following sections explain the various types of table expressions supported by jOOQ

© 2009 - 2024 by Data Geekery™ GmbH. Page 205/720

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Catalog.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Schema.html

The jOOQ User Manual 4.6.1. Generated Tables

4.6.1. Generated Tables

Most of the times, when thinking about a table expression you're probably thinking about an actual
table in your database schema. If you're using jJOOQ's code generator, you will have all tables from your
database schema available to you as type safe Java objects. You can then use these tables in SQL FROM
clauses, JOIN clauses or in other SQL statements, just like any other table expression. An example is
given here:

SELECT * create.select()

FROM AUTHOR - - Tabl e expressi on AUTHOR .fron(AUTHOR) // Tabl e expressi on AUTHOR

JO N BOOK -- Table expression BOXK . j oi n(BOOK) /1 Tabl e expression BOXK

ON (AUTHOR | D = BOOK. AUTHOR | D) . on(AUTHOR. | D. eq(BOOK. AUTHOR | D))
.fetch();

The above example shows how AUTHOR and BOOK tables are joined in a SELECT statement. It also
shows how you can access table columns by dereferencing the relevant Java attributes of their tables.

See the manual's section about generated tables for more information about what is really generated
by the code generator

4.6.2. Allased Tables

The following sections illustrate how to alias tables, their columns, and how to reference columns from
aliased tables.

(") Regardless of how the aliased table is defined, the same aliased table instance is rendered
differently depending on where it is placed in the JOOQ expression tree. See the manual's section
about rendering declarations vs references for more details.

4.6.2.1. Aliased generated tables

The strength of jOOQ's code generator becomes more obvious when you perform table aliasing and
dereference fields from generated aliased tables. This can best be shown by example:

- Select all books by authors born after 1920, /'l Declare your aliases before using themin SQ.:
- naned "Paul 0" from a catal ogue: Aut hor a = AUTHOR. as("a");
Book b = BOOK. as("b");

/'l Use aliased tables in your statenent

SELECT * create. sel ect ()
FROM aut hor a .fron(a)
JO N book b ON a.id = b.author_id .join(b).on(a.!D.eq(b. AUTHOR | D))
WHERE a.year _of _birth > 1920 . wher e(a. YEAR_OF_BI RTH. gt (1920)
AND a. first_nane = ' Paul o' .and(a. FI RST_NAME. eq(" Paul 0")))
ORDER BY b.title .orderBy(b. TI TLE)
.fetch();

As you can see in the above example, calling as() on generated tables returns an object of the same
type as the table. This means that the resulting object can be used to dereference fields from the
aliased table. This is quite powerful in terms of having your Java compiler check the syntax of your SQL

© 2009 - 2024 by Data Geekery™ GmbH. Page 206 /720

The jOOQ User Manual 4.6.2.2. Aliased table expressions

statements. If you remove a column from a table, dereferencing that column from that table alias will
cause compilation errors.

4.6.2.2. Aliased table expressions

Only few types of table expressions can leverage code generation to provide the SQL syntax typesafety
shown previously, where generated tables are used. All tables, however, allow for dereferencing their
fields through Table::field methods:

/'l "Type-unsafe" aliased table:
Tabl e<?> a = AUTHOR as("a");

Il Get fields froma:

Field<?> id = a.field("ID');
Fiel d<?> firstName = a.fiel d("FI RST_NAME');

The same is true for derived tables, including unnamed derived tables whose synthetic table name is
generated by jOOQ:

Tabl e<?> nanmed = tabl e(sel ect (AUTHOR. I D). fron{ AUTHOR)). as("t");
Tabl e<?> unnaned = tabl e(sel ect (AUTHOR. | D) . f r om{ AUTHOR)) ;

Field<?> id
Field<?> id

naned. fiel d("1D"); /1l Produces a t.ID reference
unnaned. fiel d("ID"); // Produces a <generated-alias>. 1D reference

Note that if you know that the ID column is of the same type as the AUTHOR.ID column, you can use
that again to dereference the column as is explained again in the section dereferencing table columns.

/1 Now with inferred Integer type
Fi el d<Integer> id = naned.fiel d(AUTHOR. I D); /1l Produces a t.ID reference
Fi el d<Integer> id = unnaned. fiel d(AUTHOR. I D); // Produces a <generated-alias>. 1D reference

4.6.2.3. Derived column lists

The SQL standard specifies how a table can be renamed / aliased in one go along with its columns. It
references the term "derived column list" for the following syntax:

SELECT t.a, t.b
FROM (

SELECT 1, 2
) t(a, b)

This feature is useful in various use-cases where column names are not known in advance (but the
table's degree isl). An example for this are unnested tables, or the VALUES() table constructor:

- Unnested tables

SELECT t.a, t.b

FROM unnest (nmy_tabl e_function()) t(a, b)
- VALUES() constructor

SELECT t.a, t.b
FROM VALUES(1, 2),(3, 4) t(a, bh)

Only few databases really support such a syntax, but fortunately, jOOQ can emulate it easily using
UNION ALL and an empty dummy record specifying the new column names. The two statements are
equivalent:

© 2009 - 2024 by Data Geekery™ GmbH. Page 207 /720

The jOOQ User Manual 4.6.2.3. Derived column lists

- Using derived colum lists
SELECT t.a, t.b
FROM (
SELECT 1, 2
) t(a, b)

- Using UNION ALL and a dummy record

SELECT t.a, t.b

FROM (
SELECT null a, null b FROM DUAL WHERE 1 = 0
UNI ON ALL
SELECT 1, 2 FROM DUAL

)t

In jOOQ, you would simply specify a varargs list of column aliases as such:

/1l Unnested tabl es
create.sel ect().fron{unnest(nyTabl eFunction()).as("t", "a", "b")).fetch();

/1 VALUES() constructor
create. sel ect().fronval ues(
row(1, 2),
row 3, 4)
).as("t", "a", "b"))
.fetch();

Dialect support
This example using jO0Q:

sel ect Fron(val ues(row(1, 2)).as("t", "a", "b"))

Translates to the following dialect specific expressions:

Access

SELECT t.a, t.b
FROM (
SELECT
1a,
2 b
FROM (
SELECT count (*) dual
FROM MsysResour ces
) AS dual
)t

ASE, Redshift, SQLDataWarehouse, Vertica

SELECT t.a, t.b

FROM (
SELECT 1, 2
) t (a, b)

© 2009 - 2024 by Data Geekery™ GmbH. Page 208 /720

The jOOQ User Manual 4.6.2.3. Derived column lists

Aurora MySQL, MemSQL

SELECT t.a, t.b
FROM (
SELECT
1a,
2 b
FROM DUAL
)t

Aurora Postgres, CockroachDB, DB2, Derby, DuckDB, Exasol, H2, HSQLDB, Oracle,
Postgres, SQLServer, Snowflake, Trino, YugabyteDB

SELECT t.a, t.b
FROM (

VALUES (1, 2)
) t (a, b)

BigQuery

SELECT t.a, t.b
FROM (
SELECT
null a,
null b
FROM UNNEST([STRUCT(1 AS dual)]) AS dual
WHERE FALSE
UNI ON ALL
SELECT *
FROM UNNEST ([STRUCT (1, 2)]) t

)t

ClickHouse, MariaDB

SELECT t.a, t.b
FROM (
SELECT
1a,
2 b
)t

Firebird

SELECT t.a, t.b
FROM (

SELECT 1, 2

FROM RDB$DATABASE
) t (a, b)

© 2009 - 2024 by Data Geekery™ GmbH. Page 209 /720

The jOOQ User Manual

Hana

SELECT t.a, t.b
FROM (
SELECT
1a,
2 b
FROM SYS. DUMWY
)t

Informix

SELECT t.a, t.b
FROM (

TABLE (MULTI SET { ROW (1, 2)})
) t (a b)

MySQL

SELECT t.a, t.b

FROM (
VALUES ROW (1, 2)
) t (a, b)

SQlLite

SELECT t.a, t.b
FROM (
SELECT
null a,
null b
WHERE 1 = 0
UNI ON ALL
SELECT *
FROM (
VALUES (1, 2)
)t
)t

Sybase

SELECT t.a, t.b
FROM (
SELECT 1, 2
FROM SYS. DUMWY
) t (a b)

© 2009 - 2024 by Data Geekery™ GmbH.

4.6.2.3. Derived column lists

Page 210/720

The jOOQ User Manual 4.6.2.4. Unnamed derived tables

Teradata

SELECT t.a, t.b
FROM (
SELECT 1, 2
FROM (
SELECT 1 AS "dual "
) AS "dual "
) t (a b)

4.6.2.4. Unnamed derived tables

The org.joog.Table type can reference a derived table:

-- Derived table I/ Derived table
(SELECT 1 AS a) tabl e(select(inline(l).as("a")));

Most databases do not support unnamed derived tables, they require an explicit alias. If you do not
provide jOOQ with such an explicit alias, an alias will be generated based on the derived table's content,
to make sure the generated SQL will be syntactically correct. The generated alias is not specified and
should not be referenced explicitly.

(1) While the actual alias shouldn't be relied upon, as the generation algorithm might change
between jOOQ versions, the alias will remain stable per SQL content of the derived table, in order
to prevent execution plan cache contention in dialects with an execution plan. In other words, two
consecutive renderings of a structurally identical derived table should produce the same generated
alias. Of course, it's usually better to provide an explicit alias nonethel ess.

4.6.3. Joined tables

The JOIN operators that can be used in SQL SELECT statements are the most powerful and best
supported means of creating new table expressions in SQL.

This section will explain the different types of join:

- CROSSJOIN: A cross product

- INNER JOIN: A cross product filtering on matches

- OUTER JOIN: A cross product filtering on matches, additionally producing some unmatched rows

- SEMIJOIN: A check for existence of rows from one table in another table (using EXISTS or IN)

- ANTIJOIN: A check for non-existence of rows from one table in another table (using NOT EXISTS
or some conditions NOT IN)

... as well as the different types of forming join predicates:

© 2009 - 2024 by Data Geekery™ GmbH. Page 211/720

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Table.html

The jOOQ User Manual 4.6.3.1. CROSS JOIN

- ON: Expressing join predicates explicitly

- ONKEY: Expressing join predicates explicitly or implicitly based on a FOREIGN KEY

- USING: Expressing join predicates implicitly based on an explicit set of shared column names in
both tables

- NATURAL: Expressing join predicates implicitly based on an implicit set of shared column names
in both tables

... and then, there are additional ways to enrich joins:

- APPLY or LATERAL: Ordering the join tree from left to right, allowing the right side to access rows
from the left side
- PARTITION BY on OUTER JOIN: To fill the gaps in a report that uses OUTER JOIN

All of these approaches are available twice in the jOOQ API:

- Onthe org.joog.Table API, where they form binary operators
- On the SELECT API, where they are offered as convenience in jOOQ's DSL, to tame the
parentheses

4.6.3.1. CROSS JOIN

A CROSS JOIN creates a cartesian product or cross product between the two tables it joins. It does not
allow for any join predicates to be specified.

It is an occasionally useful operator in reporting, when every element of one set need to be combined
with every element of another set. For example, when you want to produce a report combining
employees and weekdays, and then do something with the resulting table:

SELECT EMPLOYEE. NAME, WEEKDAY. NAVE create. sel ect (EMPLOYEE. NAVE, WEEKDAY. NAME)
FROM EMPLOYEE . f r on(EMPLOYEE)
CROSS JO N V\EEKDAY . cr ossJoi n(WEEKDAY)

.fetch();

Some example output might be:

B B L +
| EMPLOYEE. NAVE | WEEKDAY. NAMVE |
B B L +
Jon	Monday
	Tuesday
	Wednesday
	Thursday
	Friday
	Saturday
	Sunday
	Monday
Jane	Tuesday
	Wednesday
	Thursday
	Friday
	Saturday
	Sunday
[

dfmeccccoccccccos dimeccscocecc=co +

© 2009 - 2024 by Data Geekery™ GmbH. Page 212 /720

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Table.html

The jOOQ User Manual 4.6.3.2. INNER JOIN

Table lists

Note that a CROSS JOIN is functionally (but not syntactically) equivalent to a table list that you can
provide in the FROM clause:

SELECT EMPLOYEE. NAME, WEEKDAY. NAVE create. sel ect (EMPLOYEE. NAVE, WEEKDAY. NAME)
FROM EMPLOYEE, WEEKDAY . fron(EMPLOYEE, WEEKDAY)
.fetch();

It is usually recommended to prefer the CROSS JOIN syntax in order to clearly communicate intent.

Dialect support
This example using jOOQ:

sel ect (BOOK. I D, AUTHOR. I D). f r on{ BOOK. cr ossJoi n(AUTHOR))

Translates to the following dialect specific expressions:

ASE

SELECT BOOK. | D, AUTHOR. I D
FROM BOOK
JO N AUTHOR
ON1=1

Aurora MySQL, Aurora Postgres, BigQuery, ClickHouse, CockroachDB, DB2, Derby,
Exasol, Firebird, H2, HSQLDB, Hana, Informix, MariaDB, MemSQL, MySQL, Oracle,
Postgres, Redshift, SQLDataWarehouse, SQLServer, SQLite, Snowflake, Sybase,
Teradata, Trino, Vertica, YugabyteDB

SELECT BOOK. | D, AUTHOR. | D
FROM BOOK
CROSS JO N AUTHOR

Access, DuckDB

/* UNSUPPORTED */

4.6.3.2. INNER JOIN

An INNER JOIN or just JOIN works like a CROSS JOIN, but adds a predicate of some sort filtering out
unwanted combinations. This is the most popular way to join tables, as we hardly ever want to combine

© 2009 - 2024 by Data Geekery™ GmbH. Page 213/720

The jOOQ User Manual 4.6.3.2. INNER JOIN

arbitrary rows from both tables, but the ones that have some relationship with each other, e.g. a
FOREIGN KEY reference match.

SELECT * create.sel ect()
FROM AUTHOR . f ron{ AUTHOR)
JO N BOOK ON BOOK. AUTHOR | D = AUTHOR. | D .j oi n(BOOK) . on(BOOK. AUTHOR | D. eq(AUTHOR. | D))

.fetch();

The above query will return all authors and their books. True to the nature of an INNER JOIN, authors
without books are excluded as well as books without authors (if the FOREIGN KEY is optional).

The result might look like this:

Fom e Fomm e o n B L +
| FIRST_NAME | LAST_NAME | TITLE |
Fom e Fomm e o n B L +
George	Owell	1984
George	Owell	Aninal Farm
Paul o	Coel ho	OA quimsta
Paul o	Coel ho	Brida
Fom e Fomm e o n B L +

In the example, we're using the ON clause to form the JOIN predicate, but other options will be discussed
in later sections as well.

The INNER keyword is optional both in SQL and in jJOOQ, and does not affect the query semantics at all.

Dialect support
This example using jO0Q:

sel ect (BOOK. | D, AUTHOR. | D). f r om(BOOK. j oi n(AUTHOR) . on(BOOK. AUTHOR | D. eq(AUTHOR. I D)))

Translates to the following dialect specific expressions:

Access

SELECT BOCK. I D, AUTHOR. |ID
FROVI BOOK
INNER JO N AUTHOR
ON BOOK. AUTHOR | D = AUTHOR. | D

ASE, Aurora MySQL, Aurora Postgres, BigQuery, ClickHouse, CockroachDB, DB2, Derby,
DuckDB, Exasol, Firebird, H2, HSQLDB, Hana, Informix, MariaDB, MemSQL, MySQL,
Oracle, Postgres, Redshift, SQLDataWarehouse, SQLServer, SQLite, Snowflake, Sybase,
Teradata, Trino, Vertica, YugabyteDB

SELECT BOOK. | D, AUTHOR. I D
FROM BOOK
JO N AUTHOR
ON BOOK. AUTHOR | D = AUTHOR. | D

© 2009 - 2024 by Data Geekery™ GmbH. Page 214 /720

The jOOQ User Manual 4.6.3.3. OUTER JOIN

4.6.3.3. OUTER JOIN

OUTER JOIN allows for producing some additional rows when an INNER JOIN does not match. There
are 3 types of OUTERJOIN:

- LEFTJOIN or LEFT OUTER JOIN: Always produce all rows from the left side of the join, and only
matched rows from the right side of the join

- RIGHT JOIN or RIGHT OUTER JOIN: Always produce all rows from the right side of the join, and
only matched rows from the left side of the join

- FULLJOIN or FULL OUTER JOIN: Always produce all rows from both left and right side of the join

The OUTER keyword is optional both in SQL and in jOOQ, and does not affect the query semantics at all.

This is best explained by example.

LEFT JOIN

LEFT JOIN is the most popular among the OUTER JOIN types.

The following query produces all authors, and possibly, their books:

SELECT create. sel ect(
AUTHOR. FI RST_NANME, AUTHOR. FI RST_NAME,
AUTHOR. LAST_NANME, AUTHOR. LAST_NAME,
BOOK. TI TLE BOCK. TI TLE)
FROM AUTHOR . f r o AUTHOR)
LEFT JO N BOOK ON BOOK. AUTHOR | D = AUTHOR. | D .1 ef t Joi n(BOOK) . on(BOOK. AUTHOR | D. eq(AUTHOR. | D))
.fetch();

The result might look like this:

Feeeeaaea L ememee e +

| FIRST_NAME | LAST_NAME | TITLE |

Feeeeeaea B ememeeeeaa +

| George | Owell | 1984 |

| George | Owell | Animal Farm |

| Paul o | Coel ho | OAquimsta |

| Paulo | Coel ho | Brida | <-- Above rows are also produced by INNER JO N

| Jane | Austen | | <-- This rowis only produced by LEFT JON or FULL JON
Feeeeeaea B ememeeeeaa +

As can be seen, all rows from the left side of the join (authors) are produced, including the ones that
do not have any matches on the right side of the join (books). We don't have any books for Jane Austen
yet, but Jane Austen is in the result set. She wouldn't be if this were an INNER JOIN.

RIGHT JOIN

RIGHT JOIN is just the inverse of a LEFT JOIN, and is hardly ever used.

The following query produces all books, and possibly, their authors:

© 2009 - 2024 by Data Geekery™ GmbH. Page 215/720

The jOOQ User Manual 4.6.3.3. OUTER JOIN

SELECT create. sel ect (

AUTHOR. FI RST_NAME, AUTHOR. FI RST_NAME,
AUTHOR. LAST_NAME, AUTHOR. LAST_NAME,
BOOK. TI TLE BOOK. TI TLE)
FROVI AUTHOR . f r om(AUTHOR)
RI GHT JO N BOOK ON BOOK. AUTHOR | D = AUTHOR. | D . ri ght Joi n(BOOK) . on(BOOK. AUTHOR | D. eq(AUTHOR. 1 D))
.fetch();

The result might look like this:

Fom e Fomm e o n B L I +
| FIRST_NAME | LAST_NAME | TITLE |

Fom e Fomm e o n B L I +

| George | Owell | 1984 |

| George | Owell | Aninal Farm |

| Paul o | Coel ho | O Al quinista |

| Paul o | Coel ho | Brida | <-- Above rows are also produced by INNER JO N

| | | The Arabian Nights | <-- This rowis only produced by RIGHT JON or FULL JON
Fom e Fomm e o n B L I +

As can be seen, all rows from the right side of the join (books) are produced, including the ones that do
not have any matches on the left side of the join (authors). The Arabian Night does not have a specific
author, but it is still in the result set. It wouldn't be if this were an INNER JOIN.

Not that a RIGHT JOIN is just an inversed LEFT JOIN, and you would be much more likely to write the
same query like this, with no semantic difference:

SELECT create. sel ect (
AUTHOR. FI RST_NANME, AUTHOR. FI RST_NAME,
AUTHOR. LAST_NANE, AUTHOR. LAST_NAME,
BOOK. TI TLE BOXK. TI TLE)
FROM BOOK . f r om(BOOK)
LEFT JO N AUTHOR ON BOOK. AUTHOR | D = AUTHOR. | D . I ef t Joi n(AUTHOR) . on(BOOK. AUTHOR | D. eq(AUTHOR. | D))
.fetch();

There are complex join trees where a RIGHT JOIN may make things simpler, but in most cases, it only
complicates readability and maintainability of your query.

FULL JOIN

FULL JOIN is an occasionally useful way to join two tables when no rows from either table should be
omitted. This can be useful e.g. to compare two data sets.

The following query produces all authors and all books:

SELECT create. sel ect(
AUTHOR. FI RST_NAME, AUTHOR. FI RST_NAME,
AUTHOR. LAST_NAME, AUTHOR. LAST_NAME,
BOOK. TI TLE BOCK. TI TLE)
FROM AUTHOR . f r o AUTHOR)
FULL JO N BOOK ON BOOK. AUTHOR | D = AUTHOR. | D .ful I Joi n(BOOK) . on(BOOK. AUTHOR | D. eq(AUTHOR. 1 D))
.fetch();

The result might look like this:

Fom e Fomm e o n B L I +
| FIRST_NAME | LAST_NAME | TITLE |

Fom e Fomm e o n B L I +

| George | Owell | 1984 |

| George | Owell | Aninal Farm |

| Paul o | Coel ho | O Al quinista |

| Paul o | Coel ho | Brida | <-- Above rows are also produced by INNER JO N

| Jane | Austen | | <-- This rowis only produced by LEFT JON or FULL JON
| | | The Arabian Nights | <-- This rowis only produced by RIGHT JON or FULL JON

+ +

© 2009 - 2024 by Data Geekery™ GmbH. Page 216/720

The jOOQ User Manual 4.6.3.4. SEMIJOIN

As can be seen, all rows from the left side of the join (authors) as well as from the right side of the join
(books) are produced, including the ones that do not have any matches on the respective other side
of the join.

Dialect support
This example using jOOQ:
sel ect (BOOK. I D, AUTHOR. I D). fron(BOOK. | ef t Joi n(AUTHOR) . on(BOCK. AUTHOR | D. eq(AUTHCR 1 D)))

Translates to the following dialect specific expressions:

All dialects

SELECT BOOK. | D, AUTHOR. | D
FROM BOOK
LEFT QUTER JO N AUTHOR
ON BOOK. AUTHOR | D = AUTHOR. | D

4.6.3.4. SEMI JOIN

Relational algebra defines a SEMIJOIN operation that regrettably didn't make it into standard SQL (yet),
though it is easy to emulate using the EXISTS predicate or IN predicate, which is what most people are
doing.

jOOQ offers a convenient LEFT SEMI JOIN operator to match the relational algebra semantics. The
following query will produce all authors that have books (but doesn't produce any books):

SELECT create. sel ect(
AUTHOR. FI RST_NAME, AUTHOR. FI RST_NAME,
AUTHOR. LAST_NAVE AUTHOR. LAST_NANVE
FROM AUTHOR)
WHERE EXI STS (. f r on{ AUTHOR)
SELECT * FROM BOOK WHERE BOOK. AUTHOR | D = AUTHOR. | D .| ef t Semi Joi n(BOOK) . on(BOOK. AUTHOR | D. eq(AUTHOR. | D))
) .fetch();

The result might look like this:

Fom e Fomm e o n +
| FIRST_NAMVE | LAST_NAME |
Fom e Fomm e o n +
| George | Owell |
| Paul o | Coel ho |
Fom e Fomm e o n +

Of course, you can form an equivalent query using EXISTS or IN as well in jOOQ. It is also possible to
achieve SEMI JOIN semantics by using an INNER JOIN, and possibly the SELECT DISTINCT clause, but
chances are, that query is slower and incorrect (e.g. removing too many distinct rows). A SEMIJOIN both
using jJOOQ's convenience syntax or the equivalent SQL emulation using EXISTS or IN are semantically
more precise and should be preferred.

SEMIJOIN is the inverse of the ANTI JOIN operator.

© 2009 - 2024 by Data Geekery™ GmbH. Page 217/720

The jOOQ User Manual 4.6.3.5. ANTI JOIN

Dialect support
This example using jOOQ:

sel ect (AUTHOR. I D) . f r on{ AUTHOR) . | ef t Seni Joi n(BOOXK) . on(BOOK. AUTHOR | D. eq(AUTHOR. | D))

Translates to the following dialect specific expressions:

All dialects

SELECT AUTHOR. | D
FROM AUTHOR
VHERE EXI STS (
SELECT 1 one
FROM BOOK
WHERE BOOK. AUTHOR | D = AUTHOR. | D
)

4.6.3.5. ANTI JOIN

Relational algebra defines a ANTI JOIN operation that regrettably didn't make it into standard SQL (yet),
though it is easy to emulate using the NOT EXISTS predicate. Unlike SEMI JOIN, it is not advised to use
the NOT IN predicate to emulate ANTI JOIN, because that risks being incorrect in the presence of NULL
values, a mistake that can be very subtle and thus hard to find.

jOOQ offers a convenient LEFT ANTI JOIN operator to match the relational algebra semantics. The
following query will produce all authors that have no books:

SELECT create. sel ect(
AUTHOR. FI RST_NANE, AUTHOR. FI RST_NAME,
AUTHOR. LAST_NAVE AUTHOR. LAST_NANVE
FROM AUTHOR)
WHERE NOT EXI STS (. f r on{ AUTHOR)
SELECT * FROM BOOK WHERE BOOK. AUTHOR | D = AUTHOR. | D .l ef t Anti Joi n(BOOK) . on(BOOK. AUTHOR | D. eq(AUTHOR. | D))
) .fetch();

The result might look like this, i.e. we might have an author Jane Austen in our database, but we don't
have any books for her yet:

Fom e Fomm e o n +
| FIRST_NAMVE | LAST_NAME |
Fom e Fomm e o n +
| Jane | Austen |
Fom e Fomm e o n +

Of course, you can form an equivalent query using NOT EXISTS as well in jOOQ. It is also possible to
achieve ANTI JOIN semantics by using an LEFT JOIN and a NULL predicate on the anti joined table's
primary key placed outside of the ON clause, though that might be a bit esoteric and hard to read:

SELECT create. sel ect (
AUTHOR. FI RST_NANME, AUTHOR. FI RST_NAME,
AUTHOR. LAST_NAME AUTHOR. LAST_NANE)
FROM AUTHOR . fr o AUTHOR)
LEFT JO N BOOK ON BOOK. AUTHOR | D = AUTHOR. | D . I ef t Joi n(BOOK) . on(BOOK. AUTHOR | D. eq(AUTHOR. | D))
VHERE BOOK. I D I'S NULL . wher e(BOOK. I D. i sNul I ())
.fetch();

© 2009 - 2024 by Data Geekery™ GmbH. Page 218/720

The jOOQ User Manual 4.6.3.6. ON clause

Think of the LEFT JOIN example result:

B B s +
| FIRST_NAMVE | LAST_NAME | TITLE |

B B s +

| George | Owell | 1984 |

| George | Owell | Aninal Farm |

| Paul o | Coel ho | OAquimsta |

| Paul o | Coel ho | Brida | <-- Reject all of the above where we have BOOK ID IS NOT NULL
| Jane | Austen | | <-- Keep only this row, where BOOK.ID IS NULL

B B s +

As can be seen, no DISTINCT is required to remove duplicates, because there's always only 1 row for
an author without books.

ANTI JOIN is the inverse of the SEMI JOIN operator.

Dialect support
This example using jOOQ:

sel ect (AUTHOR. | D) . f r om(AUTHOR) . | ef t Ant i Joi n(BOOK) . on(BOOK. AUTHOR | D. eq(AUTHOR. | D))

Translates to the following dialect specific expressions:

All dialects

SELECT AUTHOR. | D
FROM AUTHOR
WHERE NOT EXI STS (

SELECT 1 one

FROM BOOK

WHERE BOOK. AUTHOR | D = AUTHOR. | D
)

4.6.3.6. ON clause

All of INNER JOIN, OUTER JOIN, SEMI JOIN, ANTI JOIN require a join predicate.

One way to supply this join predicate is the ON clause, which offers most flexibility. The following
example shows how to "equijoin" the author and books tables based on their FOREIGN KEY relationship:

SELECT * create.select()

FROM AUTHOR . f r o AUTHOR)

JO' N BOOK ON BOOK. AUTHOR | D = AUTHOR. | D .j 0i n(BOOK) . on(BOOK. AUTHOR | D. eq(AUTHOR. | D))
.fetch();

Butin most dialects, any type of join predicate is possible in ON to specify what rows should be produced
by the join operation. Note that while for INNER JOIN, the predicates in the ON clause and the predicates
in the WHERE clause have the same effect, this isn't true for all the other join types, including OUTER
JOIN, SEMIJOIN, ANTI JOIN. For example, the following query will list all authors and their books, but
only if the book was published before the year 1950:

© 2009 - 2024 by Data Geekery™ GmbH. Page 219/720

The jOOQ User Manual 4.6.3.7. ON KEY clause

SELECT * create.sel ect()
FROM AUTHOR . f ron{ AUTHOR)
LEFT JO N BOOK . | ef t Joi n(BOOK)
ON BOOK. AUTHOR | D = AUTHOR. | D . on(BOOK. AUTHOR I D. eq(AUTHOR. | D))
AND BOCK. PUBLI SHED_I N < 1950 . and(BOOK. PUBLI SHED | N. |t (1950))
.fetch();

The result might look like this:

Fom e Fomm e o n B L +

| FIRST_NAME | LAST_NAME | TITLE |

Fom e Fomm e o n B L +

| George | Owell | 1984 |

| George | Owell | Aninmal Farm | <-- This author's books were all published before 1950
| Paul o | Coel ho | | <-- This author's books were published after 1950

Fom e Fomm e o n B L +

We still get all the authors, but only the books that fulfil the ON predicate. This is very different from
putting that additional predicate in the WHERE clause:

SELECT * create. sel ect ()
FROM AUTHOR . fr o AUTHOR)
LEFT JO N BOOK . ef t Joi n(BOOK)
ON BOCK. AUTHOR_ | D = AUTHOR. | D . on(BOOK. AUTHOR | D. eq(AUTHOR. | D))
VHERE BOOK. PUBLI SHED I N < 1950 . wher e(BOOK. PUBLI SHED I N. | t (1950))
.fetch();

The result might now look like this:

B B s +

| FIRST_NAVE | LAST_NAME | TITLE |

B B s +

| George | Owell | 1984

| George | Owell | Aninal Farm | <-- This author's books were all published before 1950
B B s +

Now the predicate is applied after the join operator, not as a part of the join operator, so it's just an
ordinary predicate.

4.6.3.7. ON KEY clause

(") The ON KEY clause can quickly produce ambiguities as the implicit key path between two tables
in a complex join tree isn't always unique. This can even happen for queries that have worked in the
past, but due to new FOREIGN KEY constraints being added to tables, will stop working. Use this
clause with caution!

All of INNER JOIN, OUTER JOIN, SEMI JOIN, ANTI JOIN require a join predicate.

One way to supply this join predicate is the ON KEY clause, which allows for conveniently joining two
tables based on their FOREIGN KEY relationship, assuming the relevant meta data is known to jJOOQ
via code generation:

SELECT * create. sel ect ()

FROM AUTHOR . fr o AUTHOR)
JO N BOOK ON BOOK. AUTHOR | D = AUTHOR. | D .j oi n(BOXK) . onKey()
.fetch();

There are different overloads of this onKey() method. The above one is applicable when there are no

ambiguous paths between the two joined tables. If there are several FOREIGN KEY declarations (e.g. a
© 2009 - 2024 by Data Geekery™ GmbH. Page 220/720

The jOOQ User Manual 4.6.3.8. USING clause

book has an AUTHOR_ID and a CO_AUTHOR_ID), then you can pass the org.joog.ForeignKey reference
to the method, instead, to resolve the ambiguity.

SELECT * create.sel ect()
FROM AUTHOR . f ron{ AUTHOR)
JO N BOOK ON BOOK. AUTHOR | D = AUTHOR. | D .j oi n(BOXK) . onKey(Keys. FK_BOOK_AUTHOR)

.fetch();

A similar way to join between tables by using the FOREIGN KEY information is implicit JOIN, which offers
path-based navigational expressions from child table to parent table. Unlike the ON KEY syntax, implicit
joins will never run into ambiguities.

4.6.3.8. USING clause

(") The USING clause can quickly produce ambiguities as the column names between two tablesin
a complex join tree aren't always unique. This can even happen for queries that have worked in the
past, but due to new columns being added to tables, will stop working. Use this clause with caution!

All of INNER JOIN, OUTER JOIN, SEMI JOIN, ANTI JOIN require a join predicate.

One way to supply this join predicate is the USING clause, which allows for specifying a set of column
names that are common to both tables, based on which to form a join predicate. Assuming we called
our AUTHOR.ID column AUTHOR AUTHOR_ID instead:

SELECT * create. sel ect ()
FROM AUTHOR . f r o AUTHOR)
JO N BOOK USI NG (AUTHOR | D) .j 0i n(BOOK) . usi ng(AUTHOR. AUTHCOR | D)

.fetch();

There is a certain risk of ambiguities as well in more complex join trees, but in simple cases, this can
be a very convenient way to join tables if you design your schema accordingly. The is a good example
where all FOREIGN KEY columns share the referenced PRIMARY KEY column's names.

4.6.3.9. NATURAL clause

(") The NATURAL KEY operator can quickly produce ambiguities as the column names between two
tablesin a complex join tree aren't always unique, nor should they be included in a JOIN predicate
(e.0. LAST_UPDATE or other technical columns, present on every table). This can even happen

for queries that have worked in the past, but due to new columns being added to tables, will stop
working. In fact, it's very hard to design a schema to allow for using NATURAL JOIN. Use this
clause with caution!

All of INNER JOIN, OUTER JOIN, SEMI JOIN, ANTI JOIN require a join predicate.

One way to supply this join predicate is the NATURAL clause, which works like USING clause, except
that it discovers shared column names implicitly from the table metadata. Assuming we called our
AUTHOR.ID column AUTHOR. AUTHOR_ID instead:

© 2009 - 2024 by Data Geekery™ GmbH. Page 221/720

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/ForeignKey.html

The jOOQ User Manual 4.6.3.10. LATERAL

SELECT * create.sel ect()

FROM AUTHOR . f ron{ AUTHOR)

NATURAL JO N BOOK . nat ur al Joi n(BOOK)
.fetch();

There is a high risk of ambiguities even in simple join trees, which is why this syntax is hardly ever used.
It can be very rarely useful combined with FULL JOIN to form a NATURAL FULL JOIN, which can create
a sort of SQL-style untagged union type between two row types. A bit esoteric for every day usage.

4.6.3.10. LATERAL

LATERAL is a SQL standard table operator to wrap derived tables (or other table expressions, in some
dialects), such that the tables and columns declared beforethe LATERAL derived table become in scope.
See APPLY for an alternative, SQL Server specific syntax.

An example:
SELECT * DSL. usi ng(confi gurati on)
FROM .select()
AUTHOR, . fron(
AUTHOR,
- Al previous objects (i.e. AUTHOR) lateral (
- are now in scope for the follow ng subquery sel ect (count ()
LATERAL (. f r o BOOK)
SELECT count (*) . wher e(BOOK. AUTHOR | D. eq(AUTHOR. I D)))
FROV BOOK)
WHERE BOOK. AUTHOR I D = AUTHOR ID -- AUTHOR is in scope)
UE -fetch();

This is most useful for:

- TOP N per category queries, which are harder to implement otherwise
- Local column variables
- Calling table valued functions on a row-by-row basis

Dialect support
This example using jOOQ:

sel ect (). from(AUTHOR, |ateral (sel ectCount().fron(BOOK).where(BOOK. AUTHOR | D. eq(AUTHOR. ID))))

Translates to the following dialect specific expressions:

© 2009 - 2024 by Data Geekery™ GmbH. Page 222 /720

https://blog.jooq.org/impress-your-coworkers-with-a-sql-natural-full-outer-join/
https://blog.jooq.org/how-to-write-efficient-top-n-queries-in-sql/
https://blog.jooq.org/lateral-is-your-friend-to-create-local-column-variables-in-sql/

The jOOQ User Manual

4.6.3.11. APPLY

Aurora Postgres, CockroachDB, DB2, Firebird, MySQL, Oracle, Postgres, Snowflake,

Sybase, Trino, YugabyteDB

SELECT
AUTHOR. | D,
AUTHOR. FI RST_NANME,
AUTHOR. LAST_NANME,
AUTHOR. DATE_OF_BI RTH,
AUTHOR. YEAR_OF_BI RTH,
AUTHOR. DI STI NGUI SHED,
al i as_124651337. count
FROM
AUTHOR,
LATERAL (
SELECT count (*)
FROM BOOK
WHERE BOOK. AUTHOR | D = AUTHOR. | D
) alias_124651337

SQLDataWarehouse, SQLServer

SELECT
AUTHCOR. | D,
AUTHOR. FI RST_NANME,
AUTHOR. LAST_NAME,
AUTHOR. DATE_OF_BI RTH,
AUTHOR. YEAR_OF_BI RTH,
AUTHOR. DI STI NGUI SHED,
al i as_124651337. count
FROM AUTHOR
CROSS APPLY (
SELECT count (*)
FROM BOOK
WHERE BOOK. AUTHOR | D = AUTHOR. | D
) alias_124651337

ASE, Access, Aurora MySQL, BigQuery, ClickHouse, Derby, DuckDB, Exasol, H2, HSQLDB,
Hana, Informix, MariaDB, MemSQL, Redshift, SQLite, Teradata, Vertica

/* UNSUPPORTED */

4.6.3.11. APPLY

APPLY (specifically, CROSS APPLY or OUTER APPLY) is the SQL Server specific syntax for the SQL

standard LATERAL derived table syntax.

An example:

SELECT *
FROM
AUTHOR

- Al previous objects (i.e. AUTHOR)
-- are now in scope for the follow ng subquery
CROSS APPLY (

SELECT count (*)

FROM BOOK

)i

© 2009 - 2024 by Data Geekery™ GmbH.

WHERE BOOK. AUTHOR I D = AUTHOR ID -- AUTHOR is in scope

DSL. usi ng(confi guration)

.select()
. fron(
AUTHOR
. crossAppl y(
sel ect (count ()
. f r on(BOOK)
. wher e(BOOK. AUTHOR | D. eq(AUTHOR. 1 D)))
)

)
.fetch();

Page 223 /720

The jOOQ User Manual 4.6.3.11. APPLY

This is most useful for:

- TOP N per category gueries, which are harder to implement otherwise
- Local column variables
Calling table valued functions on a row-by-row basis

Dialect support
This example using jOOQ:

sel ect Fr on{ AUTHOR. cr ossAppl y(sel ect Count () . f r on{ BOOK) . wher e(BOOK. AUTHOR | D. eq(AUTHOR. I D))))

Translates to the following dialect specific expressions:

Aurora Postgres, CockroachDB, DB2, Firebird, Postgres, Snowflake, Trino, YugabyteDB

SELECT
AUTHCOR. | D,
AUTHOR. FI RST_NAME,
AUTHOR. LAST_NAME,
AUTHOR. DATE_OF_BI RTH,
AUTHOR. YEAR_OF_BI RTH,
AUTHOR. DI STI NGUI SHED,
al i as_124651337. count
FROM AUTHOR
CROSS JO N LATERAL (
SELECT count (*)
FROM BOOK
WHERE BOOK. AUTHOR | D = AUTHOR. | D
) alias_124651337

BigQuery, Oracle, SQLDataWarehouse, SQLServer, Sybase

SELECT
AUTHOR. | D,
AUTHOR. FI RST_NANME,
AUTHOR. LAST_NANE,
AUTHOR. DATE_OF_BI RTH,
AUTHOR. YEAR_OF_BI RTH,
AUTHOR. DI STI NGUI SHED,
al i as_124651337. count
FROM AUTHOR
CROSS APPLY (
SELECT count (*)
FROM BOOK
WHERE BOOK. AUTHOR | D = AUTHOR. | D
) alias_124651337

ASE, Access, Aurora MySQL, ClickHouse, Derby, DuckDB, Exasol, H2, HSQLDB, Hana,
Informix, MariaDB, MemSQL, MySQL, Redshift, SQLite, Teradata, Vertica

/* UNSUPPORTED */

© 2009 - 2024 by Data Geekery™ GmbH. Page 224 /720

https://blog.jooq.org/how-to-write-efficient-top-n-queries-in-sql/
https://blog.jooq.org/lateral-is-your-friend-to-create-local-column-variables-in-sql/

The jOOQ User Manual 4.6.3.12. PARTITION BY

4.6.3.12. PARTITION BY

Standard SQL (e.g. implemented by Oracle) ships with a special syntax available for OUTER JOIN clauses.
This can be used to fill gaps for simplified analytical calculations. jJOOQ only supports putting the
PARTITION BY clause to the right of the OUTER JOIN clause. The following example will create at least
one record per AUTHOR and per existing value in BOOK.PUBLISHED_IN, regardless if an AUTHOR has
actually published a book in that year.

SELECT * create.select()

FROM AUTHOR . f r o AUTHOR)

LEFT QUTER JO N BOOK .| ef t Qut er Joi n(BOOK)

PARTI TI ON BY (PUBLI SHED | N) .partitionBy(BOOK. PUBLI SHED | N)

ON BOOK. AUTHOR I D = AUTHOR. | D . on(BOOK. AUTHOR I D. eq(AUTHOR. | D))
.fetch();

4.6.4. The VALUES() table constructor

Some databases allow for expressing in-memory temporary tables using a VALUES() constructor. This
constructor usually works the same way as the VALUES() clause known from the INSERT statement or
from the MERGE statement. With jOOQ, you can also use the VALUES() table constructor, to create
tables that can be used in a SELECT statement's FROM clause:

SELECT a, b create.select()
FROM VALUES(1, 'a'), .fron(val ues(row(1, "a"),
(2, "'b') t(a, b) row(2, "b")).as(“t", "a', "b"))
.fetch();

Note, that it is usually quite useful to provide column aliases ("derived column lists") along with the table
alias for the VALUES() constructor.

Dialect support
This example using jO0Q:

sel ect From(val ues(row(1, "a"), row(2, "b")).as("t", "a", "b"))

Translates to the following dialect specific expressions:

© 2009 - 2024 by Data Geekery™ GmbH. Page 225/720

The jOOQ User Manual

Access

SELECT t.a, t.b
FROM (
SELECT
1a,
‘a' b
FROM (
SELECT count (*) dual
FROM MsysResour ces
) AS dual
UNI ON ALL
SELECT 2, 'b'
FROM (
SELECT count (*) dual
FROM MsysResour ces
) AS dual
)t

ASE, Redshift, SQLDataWarehouse, Vertica

SELECT t.a, t.b
FROM (

SELECT 1, 'a'

UNI ON ALL

SELECT 2, 'b'
) t (a, b)

Aurora MySQL

SELECT t.a, t.b

4.6.4. The VALUES() table constructor

Aurora Postgres, CockroachDB, DB2, Derby, DuckDB, Exasol, H2, HSQLDB, Oracle,

Postgres, SQLServer, Snowflake, Trino, YugabyteDB

SELECT t.a, t.b

© 2009 - 2024 by Data Geekery™ GmbH.

Page 226 /720

The jOOQ User Manual 4.6.4. The VALUES() table constructor
BigQuery

SELECT t.a, t.b
FROM (

SELECT
null a,
null b

FROM UNNEST([STRUCT(1 AS dual)]) AS dual

WHERE FALSE

UNI ON ALL

SELECT *

FROM UNNEST ([
STRUCT (1, 'a'),
STRUCT (2, 'b')

1t

)t

ClickHouse, MariaDB

SELECT t.a, t.b

UNION ALL
SELECT 2, 'b’
) t

Firebird

SELECT t.a, t.b

FROM (
SELECT 1, 'a'
FROM RDB$DATABASE
UNI ON ALL
SELECT 2, 'b'
FROM RDB$DATABASE

) t (a, b)

Hana

SELECT t.a, t.b
FROM (
SELECT
1a,
‘a' b
FROM SYS. DUMWY
UNI ON ALL
SELECT 2, 'b'
FROM SYS. DUMWY
)t

Informix

SELECT t.a, t.b

FROM (

TABLE (MULTI SET {
ROV (1, 'a'),
ROW (2, 'b')

}

) t (a, b)

© 2009 - 2024 by Data Geekery™ GmbH. Page 227 /720

The jOOQ User Manual

MemSQL

SELECT t.a, t.b
FROM (
SELECT
t.*
FROM (
SELECT
1a,
‘a' b
FROM DUAL
UNI ON ALL
SELECT 2, 'b’
FROM DUAL
)t
)t

MySQL

SELECT t.a, t.b
FROM (
VALUES
ROW (1, 'a'),
ROW (2, 'b')
) t (a, b)

SQLite

SELECT t.a, t.b
FROM (
SELECT
null a,
null b
WHERE 1 = 0
UNI ON ALL
SELECT *
FROM (
VALUES
(1,
(2, "
)t
t

a'),
b*)

)

Sybase

SELECT t.a, t.b

FROM (
SELECT 1, 'a'
FROM SYS. DUMMY
UNI ON' ALL
SELECT 2, ' b’
FROM SYS. DUMMY
) t (a, b)

© 2009 - 2024 by Data Geekery™ GmbH.

4.6.4. The VALUES() table constructor

Page 228/720

The jOOQ User Manual

Teradata

SELECT t.a, t.b
FROM (
SELECT 1, 'a'
FROM (
SELECT 1 AS "dual "
) AS "dual "
UNI ON ALL
SELECT 2, 'b'
FROM (
SELECT 1 AS "dual "
) AS "dual "
) t (a, b)

4.6.5. Derived tables

4.6.5. Derived tables

A derived table is a nested SELECT in the FROM clause, i.e. it can be used as a table expression. As such,

it works differently from a scalar subquery, which is a column expression.

Tabl e<?> nested =

create. sel ect (BOOK. AUTHOR | D, count (). as("books"))

SELECT nested.* FROM (. f r on{ BOOK)
SELECT AUTHOR | D, count(*) books . groupBy(BOOK. AUTHOR | D) . asTabl e(" nested") ;
FROM BOOK
GROUP BY AUTHOR | D create. sel ect(nested. fields())
) nested . fron(nested)
ORDER BY nest ed. books DESC .orderBy(nested.field("books"))
.fetch();

Dialect support
This example using jOOQ:
sel ect Fron{ sel ect (BOOK. I D). fron{ BOOK) . asTabl e("t"))

Translates to the following dialect specific expressions:

All dialects

SELECT t.ID
FROM (
SELECT BOXK. | D
FROM BOOK
)t

4.6.6. The Oracle T1g PIVOT clause

If you are closely coupling your application to an Oracle database, you can take advantage of some
Oracle-specific features, such as the PIVOT clause, used for statistical analyses. The formal syntax

definition is as follows:

© 2009 - 2024 by Data Geekery™ GmbH.

Page 229/720

The jOOQ User Manual 4.6.7.j00Q's relational division syntax

- SELECT ..
FROM t abl e PI VOT (aggregateFunction [, aggregateFunction] FOR columm IN (expression [, expression]))
- WHERE ..

The PIVOT clause is available from the org.joog.Table type, as pivoting is done directly on a table.
Currently, only Oracle's PIVOT clause is supported. Support for SQL Server's slightly different PIVOT
clause will be added later. Also, JOOQ may emulate PIVOT for other dialects in the future.

4.6.7.)00Q's relational division syntax

There is one operation in relational algebra that is not given a lot of attention, because it is rarely used
in real-world applications. It is the relational division, the opposite operation of the cross product (or,
relational multiplication). The following is an approximate definition of a relational division:

Assune the following cross join / cartesian product
C=AxB

hen it can be said that
= + B

With jOOQ, you can simplify using relational divisions by using the following syntax:

C. divideBy(B).on(C. ID.eq(B.C_ID)).returnreturningResult()

The above roughly translates to

SELECT DI STINCT C. TEXT FROM C "c1"
WHERE NOT EXI STS (
SELECT 1 FROM B
WHERE NOT EXI STS (
SELECT 1 FROM C "c2"
VHERE "c2". TEXT = "c1". TEXT
AND "c2".1D = B.C_ID
)
)

Or in plain text: Find those TEXT values in C whose ID's correspond to all ID's in B. Note that from the
above SQL statement, it is immediately clear that proper indexing is of the essence. Be sure to have
indexes on all columns referenced from the on(...) and returning(...) clauses.

For more information about relational division and some nice, real-life examples, see

- https://en.wikipedia.org/wiki/Relational algebra#Division
- https://www.red-gate.com/simple-talk/databases/sgl-server/t-sgl-programming-sql-server/
divided-we-stand-the-sgl-of-relational-division/

4.6.8. Array and cursor unnesting

The SQL standard specifies how SQL databases should implement ARRAY and TABLE types, as well as
CURSOR types. Put simply, a CURSOR is a pointer to any materialised table expression. Depending on
the cursor's features, this table expression can be scrolled through in both directions, records can be

© 2009 - 2024 by Data Geekery™ GmbH. Page 230/720

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Table.html
https://en.wikipedia.org/wiki/Relational_algebra#Division
https://www.red-gate.com/simple-talk/databases/sql-server/t-sql-programming-sql-server/divided-we-stand-the-sql-of-relational-division/
https://www.red-gate.com/simple-talk/databases/sql-server/t-sql-programming-sql-server/divided-we-stand-the-sql-of-relational-division/

The jOOQ User Manual 4.6.9. Table-valued functions

locked, updated, removed, inserted, etc. Often, CURSOR types contain s, whereas ARRAY and TABLE
types contain simple scalar values, although that is not a requirement

ARRAY types in SQL are similar to Java's array types. They contain a "component type" or "element type"
and a "dimension". This sort of ARRAY type is implemented in H2, HSQLDB and Postgres and supported
by jOOQ as such. Oracle uses strongly-typed arrays, which means that an ARRAY type (VARRAY or TABLE
type) has a name and possibly a maximum capacity associated with it.

Unnesting array and cursor types

The real power of these types become more obvious when you fetch them from stored procedures
to unnest them as table expressions and use them in your FROM clause. An example is given here,
where Oracle's DBMS_XPLAN package is used to fetch a cursor containing data about the most recent
execution plan:

SELECT * create.select()
FROM TABLE(DBVMS_XPLAN. DI SPLAY_CURSOR(nul |, null, "ALLSTATS)); .fron(tabl e(DomsXpl an. di spl ayCursor(null, null,
" ALLSTATS"))
.fetch();

Note, in order to access the DbmsXplan package, you can use the code generator to generate Oracle's
SYS schema.

4.6.9. Table-valued functions

Some databases support functions that can produce tables for use in arbitrary SELECT statements.
jOOQ supports these functions out-of-the-box for such databases. For instance, in SQL Server, the
following function produces a table of (ID, TITLE) columns containing either all the books or just one
book by ID:

CREATE FUNCTI ON f_books (@d | NTEGER)
RETURNS @ut _t abl e TABLE (
id | NTEGER
title VARCHAR(400)
)
AS
BEG N
I NSERT @ut _t abl e
SELECT id, title
FROM book
WHERE @d IS NULL OR id = @d
ORDER BY id
RETURN
END

The jOOQ code generator will now produce a generated table from the above, which can be used as
a SQL function:

/'l Fetching all books records
Resul t <FBooksRecord> r1 = create. sel ect Fron{fBooks(null)).fetch();

/1 Lateral joining the table-valued function to another table using CROSS APPLY:
create. sel ect (BOOK. | D, F_BOCKS. Tl TLE)

. from(BOOK. cr ossAppl y(f Books(BOOXK. I D)))

.fetch();

© 2009 - 2024 by Data Geekery™ GmbH. Page 231 /720

The jOOQ User Manual 4.6.10. GENERATE_SERIES

4.6.10. GENERATE_SERIES

A nice built-in table-valued function from the PostgreSQL dialect is the GENERATE_SERIES() function,
which allows for creating a table for a range of numeric values. Many dialects have some way of
generating such a table, and if not, it can be emulated using recursive SQL.

// Values from1 to 10
Resul t <Recor d1<I nteger>> r = create. sel ect Fron{generateSeries(1l, 10)).fetch();

Dialect support
This example using jOOQ:

sel ect Fron{ generateSeri es(1, 10))

Translates to the following dialect specific expressions:

Aurora Postgres, DuckDB, Postgres, YugabyteDB

SELECT gener ate_series. generate_series
FROM gener ate_series(1, 10)

BigQuery

SELECT generate_series. generate_series
FROM (

SELECT nul | generate_series

FROM UNNEST([STRUCT(1 AS dual)]) AS dual

WHERE FALSE

UNI ON ALL

SELECT *

FROM unnest (generate_array(1, 10)) generate_series
) generate_series

ClickHouse

SELECT gener ate_series. generate_series
FROM (
SELECT nul | generate_series
WHERE FALSE
UNI ON ALL
SELECT *
FROM (
SELECT nunber generate_series
FROM nunmbers(1, ((10 - 1) + 1))
) generate_series
) generate_series

© 2009 - 2024 by Data Geekery™ GmbH. Page 232/720

The jOOQ User Manual 4.6.10. GENERATE_SERIES

CockroachDB

SELECT gener ate_series. generate_series
FROM generate_series(1, 10) generate_series (generate_series)

DB2

SELECT gener ate_series. generate_series
FROM (
W TH
generate_series(generate_series) AS (
SELECT 1
FROM SYSI BM DUAL
UNI ON ALL
SELECT (generate_series + 1)
FROM gener ate_seri es
WHERE generate_series < 10
)
SELECT generate_series
FROM gener ate_seri es
) generate_series

Exasol, Oracle

SELECT generate_series. generate_series
FROM (
SELECT (level + (1 - 1)) generate_series
FROM DUAL
CONNECT BY level <= ((10 + 1) - 1)
) generate_series

Firebird

SELECT gener ate_series. generate_series
FROM (
W TH RECURSI VE
generate_series(generate_series) AS (
SELECT 1
FROV RDB$DATABASE
UNI ON ALL
SELECT (generate_series + 1)
FROM gener at e_seri es
WHERE generate_series < 10
)
SELECT generate_series
FROM gener ate_seri es
) generate_series

H2

SELECT gener ate_series. generate_series
FROM system range(1, 10) generate_series (generate_series)

© 2009 - 2024 by Data Geekery™ GmbH. Page 233/720

The jOOQ User Manual

HSQLDB

SELECT gener ate_series. generate_series
FROM (
W TH RECURSI VE
generate_series(generate_series) AS (
SELECT 1
FROM (VALUES(1)) AS dual (dual)
UNI ON ALL
SELECT (generate_series + 1)
FROM gener at e_seri es
WHERE generate_series < 10

)
SELECT generate_series
FROM gener ate_seri es
) generate_series

Informix

SELECT gener ate_series. generate_series
FROM (
SELECT (level + (1 - 1)) generate_series
FROM (
SELECT 1 AS dual
FROM syst abl es
WHERE (tabid = 1)
) AS dual
CONNECT BY level <= ((10 + 1) - 1)
) generate_series

MariaDB, MySQL, SQLite, Trino

SELECT generate_series. generate_series
FROM (
W TH RECURSI VE
generate_series(generate_series) AS (
SELECT 1
UNI ON ALL
SELECT (generate_series + 1)
FROM gener at e_seri es
WHERE generate_series < 10

SELECT generate_series
FROM gener ate_seri es
) generate_series

Snowflake

SELECT gener ate_series. generate_series
FROM (
SELECT ((seg4() + 1) + (1 - 1)) generate_series
FROM TABLE(gener at or (rowcount => (10 - (1 - 1))))
) generate_series (generate_series)

© 2009 - 2024 by Data Geekery™ GmbH.

4.6.10. GENERATE_SERIES

Page 234 /720

The jOOQ User Manual 4.6.10. GENERATE_SERIES

SQLDataWarehouse

W TH
generate_series(generate_series) AS (
SELECT 1
UNI ON ALL
SELECT (generate_series + 1)
FROM gener ate_seri es
WHERE generate_series < 10

SELECT gener ate_series. generate_series
FROM (

SELECT gener ate_series

FROM gener at e_seri es
) generate_series

SQLServer

SELECT gener ate_series. generate_series
FROM (

SELECT *

FROM gener ate_series(1, 10)
) generate_series (generate_series)

Sybase

SELECT generate_series. generate_series
FROM (
W TH RECURSI VE
generate_series(generate_series) AS (
SELECT 1
FROM SYS. DUMWY
UNI ON ALL
SELECT (generate_series + 1)
FROM gener at e_seri es
WHERE generate_series < 10

SELECT generate_series
FROM gener ate_seri es
) generate_series

Teradata

W TH RECURSI VE
generate_series(generate_series) AS (
SELECT 1
FROM (
SELECT 1 AS "dual "
) AS "dual "
UNI ON ALL
SELECT (generate_series + 1)
FROM gener at e_seri es
WHERE generate_series < 10
)
SELECT generate_series. generate_series
FROM (
SELECT generate_series
FROM gener at e_seri es
) generate_series

© 2009 - 2024 by Data Geekery™ GmbH. Page 235/720

The jOOQ User Manual 4.6.11. The DUAL table

ASE, Access, Aurora MySQL, Derby, Hana, MemSQL, Redshift, Vertica

/* UNSUPPORTED */

4.6.11. The DUAL table

The SQL standard specifies that the FROM clause is mandatory in a SELECT statement. However, in the
real world, there exist three types of databases:

- The ones that always require a FROM clause (as required by the SQL standard)

- The ones that never require a FROM clause (and still allow a WHERE clause)

- The ones that require a FROM clause only with @ WHERE clause, GROUP BY clause, or HAVING
clause

With jOOQ, you don't have to worry about the above distinction of SQL dialects. JOOQ never requires
a FROM clause, but renders the necessary "DUAL" table, if needed. The following program shows how
jOOQ renders "DUAL" tables

Dialect support
This example using jOOQ:

select(inline(l))

Translates to the following dialect specific expressions:

Access

SELECT 1

FROM (
SELECT count (*) dual
FROM MSysResour ces

) AS dual

ASE, Aurora Postgres, BigQuery, ClickHouse, CockroachDB, DuckDB, Exasol, H2,
MariaDB, MySQL, Oracle, Postgres, Redshift, SQLDataWarehouse, SQLServer, SQLite,
Snowflake, Trino, Vertica, YugabyteDB

SELECT 1

© 2009 - 2024 by Data Geekery™ GmbH. Page 236 /720

The jOOQ User Manual 4.6.11. The DUAL table

Aurora MySQL, MemSQL

SELECT 1
FROVI DUAL

DB2

SELECT 1
FROM SYSI BM DUAL

Derby

SELECT 1
FROM SYSI BM SYSDUMWY1

Firebird

SELECT 1
FROM RDB$DATABASE

Hana, Sybase

SELECT 1
FROM SYS. DUMWY

HSQLDB

SELECT 1
FROM (VALUES(1)) AS dual (dual)

Informix

SELECT 1

FROM (
SELECT 1 AS dual
FROM syst abl es
WHERE (tabid = 1)

) AS dual

© 2009 - 2024 by Data Geekery™ GmbH. Page 237/720

The jOOQ User Manual 4.7. Column expressions

Teradata

SELECT 1
FROM (

SELECT 1 AS "dual "
) AS "dual "

Note, that some databases (H2, MySQL) can normally do without "DUAL". However, there exist some
corner-cases with complex nested SELECT statements, where this will cause syntax errors (or parser
bugs). To stay on the safe side, jJOOQ will always render "dual" in those dialects.

4.7. Column expressions

Column expressions can be used in various SQL clauses in order to refer to one or several columns.
This chapter explains how to form various types of column expressions with jOOQ. A particular type of
column expression is given in the section about tuples or row value expressions, where an expression
may have a degree of more than one.

Using column expressions in jJOOQ

jOOQ allows you to freely create arbitrary column expressions using a fluent expression construction
API. Many expressions can be formed as functions from DSL methods, other expressions can be formed
based on a pre-existing column expression. For example:

/'l A regular table colum expression
Field<String> fieldl = BOOK. Tl TLE;

/1 A function created fromthe DSL

Field<String> field2 = trin{BOOXK. Tl TLE);
/'l NMore conplex function with advanced DSL syntax
Field<String> field4 = |istAgg(BOOXK. Tl TLE)
. Wi thi nG oupOr der By(BOXK. | D. asc())
.over().partitionBy(AUTHOR | D);

4.7.7. Table columns

Table columns are the most simple implementations of a column expression. They are mainly produced
by jOOQ's code generator and can be dereferenced from the generated tables, but other ways of
creating table column references are possible.

4.7.1.1. Generated table columns

The main type of column expression are the ones produced by jOOQ's code generator and can be
dereferenced from the generated tables. This manual is full of examples involving table columns.
Another example is given in this query:

© 2009 - 2024 by Data Geekery™ GmbH. Page 238 /720

The jOOQ User Manual 4.7.1.2. Dereferenced table columns

SELECT BOXK. | D, BOXK. TI TLE create. sel ect (BOOK. | D, BOOK. Tl TLE)
FROVI BOOK . f rom(BOOK)
WHERE BOOK. Tl TLE LI KE ' %8Q.% . wher e(BOOK. TI TLE. | i ke(" %SQL%))
ORDER BY BOOK. Tl TLE . or der By(BOOK. Tl TLE)

.fetch();

Table columns implement a more specific interface called org.joog.TableField, which is parameterised
with its associated <R extends Record> record type, and provides access to the container org.joog.Table
instance.

See the manual's section about generated tables for more information about what is really generated
by the code generator

4.7.1.2. Dereferenced table columns

Any org.joog.Table instance that is constructed in a way to know its own columns can be used to
dereference those columns. Examples include:

- Generated tables know their generated table columns
- Derived tables
- Table valued functions, including built-in ones, such as e.g. unnested arrays or GENERATE SERIES

All of these table expressions, as well as some others, extend the org.jooq.Fields type, which allows for
all of these field accessing types, like org.joog.Table but also org.joog.Record and others to share field
accessing logic.

/Il Get fields from AUTHOR dynanically, w thout type safety:
Fiel d<?> id = AUTHOR fiel d("ID");
Fi el d<?> firstNane = AUTHOR fi el d("FI RST_NAME") ;

4.7.71.3. Named table columns

When no org.joog.Table instance is available to dereference a column from, the column expression can
still be constructed on the fly, dynamically using a Name reference, and optionally a org.joog.DataType
reference:

Il Get fields from AUTHOR dynamical ly, without type safety:
Field<?> id = field(name("AUTHOR', "1D"));
Field<String> firstName = field(name("AUTHOR', "FIRST_NAME"), |NTEGER);

Note that by default, these names are quoted (among other reasons to prevent SQL injection), and thus
case sensitive. For more details, please refer to the section about names and identifiers.

4.7.2. Allased columns

Just like tables, columns can be renamed using aliases. Here is an example:

© 2009 - 2024 by Data Geekery™ GmbH. Page 239/720

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/TableField.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Table.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Table.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Fields.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Table.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Record.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Table.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/DataType.html

The jOOQ User Manual 4.7.3. Cast expressions

SELECT FIRST_NAVE || ' ' || LAST_NAME author, COUNT(*) books
FROM AUTHOR
JO N BOOK ON AUTHCR | D = AUTHOR | D

GROUP BY FI RST_NAVE, LAST_NAME;

Here is how it's done with jOOQ:

Record record = create. sel ect (
concat (AUTHOR. FI RST_NAME, inline(" "), AUTHOR LAST_NAME).as("author"),
count (). as("books"))
. f r om(AUTHOR)
.j 0i n(BOOK) . on(AUTHOR. | D. eq(BOOK. AUTHOR | D))
. groupBy (AUTHOR. FI RST_NAME, AUTHOR. LAST_NANE)
.fetchAny();

When you alias Fields like above, you can access those Fields' values using the alias name:

Systemout. println("Author : " + record. getVal ue("author"));
Systemout. println("Books : " + record.getVal ue("books"));

Unnamed column expressions

In most SQL databases, aliasing of column expressions in top level selects is optional. The database
will generate a column name that is roughly based on the expression for documentation purposes
(e.g. when running the query in a tool like SQL Developer), but applications cannot rely on the name
explicitly. This is not a problem as columns can still be referenced by index.

In a similar fashion, jJOOQ will assume an unspecified, generated column name for column expressions,
based on their content.

- Arithmetic expression /1 Arithnetic expression

1+2 inline(1l).plus(inline(2));

- Correl ated subquery /1 Correl ated subquery

(SELECT 1 AS a) field(select(inline(l).as("a")));

These unnamed expressions can be used both in SQL as well as with jOOQ. However, do note that
jOOQ will use Field.getName() to extract this column name from the field, when referencing the field or
when nesting it in derived tables. In order to stay in full control of any such column names, it is always
a good idea to provide explicit aliasing for column expressions, both in SQL as well as in jOOQ.

Rendering declarations or references

The same aliased column instance is rendered differently depending on where it is placed in the jJOOQ
expression tree. See the manual's section about rendering declarations vs references for more details.

4.7.3. Cast expressions

jOOQ's source code generator tries to find the most accurate type mapping between your vendor-
specific data types and a matching Java type. For instance, most VARCHAR, CHAR, CLOB types will
map to String. Most BINARY, BYTEA, BLOB types will map to byte[]. NUMERIC types will default to
java.math.BigDecimal, but can also be any of java.math.Biginteger, java.lang.Long, java.lang.Integer,
java.lang.Short, java.lang.Byte, java.lang.Double, java.lang.Float.

© 2009 - 2024 by Data Geekery™ GmbH. Page 240/720

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Field.html#getName()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/math/BigDecimal.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/math/BigInteger.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Long.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Integer.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Short.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Byte.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Double.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Float.html

The jOOQ User Manual 4.7.3. Cast expressions

Sometimes, this automatic mapping might not be what you needed, or jJOOQ cannot know the type of
a field. In those cases you would write SQL type CAST like this:

- Let's say, your Postgres colum LAST_NAME was VARCHAR(30)
- Then you could do this:
SELECT CAST(AUTHOR. LAST_NAME AS TEXT) FROM DUAL

in jOOQ, you can write something like that:

create. sel ect (AUTHOR LAST_NAME. cast (VARCHAR(100))) . fetch();

The same thing can be achieved by casting a Field directly to String.class, as VARCHAR is the default
SQLDataType to map to Java's String

create. sel ect (AUTHOR. LAST_NAME. cast (String.class)).fetch();

The complete CAST APl in org.joog.Field consists of these three methods:

public interface Field<T> {

Il Cast this field to the type of another field
<Z> Fi el d<Z> cast (Fi el d<z> field);

I/l Cast this field to a given DataType
<Z> Fi el d<Z> cast (Dat aType<Z> type);

// Cast this field to the default DataType for a given O ass

<Z> Fi el d<Z> cast (Cl ass<? extends Z> type);

}

// And additional convenience nmethods in the DSL:
public class DSL {
<T> Fi el d<T> cast (Obj ect object, Field<T> field);
<T> Fi el d<T> cast (Obj ect object, DataType<T> type);
<T> Fi el d<T> cast (Obj ect object, Cl ass<? extends T> type);
<T> Fi el d<T> cast Nul | (Fi el d<T> field);
<T> Fi el d<T> cast Nul | (Dat aType<T> type);
<T> Fi el d<T> cast Nul | (Cl ass<? extends T> type);

Dialect support
This example using jOOQ:
cast ("1", VARCHAR(10))

Translates to the following dialect specific expressions:

Access

cstr('1")

ASE, Aurora Postgres, DB2, Derby, DuckDB, Exasol, Firebird, H2, HSQLDB, Hana,
Postgres, Redshift, SQLDataWarehouse, SQLServer, SQLite, Snowflake, Sybase,
Teradata, Trino, Vertica, YugabyteDB

CAST('1' AS varchar(10))

© 2009 - 2024 by Data Geekery™ GmbH. Page 241 /720

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Field.html

The jOOQ User Manual 4.7.4. Datatype coercions

Aurora MySQL, MariaDB, MemSQL, MySQL
CAST(' 1' AS char (10))

BigQuery

CAST('1' AS string)

ClickHouse

CAST('1' AS Nul | abl e(var char (10)))
CockroachDB

CAST("1' AS string(10))
Informix

CAST('1' AS |varchar(10))

Oracle

CAST('1' AS varchar2(10))

4.7.4. Datatype coercions

A slightly different use case than CAST expressions are data type coercions, which are not rendered
through to generated SQL. Sometimes, you may want to pretend that a numeric value is really treated
as a string value, for instance when binding a numeric bind value:

Field<String> fieldl = val (1).coerce(String.class);
Fi el d<Integer> field2 = val ("1").coerce(lnteger.class);

In the above example, field1 will be treated by jOOQ as a Field<String>, binding the numeric literal 1 as
a VARCHAR value. The same applies to field2, whose string literal "1" will be bound as an INTEGER value.

© 2009 - 2024 by Data Geekery™ GmbH. Page 242 /720

The jOOQ User Manual 4.7.5. Collations

This technique is better than performing unsafe or rawtype casting in Java, if you cannot access the
"right" field type from any given expression.

4.7.5. Collations

Many databases support "collations", which defines the sort order on character data types, such as
VARCHAR.

Such databases usually allow for specifying:

- System-wide default collations

- Session-wide default collations

- Per-table specific default collations

- Per-column specific default collations
- Per-usage specific collation

The actual implementation is vendor-specific, including the way the above defaults override each other.

To accommodate most use-cases jOOQ 3.11 introduced the org.joog.Collation type, which can be
attached to a org.joog.DataType through DataType.collate(Collation), or to a org.joog.Field through
Field.collate(Collation), for example:

SELECT * create. sel ect Fr on(BOOK)
FROM book . orderBy(BOOK. TI TLE. col | at e("utf8_hin"))
ORDER BY title COLLATE utf8_bin .fetch();

4.7.6. Arithmetic expressions

Numeric arithmetic expressions

Your database can do the math for you. Arithmetic operations are implemented just like numeric
functions, with similar limitations as far as type restrictions are concerned. You can use any of these
operators:

+ -/ %
In order to express a SQL query like this one:
SELECT ((1 + 2) * (5 - 3) / 2) % 10 FROM DUAL

You can write something like this in jOOQ:

create. sel ect(val (1).add(2).nul (val (5).sub(3)).div(2).nd(10)).fetch();

© 2009 - 2024 by Data Geekery™ GmbH. Page 243 /720

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Collation.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/DataType.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/DataType.html#collate(org.jooq.Collation)
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Field.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/Field.html#collate(org.jooq.Collation)

The jOOQ User Manual 4.7.7. String concatenation

Operator precedence

jOOQ does not know any operator precedence (see also boolean operator precedence). All operations
are evaluated from left to right, as with any object-oriented API. The two following expressions are the
same:

val (1).add(2) .mul (val (5).sub(3)) .div(2) .mod(10);
(((val (1).add(2)). mul (val (5).sub(3))).div(2)).mod(10);

Datetime arithmetic expressions

jOOQ also supports the Oracle-style syntax for adding days to a Field<? extends java.util.Date>

SELECT SYSDATE + 3 FROM DUAL; create. sel ect(currentTi nestanp().add(3)).fetch();

For more advanced datetime arithmetic, use the DSL's timestampDiff() and dateDiff() functions, as well
as jOOQ's built-in SQL standard INTERVAL data type support:

- INTERVAL YEAR TO MONTH: org.jooq.types.YearToMonth
- INTERVAL DAY TO SECOND: org.jooqg.types.DayToSecond

4.7.7. String concatenation

The SQL standard defines the concatenation operator to be an infix operator, similar to the ones we've
seen in the chapter about arithmetic expressions. This operator looks like this: | |. Some other dialects
do not support this operator, but expect a concat() function, instead. jJOOQ renders the right operator /
function, depending on your SQL dialect:

SELECT "A" || "B || 'C FROM DUAL
-- O in WSQ: /1 For all RDBMS, including MySQL:
SELECT concat('A", 'B', 'C) FROM DUAL create. sel ect(concat("A", "B", "C')).fetch();

4.7.8. Case sensitivity with strings

Most databases allow for specifying a COLLATION which allows for re-defining the ordering of string
values. By default, ASCII, I1SO, or Unicode encodings are applied to character data, and ordering is
applied according to the respective encoding.

Sometimes, however, certain queries like to ignore parts of the encoding by treating upper-case and
lower-case characters alike, such that ABC = abc, or such that ABC, jkl, XyZ are an ordered list of strings
(case-insensitively).

For these ad-hoc ordering use-cases, most people resort to using LOWER() or UPPER() as follows:

© 2009 - 2024 by Data Geekery™ GmbH. Page 244 /720

https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/types/YearToMonth.html
https://www.jooq.org/javadoc/<?=$javadocVersionOrLatest?>/org/jooq/types/DayToSecond.html

The jOOQ User Manual 4.7.9. General functions

- Case-insensitive filtering: /| Case-insensitive filtering:
SELECT * FROM BOOK create. sel ect Fr on(BOOK)
WHERE upper (TI TLE) = ' ANl VAL FARM . wher e(upper (BOOK. TI TLE) . eq("ANI VAL FARM')) . fetch();
- Case-insensitive ordering: /'l Case-insensitive ordering:
SELECT * create. sel ect Fr on(AUTHOR)
FROM AUTHOR . order By(upper (AUTHOR. FI RST_NAME) , upper (AUTHOR. LAST_NAME))
ORDER BY upper (FI RST_NAME), upper (LAST_NAME) .fetch();

4.7.9. General functions

There are a variety of general functions supported by jOOQ. As discussed in the chapter about SOL
dialects functions are mostly emulated in your database, in case they are not natively supported.

4.7.9.1. CHOOSE

The CHOOSE() function acts as a switch over an integer to return the nth argument. It is an abbreviated
CASE expression

SELECT create. sel ect(
choose(1, 'a', 'b'), choose(val (1), val ("a") 1("b")),
choose(2, 'a', 'b'), choose(val (2), val("a"), val ("b")),
choose(3, 'a', 'b'); choose(val (3), val("a"), val ("b"))).fetch();

The result being

Fomeenea Fomeenea Fomeenea +
| choose | choose | choose |
Fomaeneas Fomaeneas Fomaeneas +
| a b | {null} |
Fomaeneas Fomaeneas Fomaennas +

Dialect support
This example using jOOQ:

choose(val (1), val("a"), val ("b"))

Translates to the following dialect specific expressions:

Access

SWTCH(1 =1, 'a', 1 =2, 'b")

© 2009 - 2024 by Data Geekery™ GmbH. Page 245/720

The jOOQ User Manual 4.7.9.2. COALESCE

ASE, Aurora Postgres, BigQuery, CockroachDB, DB2, DuckDB, Exasol, Firebird, H2,
HSQLDB, Hana, Informix, Oracle, Postgres, Redshift, SQLDataWarehouse, SQLite,
Snowflake, Sybase, Teradata, Trino, Vertica, YugabyteDB

CASE 1
WHEN 1 THEN ' a'
WHEN 2 THEN ' b*
END

Aurora MySQL, MariaDB, MemSQL, MySQL

elt(l, 'a', 'b")

ClickHouse, SQLServer

choose(1, 'a', 'b")

Derby

CASE
WHEN 1 = 1 THEN ' a'
WHEN 1 = 2 THEN ' b’
END

4.7.9.2. COALESCE

The COALESCE() function produces the first non-NULL value from the variadic list of arguments.

SELECT coal esce(null, null, 1); create. sel ect(coal esce(null, null, 1)).fetch();

The result being

B +
| coal esce |
B +
| 1
B +

Dialect support

This example using jOOQ:

© 2009 - 2024 by Data Geekery™ GmbH. Page 246 /720

The jOOQ User Manual 4.7.9.3. DECODE

coal esce(null, null, 1)

Translates to the following dialect specific expressions:

ASE, Access, Aurora MySQL, Aurora Postgres, BigQuery, ClickHouse, CockroachDB,
DB2, DuckDB, Exasol, Firebird, H2, HSQLDB, Hana, MariaDB, MemSQL, MySQL, Oracle,
Postgres, Redshift, SQLDataWarehouse, SQLServer, SQLite, Snowflake, Sybase,
Teradata, Trino, Vertica, YugabyteDB

coal esce(NULL, NULL, 1)

Derby

coal esce(?, ?, 1)

Informix

nvl (
nvl (
NULL,
NULL

4.7.9.3. DECODE

Some SQL dialects, including Db2, H2, Oracle know a more succinct, but maybe less readable DECODE()
function with a variable number of arguments. This function works like a NULL safe CASE expression.
jOOQ supports the DECODE() function and emulates it using CASE expressions in all dialects that do
not have native support:

SELECT
- Oracle:
DECODE(FI RST_NAME, ' Paul o', 'brazilian',
' George', 'english',

‘unknown'),
- Other SQL dialects /1 Use the Oracle-style DECODE() function with jOOQ

CASE /1 Note, that you will not be able to rely on type-safety

WHEN FI RST_NAME |'S NOT DI STINCT FROM ' Paul o' THEN decode(
‘brazilian' AUTHOR. FI RST_NAME,

WHEN FI RST_NAME |'S NOT DI STI NCT FROM ' George' THEN 'english’ "Paul 0", "brazilian",
ELSE ' unknown' "George", "english",

END “unknown"

FROM AUTHOR);

See the DISTINCT predicate for details about the NULL safe semantics.

© 2009 - 2024 by Data Geekery™ GmbH. Page 247 /720

The jOOQ User Manual 4.7.9.3. DECODE

Dialect support
This example using jOOQ:

decode(AUTHOR. FI RST_NAME, "Paul 0", "BR', "GCeorge", "EN', "unknown")

Translates to the following dialect specific expressions:

ASE, SQLDataWarehouse

CASE
VHEN EXI STS (
SELECT AUTHOR. FI RST_NAME X
| NTERSECT
SELECT ' Paul o' x
) THEN ' BR
VHEN EXI STS (
SELECT AUTHOR. FI RST_NAME X
| NTERSECT
SELECT ' George' x
) THEN ' EN
ELSE ' unknown'
END

Aurora MySQL, MySQL

CASE
WHEN (AUTHOR. FI RST_NAME <=> ' Paul 0') THEN ' BR
WHEN (AUTHOR. FI RST_NAME <=> ' George') THEN 'EN
ELSE ' unknown'

END

Aurora Postgres, BigQuery, CockroachDB, DuckDB, Firebird, HSQLDB, Postgres,
SQLServer, Snowflake, Trino, YugabyteDB

CASE
WHEN AUTHOR. FI RST_NAME | S NOT DI STINCT FROM ' Paul o' THEN ' BR
WHEN AUTHOR. FI RST_NAME |'S NOT DI STINCT FROM ' George' THEN 'EN
ELSE ' unknown'

END

ClickHouse

CASE
VHEN EXI STS (
SELECT AUTHOR. FI RST_NAME X
| NTERSECT DI STI NCT
SELECT ' Paul o' x
) THEN ' BR
VHEN EXI STS (
SELECT AUTHOR. FI RST_NAME X
| NTERSECT DI STI NCT
SELECT ' George' x
) THEN ' EN
ELSE ' unknown'
END

© 2009 - 2024 by Data Geekery™ GmbH. Page 248/720

The jOOQ User Manual 4.7.9.3. DECODE

DB2, Exasol, H2, Informix, MemSQL, Oracle, Teradata, Vertica

decode(
AUTHOR. FI RST_NANME,
' Paul o',
'BR,
' George',
"EN,
* unknown’

)

Derby

CASE
WHEN EXI STS (
SELECT AUTHOR. FI RST_NAME x
FROM SYSI BM SYSDUMWY1
| NTERSECT
SELECT ' Paul o' x
FROM SYSI BM SYSDUMWY1
) THEN ' BR
WHEN EXI STS (
SELECT AUTHOR. FI RST_NAME x
FROM SYSI BM SYSDUMWY1
| NTERSECT
SELECT ' Ceorge' x
FROM SYSI BM SYSDUMWY1
) THEN ' EN
ELSE ' unknown'
END

Hana

map(
AUTHOR. FI RST_NANME,
‘ Paul o',
'BR,
' George',
"EN,
* unknown'

MariaDB

decode_or acl e(
AUTHOR. FI RST_NANME,
' Paul o',
'BR,
' George',
"EN,
* unknown’

Redshift

CASE
WHEN NOT (AUTHOR. FI RST_NAME |S DI STI NCT FROM ' Paul o') THEN ' BR
WHEN NOT (AUTHOR. FI RST_NAME |S DI STI NCT FROM ' George') THEN ' EN
ELSE ' unknown'

END

© 2009 - 2024 by Data Geekery™ GmbH. Page 249/720

The jOOQ User Manual

SQLite

CASE

WHEN (AUTHOR. FI RST_NAME | S ' Paul 0') THEN ' BR

VHEN (AUTHOR FI RST_NAME IS ‘ George') THEN

ELSE ' unknown'
END

Sybase

CASE
WHEN EXI STS (
SELECT AUTHOR. FI RST_NAME x
FROM SYS. DUMWY
| NTERSECT
SELECT ' Paul o' x
FROM SYS. DUMWY
) THEN ' BR
VHEN EXI STS (
SELECT AUTHOR. FI RST_NAME x
FROM SYS. DUMWY
| NTERSECT
SELECT ' Ceorge' x
FROM SYS. DUMWY
) THEN ' EN
ELSE ' unknown'
END

Access

/* UNSUPPORTED */

4.7.9.4. llIF

'EN

4.79.4.1IF

The 1IK() function checks if the first argument is TRUE to produce the second argument, or the third
argument otherwise. It works in a similar way as the NVL2 function or the CASE expression

SELECT
iif(1=1 3 4)
iif(1=2 3, 4)

The result being

fmccce fmccce +
[Pt iif |

Dialect support

This example using jO0Q:

© 2009 - 2024 by Data Geekery™ GmbH.

create. sel ect(

iif(inline(l).eq(inline(1)),
iif(inline(l).eq(inline(2)),

inline(3),
inline(3),

inline(4))
inline(4))).fetch();

Page 250/ 720

The jOOQ User Manual 4.7.9.5. NULLIF

iif(inline(l).eq(inline(2)), inline(3), inline(4))
Translates to the following dialect specific expressions:

Access, SQLServer

iif(1=2 3, 4

ASE, Aurora Postgres, BigQuery, ClickHouse, CockroachDB, DB2, Derby, DuckDB, Exasol,
Firebird, H2, HSQLDB, Hana, Informix, Oracle, Postgres, Redshift, SQLDataWarehouse,
SQLite, Snowflake, Sybase, Teradata, Trino, Vertica, YugabyteDB

CASE
WHEN 1 = 2 THEN 3
ELSE 4

END

Aurora MySQL, MariaDB, MemSQL, MySQL

if(1=2 3, 4

4.7.9.5. NULLIF

The NULLIF() function produces a NULL value if both its arguments are equal, otherwise it produces
the first argument.

SELECT nul l'if(1, 1), nullif(1, 2); create.select(nullif(1, 1), nullif(1, 2)).fetch();

The result being

fimocccooo fimocccooo +
| nullif | nullif |
fimocccooo fimocccooo +
| | 1]
fimocccooo fimocccooo +

Dialect support
This example using jOOQ:

nul 1if(1, 2)

Translates to the following dialect specific expressions:

© 2009 - 2024 by Data Geekery™ GmbH. Page 251 /720

The jOOQ User Manual 4.7.9.6. NVL

Access

iif(l =2 NUL, 1)

ASE, Aurora MySQL, Aurora Postgres, BigQuery, ClickHouse, CockroachDB, DB2, Derby,
DuckDB, Exasol, Firebird, H2, HSQLDB, Hana, Informix, MariaDB, MemSQL, MySQL,
Oracle, Postgres, Redshift, SQLDataWarehouse, SQLServer, SQLite, Snowflake, Sybase,
Teradata, Trino, Vertica, YugabyteDB

nul 1if(1, 2)

4.7.9.6. NVL

The NVL() function (or also the ISNULL() or IFNULL() functions) produces the first argument if it is NOT
NULL, otherwise the second argument. It is a special case of the COALESCE function, which takes any
number of arguments.

SELECT nvl (null, 1); create.select(nvl(null, 1)).fetch();

The result being

Dialect support
This example using jOOQ:

nvl (null, 1)

Translates to the following dialect specific expressions:

Access

iif(NULL I'S NULL, 1, NULL)

© 2009 - 2024 by Data Geekery™ GmbH. Page 252 /720

The jOOQ User Manual 4.7.9.7. NVL2

ASE, Aurora Postgres, CockroachDB, DuckDB, Exasol, Firebird, Hana, Postgres,
Redshift, SQLDataWarehouse, SQLServer, Snowflake, Sybase, Teradata, Trino, Vertica,
YugabyteDB

coal esce(
NULL,
1

)

Aurora MySQL, BigQuery, ClickHouse, MariaDB, MemSQL, MySQL, SQLite

ifnull(
NULL,
1

)

DB2, H2, HSQLDB, Informix, Oracle

nvl (
NULL,

Derby

coal esce(
?

2
)

4.7.9.7. NVL2

The NVL2() function checks if the first argument is NOT NULL to produce the second argument, or the
third argument otherwise. It works in a similar way as the IIF function or the CASE expression

SELECT create. sel ect (
nvl 2(1, 2, 3), nvl 2(val (1) , 2, 3),
nvl2(null, 2, 3); nvl 2(val ((Integer) null), 2, 3)).fetch();

The result being

S S +
| nvi2 | nvl2 |
S S +
| 2 3|
S S +

© 2009 - 2024 by Data Geekery™ GmbH. Page 253 /720

The jOOQ User Manual 4.7.10. Numeric functions

Dialect support
This example using jOOQ:
nvl 2(val (1), 2, 3)
Translates to the following dialect specific expressions:

Access, SQLServer

iif(11S NOT NULL, 2, 3)

ASE, Aurora MySQL, Aurora Postgres, BigQuery, ClickHouse, CockroachDB, Derby,
DuckDB, Firebird, Hana, MemSQL, MySQL, Postgres, SQLDataWarehouse, SQLite,
Sybase, Trino, YugabyteDB

CASE
WHEN 1 IS NOT NULL THEN 2
ELSE 3

END

DB2, Exasol, H2, HSQLDB, Informix, MariaDB, Oracle, Redshift, Snowflake, Teradata,
Vertica

nvl2(1, 2, 3)

4.7.10. Numeric functions

In addition to the arithmetic expressions discussed previously, JOOQ also supports a variety of numeric
functions. As discussed in the chapter about SQL dialects numeric functions (as any function type) are
mostly emulated in your database, in case they are not natively supported.

4.7.10.1. ABS

The ABS() function produces the absolute value of a numeric value.

SELECT abs(-5), abs(0), abs(3); create. sel ect (abs(-5), abs(0), abs(3)).fetch();

The result being

© 2009 - 2024 by Data Geekery™ GmbH. Page 254 /720

The jOOQ User Manual 4.7.10.2. ACOS

H----- H----- H----- +
| abs | abs | abs |

Dialect support
This example using jOOQ:

abs(3)

Translates to the following dialect specific expressions:

All dialects

abs(3)

4.7.10.2. ACOS

The ACOS() function calculates the arc cosine of a numeric value.

SELECT acos(0); create. sel ect(acos(0)).fetch();

The result being

Feeeeaaea +
| acos |
Feeeeeaea +
| 1.57079633 |
Feeeeeaea +

Dialect support
This example using jOOQ:

acos(0)

Translates to the following dialect specific expressions:

Access

(atn((-0 / sqgr(((-0 * 0) + 1)))) + (2 * atn(1)))

© 2009 - 2024 by Data Geekery™ GmbH. Page 255/720

The jOOQ User Manual 4.7.10.3. ASIN

ASE, Aurora MySQL, Aurora Postgres, BigQuery, ClickHouse, CockroachDB, DB2, Derby,
DuckDB, Exasol, Firebird, H2, HSQLDB, Hana, Informix, MariaDB, MemSQL, MySQL,
Oracle, Postgres, Redshift, SQLDataWarehouse, SQLServer, SQLite, Sybase, Teradata,
Vertica, YugabyteDB

acos(0)

Snowflake, Trino

/* UNSUPPORTED */

4.7.10.3. ASIN

The ASIN() function calculates the arc sine of a numeric value.

SELECT asin(1); create.select(asin(1l)).fetch();

The result being

Dialect support
This example using jOOQ:

asin(1)

Translates to the following dialect specific expressions:

Access

atn((1 / sqr(((-1* 1) + 1))))

ASE, Aurora MySQL, Aurora Postgres, BigQuery, ClickHouse, CockroachDB, DB2, Derby,
DuckDB, Exasol, Firebird, H2, HSQLDB, Hana, Informix, MariaDB, MemSQL, MySQL,

© 2009 - 2024 by Data Geekery™ GmbH. Page 256 /720

The jOOQ User Manual 4.7.10.4. ATAN

Oracle, Postgres, Redshift, SQLDataWarehouse, SQLServer, SQLite, Sybase, Teradata,
Vertica, YugabyteDB

asin(1)

Snowflake, Trino

/* UNSUPPORTED */

4.7.10.4. ATAN

The ATAN() function calculates the arc tangent of a numeric value.

SELECT atan(1); create.select(atan(1)).fetch();

The result being

o +
| atan |
o +
| 0.785398163 |
o +

Dialect support
This example using jOOQ:

atan(1)

Translates to the following dialect specific expressions:

Access

atn(1)

ASE, Aurora MySQL, Aurora Postgres, BigQuery, ClickHouse, CockroachDB, DB2, Derby,
DuckDB, Exasol, Firebird, H2, HSQLDB, Hana, Informix, MariaDB, MemSQL, MySQL,
Oracle, Postgres, Redshift, SQLDataWarehouse, SQLServer, SQLite, Sybase, Teradata,
Vertica, YugabyteDB

atan(1)

© 2009 - 2024 by Data Geekery™ GmbH. Page 257 /720

The jOOQ User Manual 4.7.10.5. ATAN2

Snowflake, Trino

/* UNSUPPORTED */

4.7.10.5. ATANZ

The ATANZ2() function calculates the ATAN2 of a numeric value.

SELECT atan2(1, 1); create.sel ect(atan2(1, 1)).fetch();

The result being

Dialect support
This example using jOOQ:

atan2(1, 1)

Translates to the following dialect specific expressions:

ASE, SQLDataWarehouse, SQLServer

atn2(1, 1)

Aurora MySQL, Aurora Postgres, BigQuery, ClickHouse, CockroachDB, DB2, Derby,
DuckDB, Exasol, Firebird, H2, HSQLDB, Hana, Informix, MariaDB, MemSQL, MySQL,
Oracle, Postgres, Redshift, SQLite, Snowflake, Sybase, Teradata, Vertica, YugabyteDB

atan2(1, 1)

Access, Trino

/* UNSUPPORTED */

© 2009 - 2024 by Data Geekery™ GmbH. Page 258 /720

The jOOQ User Manual 4.7.10.6. CEIL

4.7.10.6. CEIL

The CEIL() function rounds a numeric value to its nearest higher integer.

SELECT create. sel ect (
ceil(1.7), ceil (1.7),
ceil(-1.7); ceil(-1.7)).fetch();

The result being

decccocoo decccocoo +
| floor | floor |
decccocoo decccocoo +
| 2 1]
decccocoo decccocoo +

Dialect support
This example using jO0Q:

ceil(1.7)

Translates to the following dialect specific expressions:

Access

(CLNG(1.7E0) - (1.7E0 - clng(1.7E0) > 0))

ASE, SQLDataWarehouse, SQLServer

cei ling(1. 7E0)

Aurora MySQL, Aurora Postgres, BigQuery, ClickHouse, DB2, Derby, DuckDB, Exasol,
Firebird, HSQLDB, Hana, Informix, MariaDB, MemSQL, MySQL, Oracle, Postgres,
Redshift, SQLite, Snowflake, Sybase, Teradata, Trino, Vertica, YugabyteDB

ceil (1. 7E0)

CockroachDB

cei | (CAST(1. 7E0 AS doubl e precision))

© 2009 - 2024 by Data Geekery™ GmbH. Page 259 /720

The jOOQ User Manual 4.7.10.7. COS

H2

cei |l i ng(CAST(1. 7E0 AS doubl e))

4.7.10.7. COS

The COS() function calculates the cosine of a numeric value.

SELECT cos(3. 14159265359) ; create. sel ect (cos(3.14159265359)).fetch();

The result being

H----- +
| cos |
H----- +
| -1
H----- +

Dialect support
This example using jOOQ:

cos(3. 14159265359)

Translates to the following dialect specific expressions:

ASE, Access, Aurora MySQL, Aurora Postgres, BigQuery, ClickHouse, DB2, Derby,
DuckDB, Exasol, Firebird, HSQLDB, Hana, Informix, MariaDB, MemSQL, MySQL, Oracle,
Postgres, Redshift, SQLDataWarehouse, SQLServer, SQLite, Snowflake, Sybase,
Teradata, Trino, Vertica, YugabyteDB

cos(3. 14159265359E0)

CockroachDB

cos(CAST(3. 14159265359E0 AS doubl e preci sion))

H2

cos(CAST(3. 14159265359E0 AS doubl e))

© 2009 - 2024 by Data Geekery™ GmbH. Page 260 /720

The jOOQ User Manual 4.7.10.8. COSH

4.7.10.8. COSH

The COSH() function calculates the hyperbolic cosine of a numeric value.

SELECT cosh(1); create. sel ect(cosh(1)).fetch();

The result being

dcccccccocccoocoo +
| cosh |
dcccccccocccoocoo +
| 1.54308063482 |
dcccccccocccoocoo +

Dialect support
This example using jO0Q:

cosh(1)

Translates to the following dialect specific expressions:

ASE, Access, Aurora MySQL, Aurora Postgres, DuckDB, HSQLDB, MariaDB, MemSQL,
MySQL, Postgres, Redshift, SQLDataWarehouse, SQLServer, Sybase, Vertica,
YugabyteDB

(Cexp((1 * 2)) + 1) / (exp(1) * 2))

BigQuery, ClickHouse, DB2, Derby, Exasol, Firebird, H2, Hana, Informix, Oracle, SQLite,
Snowflake, Teradata, Trino

cosh(1)

CockroachDB

((exp(CAST((1 * 2) AS nuneric)) + 1) / (exp(CAST(1 AS nuneric)) * 2))

© 2009 - 2024 by Data Geekery™ GmbH. Page 261 /720

The jOOQ User Manual 4.7.10.9. COT

4.7.10.9. COT

The COT() function calculates the cotangent of a numeric value.

SELECT cot (1. 5707963268) ; create. sel ect(cot(1.5707963268)).fetch();

The result being

Homm - +
| cot |
Homm - +
| 0]
Homm - +

Dialect support
This example using jO0Q:

cot (1. 5707963268)

Translates to the following dialect specific expressions:

Access, BigQuery, Informix, Oracle, SQLite, Teradata, Trino

(cos(1.5707963268E0) / sin(1.5707963268E0))

ASE, Aurora MySQL, Aurora Postgres, ClickHouse, DB2, Derby, DuckDB, Exasol, Firebird,
HSQLDB, Hana, MariaDB, MemSQL, MySQL, Postgres, Redshift, SQLDataWarehouse,
SQLServer, Snowflake, Sybase, Vertica, YugabyteDB

cot (1. 5707963268E0)

CockroachDB

cot (CAST(1.5707963268E0 AS doubl e preci sion))

H2

cot (CAST(1. 5707963268E0 AS doubl €))

© 2009 - 2024 by Data Geekery™ GmbH. Page 262 /720

The jOOQ User Manual 4.7.10.10. COTH

4.7.10.10.COTH

The COTH() function calculates the hyperbolic cotangent of a numeric value.

SELECT coth(1); create.select(coth(1l)).fetch();

The result being

dcccccccocccooco +
| coth |
dcccccccocccooco +
| 1.3130352855 |
dcccccccocccooco +

Dialect support
This example using jO0Q:

cot h(1)

Translates to the following dialect specific expressions:

ASE, Access, Aurora MySQL, Aurora Postgres, BigQuery, DB2, Derby, DuckDB, Exasol,
Firebird, H2, HSQLDB, Hana, Informix, MariaDB, MemSQL, MySQL, Oracle, Postgres,
Redshift, SQLDataWarehouse, SQLServer, SQLite, Snowflake, Sybase, Teradata, Trino,
Vertica, YugabyteDB

(Cexp((1 * 2)) + 1) / (exp((1* 2)) - 1))

ClickHouse

coth(1)

CockroachDB

((exp(CAST((1 * 2) AS numeric)) + 1) / (exp(CAST((1 * 2) AS nuneric)) - 1))

© 2009 - 2024 by Data Geekery™ GmbH. Page 263 /720

The jOOQ User Manual 4.7.10.11. DEG

4.7.10.11. DEG

The DEG() function calculates the degrees from a radian value (see also RAD).

SELECT deg(3. 14159265359) ; create. sel ect (deg(3.14159265359)).fetch();

The result being

dm=cos +
| deg |
dm=cos +
| 180 |
dm=cos +

Dialect support
This example using jO0Q:

deg(3. 14159265359)

Translates to the following dialect specific expressions:

Access

((3.14159265359E0 * 180) / 3.141592653589793)

ASE, Aurora MySQL, Aurora Postgres, ClickHouse, DB2, Derby, DuckDB, Exasol,
HSQLDB, Informix, MariaDB, MemSQL, MySQL, Postgres, Redshift, SQLDataWarehouse,
SQLServer, SQLite, Snowflake, Sybase, Teradata, Trino, Vertica, YugabyteDB

degr ees(3. 14159265359E0)

BigQuery

((CAST(3. 14159265359E0 AS deci mal) * 180) / acos(-1))

CockroachDB

degr ees(CAST(3. 14159265359E0 AS doubl e preci sion))

© 2009 - 2024 by Data Geekery™ GmbH. Page 264 /720

The jOOQ User Manual 47.10.12.E

Firebird

((CAST(3. 14159265359E0 AS nuneric) * 180) / pi())

H2

degr ees(CAST(3. 14159265359E0 AS doubl e))

Hana

((CAST(3. 14159265359E0 AS nuneric) * 180) / acos(-1))

Oracle

((CAST(3. 14159265359E0 AS nunber) * 180) / acos(-1))

471012, E

The E() function produces the Euler constant e which is around 2.71828182846

SELECT e(); create.select(e()).fetch();

The result being

tememmeeeeeeaa +
| exp |
tememmeeeeeeaa +
| 2.71828182846 |
tememmeeeeeeaa +

Dialect support
This example using jOOQ:
e0)

Translates to the following dialect specific expressions:

ASE, Access, Aurora MySQL, Aurora Postgres, BigQuery, DB2, Derby, DuckDB, Exasol,
Firebird, H2, HSQLDB, Hana, Informix, MariaDB, MemSQL, MySQL, Oracle, Postgres,

© 2009 - 2024 by Data Geekery™ GmbH. Page 265 /720

The jOOQ User Manual 4.7.10.13. EXP

Redshift, SQLDataWarehouse, SQLServer, SQLite, Snowflake, Sybase, Teradata, Vertica,
YugabyteDB

exp(1)

ClickHouse, Trino

CockroachDB

exp(CAST(1 AS nuneric))

4.7.10.13. EXP

The EXP() function calculates e”x

SELECT exp(1); create. sel ect(exp(1l)).fetch();

The result being

Dialect support
This example using jOO0Q:
exp(1)

Translates to the following dialect specific expressions:

ASE, Access, Aurora MySQL, Aurora Postgres, BigQuery, ClickHouse, DB2, Derby,
DuckDB, Exasol, Firebird, H2, HSQLDB, Hana, Informix, MariaDB, MemSQL, MySQL,
Oracle, Postgres, Redshift, SQLDataWarehouse, SQLServer, SQLite, Snowflake, Sybase,
Teradata, Trino, Vertica, YugabyteDB

exp(1)

© 2009 - 2024 by Data Geekery™ GmbH. Page 266 /720

The jOOQ User Manual 4.7.10.14. FLOOR

CockroachDB

exp(CAST(1 AS nuneric))

4.7.10.14. FLOOR

The FLOOR() function rounds a numeric value to its nearest lower integer.

SELECT create. sel ect (
floor(1.7), floor(1.7),
floor(-1.7); floor(-1.7)).fetch();

The result being

Ho-omoo - Ho-omoo - +
| floor | floor |
Ho-omoo - Ho-omoo - +
| 1 -2
Ho-omoo - Ho-omoo - +

Dialect support
This example using jOOQ:

floor(1.7)

Translates to the following dialect specific expressions:

Access

(cdec(1.7E0) - (1.7EO0 < cdec(1.7EQ)))

ASE, Aurora MySQL, Aurora Postgres, BigQuery, ClickHouse, DB2, Derby, DuckDB,
Exasol, Firebird, HSQLDB, Hana, Informix, MariaDB, MemSQL, MySQL, Oracle, Postgres,
Redshift, SQLDataWarehouse, SQLServer, SQLite, Snowflake, Sybase, Teradata, Trino,
Vertica, YugabyteDB

floor (1. 7EQ0)

© 2009 - 2024 by Data Geekery™ GmbH. Page 267 /720

The jOOQ User Manual 4.7.10.15. GREATEST

CockroachDB

f1 oor (CAST(1. 7E0 AS doubl e preci sion))

H2

f100r (CAST(1. 7E0 AS doubl €))

4.7.10.15. GREATEST

The GREATEST() function produces the greatest value among all the arguments.

SELECT greatest(2, 3); create.select(greatest(2, 3)).fetch();

The result being

Foeaeaea +
| greatest |
Feeaeaea +
| 3]
Feeeeaea +

Dialect support
This example using jOOQ:

greatest (2, 3)

Translates to the following dialect specific expressions:

Access

SWTCH(2 > 3, 2, TRUE, 3)

ASE, Derby, Informix, SQLDataWarehouse, Sybase

CASE
WHEN 2 > 3 THEN 2
ELSE 3

END

© 2009 - 2024 by Data Geekery™ GmbH. Page 268 /720

The jOOQ User Manual 4.7.10.16. LEAST

Aurora MySQL, Aurora Postgres, BigQuery, ClickHouse, CockroachDB, DB2, DuckDB,
Exasol, H2, HSQLDB, Hana, MariaDB, MemSQL, MySQL, Oracle, Postgres, Redshift,
SQLServer, Snowflake, Teradata, Trino, Vertica, YugabyteDB

greatest (2, 3)

Firebird

maxval ue(2, 3)

SQLite

nmax(2, 3)

4.7.10.16. LEAST

The LEAST() function produces the least value among all the arguments.

SELECT |l east(2, 3); create.select(least(2, 3)).fetch();

The result being

decccocoo +
| least |
decccocoo +
| 2
decccocoo +

Dialect support
This example using jO0Q:

least (2, 3)

Translates to the following dialect specific expressions:

Access

SWTCH(2 < 3, 2, TRUE, 3)

© 2009 - 2024 by Data Geekery™ GmbH. Page 269 /720

The jOOQ User Manual 4.7.10.17. LN

ASE, Derby, Informix, SQLDataWarehouse, Sybase

CASE
WHEN 2 < 3 THEN 2
ELSE 3

END

Aurora MySQL, Aurora Postgres, BigQuery, ClickHouse, CockroachDB, DB2, DuckDB,
Exasol, H2, HSQLDB, Hana, MariaDB, MemSQL, MySQL, Oracle, Postgres, Redshift,
SQLServer, Snowflake, Teradata, Trino, Vertica, YugabyteDB

| east (2, 3)

Firebird

m nval ue(2, 3)

SQLite

mn(2, 3)

4.7.10.177. LN

The LN() function calculates the natural logarithm of a numeric value.

SELECT In(1); create.select(In(1)).fetch();

The result being

vTOF W
o 5
+— +— +

Dialect support
This example using jOOQ:

I'n(1)

© 2009 - 2024 by Data Geekery™ GmbH. Page 270/720

The jOOQ User Manual 4.7.10.18. LOG

Translates to the following dialect specific expressions:

ASE, Access, SQLDataWarehouse, SQLServer

log(1)

Aurora MySQL, Aurora Postgres, BigQuery, ClickHouse, DB2, Derby, DuckDB, Exasol,
Firebird, H2, HSQLDB, Hana, MariaDB, MemSQL, MySQL, Oracle, Postgres, Redshift,
SQLite, Snowflake, Sybase, Teradata, Trino, Vertica, YugabyteDB

I'n(1)

CockroachDB

I n(CAST(1 AS nuneric))

Informix

| ogn(1)

4.7.10.18. LOG

The LOG() function calculates the logarithm of a numeric value, given a base.

SELECT | og(8, 2); create.select(log(8, 2)).fetch();

The result being

Dialect support
This example using jOOQ:

log(8, 2)

Translates to the following dialect specific expressions:

© 2009 - 2024 by Data Geekery™ GmbH. Page 271 /720

The jOOQ User Manual 4.7.10.19. NEG

ASE, Access

(log(8) / 1og(2))

Aurora MySQL, Aurora Postgres, Exasol, Firebird, H2, Hana, MariaDB, MemSQL, MySQL,
Oracle, Postgres, Redshift, Snowflake, Trino, Vertica, YugabyteDB

log(2, 8)

BigQuery, SQL.DataWarehouse, SQLServer

log(8, 2)

ClickHouse, DB2, Derby, DuckDB, HSQLDB, SQLite, Sybase, Teradata

(In(8) / In(2))

CockroachDB

(I n(CAST(8 AS nuneric)) / In(CAST(2 AS nuneric)))

Informix

(logn(8) / logn(2))

4.7.10.19. NEG

The NEG() function produces the negation of its argument.

SELECT neg(2); create.sel ect(neg(2)).fetch();

The result being

© 2009 - 2024 by Data Geekery™ GmbH. Page 272 /720

The jOOQ User Manual 4.7.10.20. PI

temee- +
| neg |
temee- +
[-2
temee- +

Dialect support
This example using jOOQ:

neg(val (2))

Translates to the following dialect specific expressions:

All dialects

4.7.10.20. PI

The PI() function produces the pi constant #, which is around 3.14159265359

SELECT pi (); create.select(pi()).fetch();

The result being

doccoooocoooooos +
| pi |
doccoooocoooooos +
| 3.14159265359 |
doccoooocoooooos +

Dialect support
This example using jOOQ:
pi ()
Translates to the following dialect specific expressions:

Access

3. 141592653589793

© 2009 - 2024 by Data Geekery™ GmbH. Page 273 /720

The jOOQ User Manual 4.7.10.27. POWER

ASE, Aurora MySQL, Aurora Postgres, ClickHouse, CockroachDB, Derby, DuckDB,
Exasol, Firebird, H2, HSQLDB, MariaDB, MemSQL, MySQL, Postgres, Redshift,
SQlLDataWarehouse, SQLServer, SQLite, Snowflake, Sybase, Trino, Vertica, YugabyteDB

pi ()
BigQuery, DB2, Hana, Informix, Oracle, Teradata

acos(-1)

4.7.10.21. POWER

The POWER() function calculates the power of two numbers.

SELECT power (2, 3); create. sel ect (power (2, 3)).fetch();

The result being

Dialect support
This example using jOOQ:

power (2, 3)

Translates to the following dialect specific expressions:

Access

(273

ASE, Aurora MySQL, Aurora Postgres, BigQuery, CockroachDB, DB2, DuckDB, Exasol,
Firebird, H2, HSQLDB, Hana, Informix, MariaDB, MemSQL, MySQL, Oracle, Postgres,

© 2009 - 2024 by Data Geekery™ GmbH. Page 274 /720

The jOOQ User Manual 4.7.10.22. RAD

Redshift, SQLDataWarehouse, SQLServer, SQLite, Sybase, Teradata, Trino, Vertica,
YugabyteDB

pover (2, 3)
ClickHouse

pow(2, 3)
Derby

exp((In(2) * 3))
Snowflake

/* UNSUPPORTED */

4.7.10.22. RAD

The RAD() function calculates the radian value from degrees (see also DEG).

SELECT rad(180); create. sel ect(rad(180)).fetch();

The result being

Foeemmemee e +
| rad |
Foeemmemee e +
| 3.14159265359 |
Foeemmemee e +

Dialect support
This example using jOOQ:

rad(180)

Translates to the following dialect specific expressions:

© 2009 - 2024 by Data Geekery™ GmbH. Page 275/720

The jOOQ User Manual 4.7.10.23. RAND

Access

((cdec(180) * 3.141592653589793) / 180)

ASE, Aurora MySQL, Aurora Postgres, ClickHouse, CockroachDB, DB2, Derby, DuckDB,
Exasol, H2, HSQLDB, Informix, MariaDB, MemSQL, MySQL, Postgres, Redshift,
SQLDataWarehouse, SQLServer, SQLite, Snowflake, Sybase, Teradata, Trino, Vertica,
YugabyteDB

radi ans(180)

BigQuery

((CAST(180 AS decimal) * acos(-1)) / 180)
Firebird

((CAST(180 AS nunmeric) * pi()) / 180)

Hana

((CAST(180 AS nuneric) * acos(-1)) / 180)

Oracle

((CAST(180 AS nunber) * acos(-1)) / 180)

4.7.10.23. RAND

The RAND() function produces a random number.

SELECT rand(); create.select(rand()).fetch();

The result being

© 2009 - 2024 by Data Geekery™ GmbH. Page 276 /720

The jOOQ User Manual

Dialect support
This example using jOOQ:

rand()

Translates to the following dialect specific expressions:

Access

rnd

4.7.10.23. RAND

ASE, Aurora MySQL, BigQuery, ClickHouse, DB2, Firebird, H2, HSQLDB, Hana, MariaDB,

MemSQL, MySQL, SQLDataWarehouse, SQLServer, Sybase, Trino

rand()

Aurora Postgres, CockroachDB, Derby, DuckDB, Exasol, Postgres, Redshift, SQLite,

Vertica, YugabyteDB

randony()

Oracle

DBVS_RANDOM RANDOM

Teradata

(CAST((random(-2147483648, 2147483647) + 2147483648) AS NUMERI C(38, 19)) / 4294967295)

© 2009 - 2024 by Data Geekery™ GmbH.

Page 277/720

The jOOQ User Manual 4.7.10.24. ROUND

Informix, Snowflake

/* UNSUPPORTED */

4.7.10.24. ROUND

The ROUND() function rounds a numeric value to its nearest integer, or optionally, to the nearest
decimal precision.

SELECT create. sel ect (
round(1.7), round(1.7),
round(-1.7); round(-1.7)).fetch();

The result being

Ho-omoo - Ho-omoo - +
| round | round |
Ho-omoo - Ho-omoo - +
| 2 2 |
Ho-omoo - Ho-omoo - +

Dialect support
This example using jOOQ:

round(1.7)

Translates to the following dialect specific expressions:

Access, Aurora MySQL, Aurora Postgres, BigQuery, ClickHouse, DB2, DuckDB, Exasol,
Firebird, HSQLDB, Hana, Informix, MariaDB, MemSQL, MySQL, Oracle, Postgres,
Redshift, SQLite, Snowflake, Teradata, Trino, Vertica, YugabyteDB

round(1. 7E0)

ASE, SQLDataWarehouse, SQLServer, Sybase

round(1. 7E0, 0)

© 2009 - 2024 by Data Geekery™ GmbH. Page 278 /720

The jOOQ User Manual 4.7.10.25. SIGN

CockroachDB

round(CAST(CAST(1. 7E0 AS doubl e precision) AS nuneric))

Derby

CASE
VHEN (1.7EO - floor(1.7E0)) < 5E-1 THEN fl oor (1. 7E0)
ELSE cei | (1. 7E0)

END

H2

round(CAST(1. 7E0 AS doubl e))

4.7.10.25. SIGN

The SIGN() function produces the sign of a numeric value, being any value of -1, 0, 1

SELECT sign(-5), sign(0), sign(3); create.sel ect(sign(-5), sign(0), sign(3)).fetch();

The result being

Hommm o - Hommm o - Hommm o - +
| sign | sign | sign |
Hommm o - Hommm o - Hommm o - +
| 1] 0 1]
B Lk Hommm o - +

Dialect support
This example using jOO0Q:

sign(3)

Translates to the following dialect specific expressions:

Access

sgn(3)

© 2009 - 2024 by Data Geekery™ GmbH. Page 279/720

The jOOQ User Manual 4.7.10.26. SIN

ASE, Aurora MySQL, Aurora Postgres, BigQuery, ClickHouse, CockroachDB, DB2,

Derby, DuckDB, Exasol, Firebird, H2, HSQLDB, Hana, Informix, MariaDB, MemSQL,
MySQL, Oracle, Postgres, Redshift, SQLDataWarehouse, SQLServer, Snowflake, Sybase,
Teradata, Trino, Vertica, YugabyteDB

sign(3)

SQLite

CASE
WHEN 3 > 0 THEN 1
WHEN 3 < 0 THEN -1
WHEN 3 = 0 THEN O
END

4.7.10.26. SIN

The SIN() function calculates the sine of a numeric value.

SELECT sin(3.14159265359) ; create. sel ect (sin(3.14159265359)).fetch();

The result being

Dialect support
This example using jOOQ:
sin(3.14159265359)
Translates to the following dialect specific expressions:

ASE, Access, Aurora MySQL, Aurora Postgres, BigQuery, ClickHouse, DB2, Derby,
DuckDB, Exasol, Firebird, HSQLDB, Hana, Informix, MariaDB, MemSQL, MySQL, Oracle,
Postgres, Redshift, SQLDataWarehouse, SQLServer, SQLite, Snowflake, Sybase,
Teradata, Trino, Vertica, YugabyteDB

si n(3.14159265359E0)

© 2009 - 2024 by Data Geekery™ GmbH. Page 280/720

The jOOQ User Manual 4.7.10.27. SINH

CockroachDB

si n(CAST(3. 14159265359E0 AS doubl e preci sion))

H2

si n(CAST(3. 14159265359E0 AS doubl €))

4.7.10.27. SINH

The SINH() function calculates the hyperbolic sine of a numeric value.

SELECT sinh(1); create.select(sinh(1)).fetch();

The result being

B L +
| sinh |
B L +
| 1.17520119364 |
B L +

Dialect support
This example using jOOQ:
sinh(1)

Translates to the following dialect specific expressions:

ASE, Access, Aurora MySQL, Aurora Postgres, DuckDB, HSQLDB, MariaDB, MemSQL,
MySQL, Postgres, Redshift, SQLDataWarehouse, SQLServer, Sybase, Trino, Vertica,
YugabyteDB

(Cexp((1 * 2)) - 1) / (exp(1) * 2))

BigQuery, ClickHouse, DB2, Derby, Exasol, Firebird, H2, Hana, Informix, Oracle, SQLite,
Snowflake, Teradata

sinh(1)

© 2009 - 2024 by Data Geekery™ GmbH. Page 281 /720

The jOOQ User Manual 4.7.10.28. SQRT

CockroachDB

((exp(CAST((1 * 2) AS nuneric)) - 1) / (exp(CAST(1 AS numeric)) * 2))

4.7.10.28. SQRT

The SQRT() function calculates the square root of a numeric value.

SELECT sqrt(4); create.select(sqrt(4)).fetch();

The result being

Dialect support
This example using jOOQ:

sqrt (4)

Translates to the following dialect specific expressions:

Access

sqr(4)

ASE, Aurora MySQL, Aurora Postgres, BigQuery, ClickHouse, DB2, Derby, DuckDB,
Exasol, Firebird, H2, HSQLDB, Hana, Informix, MariaDB, MemSQL, MySQL, Oracle,
Postgres, Redshift, SQLDataWarehouse, SQLServer, SQLite, Snowflake, Sybase,
Teradata, Trino, Vertica, YugabyteDB

sqrt (4)

CockroachDB

sqrt (CAST(4 AS nuneric))

© 2009 - 2024 by Data Geekery™ GmbH. Page 282 /720

The jOOQ User Manual 4.7.10.29. TAN

4.7.10.29. TAN

The TAN() function calculates the tangent of a numeric value.

SELECT tan(3.14159265359) ; create. sel ect (tan(3.14159265359)).fetch();

The result being

deccoco +
| tan |
deccoco +
| 0]
deccoco +

Dialect support
This example using jO0Q:

tan(3. 14159265359)

Translates to the following dialect specific expressions:

ASE, Access, Aurora MySQL, Aurora Postgres, BigQuery, ClickHouse, DB2, Derby,
DuckDB, Exasol, Firebird, HSQLDB, Hana, Informix, MariaDB, MemSQL, MySQL, Oracle,
Postgres, Redshift, SQLDataWarehouse, SQLServer, SQLite, Sybase, Teradata, Trino,
Vertica, YugabyteDB

tan(3. 14159265359E0)

CockroachDB

tan(CAST(3. 14159265359E0 AS doubl e preci sion))

H2

tan(CAST(3. 14159265359E0 AS doubl e))

Snowflake

/* UNSUPPORTED */

© 2009 - 2024 by Data Geekery™ GmbH. Page 283 /720

The jOOQ User Manual 4.7.10.30. TANH

4.7.10.30. TANH

The TANH() function calculates the hyperbolic tangent of a numeric value.

SELECT tanh(1); create.select(tanh(1)).fetch();

The result being

dcccccccocccoocoo +
| tanh |
dcccccccocccoocoo +
| 0.76159415595 |
dcccccccocccoocoo +

Dialect support
This example using jO0Q:

tanh(1)

Translates to the following dialect specific expressions:

ASE, Access, Aurora MySQL, Aurora Postgres, DuckDB, HSQLDB, MariaDB, MemSQL,
MySQL, Postgres, Redshift, SQLDataWarehouse, SQLServer, Sybase, Vertica,
YugabyteDB

(Cexp((1 * 2)) - 1) / (exp((1* 2)) + 1))

BigQuery, ClickHouse, DB2, Derby, Exasol, Firebird, H2, Hana, Informix, Oracle, SQLite,
Snowflake, Teradata, Trino

tanh(1)

CockroachDB

((exp(CAST((1 * 2) AS nuneric)) - 1) / (exp(CAST((1 * 2) AS nuneric)) + 1))

© 2009 - 2024 by Data Geekery™ GmbH. Page 284 /720

The jOOQ User Manual 4.7.10.31. TRUNC

4.7.10.31. TRUNC

The TRUNC() function rounds a numeric value to its nearest integer (or optionally, to a specific decimal
precision) that is closer to zero.

SELECT create. sel ect(
trunc(1.7), trunc(1.7),
trunc(-1.7); trunc(-1.7)).fetch();

The result being

Hommmmm Hommmmm +
| trunc | trunc |
Hommmmm Hommmmm +
| 1 1]
Hommmmm Hommmmm +

Dialect support
This example using jO0Q:

trunc(l.7)

Translates to the following dialect specific expressions:

ASE

CASE
WHEN sign(1.7E0) >= O THEN (floor((1.7E0 * 1)) / 1)
ELSE (ceiling((1.7E0 * 1)) / 1)

END

Aurora MySQL, MariaDB, MemSQL, MySQL

truncate(1. 7E0, 0)

Aurora Postgres, Postgres

CAST(trunc(
CAST(1. 7E0 AS nuneric),
0

) AS doubl e precision)

© 2009 - 2024 by Data Geekery™ GmbH. Page 285/720

The jOOQ User Manual 4.7.10.31. TRUNC

DB2, Firebird, HSQLDB, Informix, Oracle, Teradata, Vertica

trunc(1. 7E0, 0)

Derby

CASE
VHEN si gn(1.7E0) >= 0 THEN (floor((1.7E0 * 1)) / 1)
ELSE (ceil ((1.7E0 * 1)) / 1)

END

H2

truncat e(CAST(1. 7E0O AS double), 0)

Hana

round(1. 7E0, 0, round_down)

SQLDataWarehouse, SQLServer

round(1. 7E0, 0, 1)

Sybase

truncnum(1. 7E0, 0)

Access, BigQuery, ClickHouse, CockroachDB, DuckDB, Exasol, Redshift, SQLite,
Snowflake, Trino, YugabyteDB

/* UNSUPPORTED */

© 2009 - 2024 by Data Geekery™ GmbH. Page 286 /720

The jOOQ User Manual 4.7.10.32. WIDTH_BUCKET

4.7.10.32. WIDTH_BUCKET

The WIDTH_BUCKET() function divides a numeric range into equally sized buckets and calculates which
bucket number a value is in.

SELECT create. sel ect(
wi dt h_bucket (0 , 0, 100, 10), wi dt hBucket (val (0) , 0, 100, 10),
wi dt h_bucket (15, 0, 100, 10), wi dt hBucket (val (15), 0, 100, 10),
wi dt h_bucket (99, 0, 100, 10); wi dt hBucket (val (99), 0, 100, 10)).fetch();

The result being

B L B L B L +
| width_bucket | wi dth_bucket | width_bucket |
B L B L B L +
| 1 2| 10 |
B L B L B L +

Dialect support
This example using jO0Q:
wi dt hBucket (val (15), 0, 100, 10)

Translates to the following dialect specific expressions:

Access

SWTCH(15 < 0, 0, 15 >= 100, (10 + 1), TRUE ((cdec((((15 - 0) * 10) / (100 - 0))) - ((((15 - 0) * 10) / (100 - 0)) < cdec((((15 - 0)
*10) / (100 - 0))))) + 1))

ASE, Aurora MySQL, BigQuery, DB2, Derby, DuckDB, Exasol, Firebird, H2, HSQLDB, Hana,
Informix, MariaDB, MemSQL, MySQL, Redshift, SQLDataWarehouse, SQLServer, SQLite,
Sybase, Vertica

CASE

VWHEN 15 < 0 THEN 0

VHEN 15 >= 100 THEN (10 + 1)

ELSE (floor((((15 - 0) * 10) / (100 - 0))) + 1)
END

Aurora Postgres, ClickHouse, CockroachDB, Oracle, Postgres, Snowflake, Teradata,
Trino, YugabyteDB

wi dt h_bucket (15, 0, 100, 10)

© 2009 - 2024 by Data Geekery™ GmbH. Page 287 /720

The jOOQ User Manual 4.7.11. Bitwise functions

4.7.17. Bitwise functions

Most databases only support a few bitwise operations, while others ship with the full set of operators.
jOOQ's API includes most bitwise operations as listed below. In order to avoid ambiguities with
conditional operators, most bitwise functions are prefixed with "bit"

4.7 11.1. BIT_AND

The BIT_AND() function produces the bitwise AND operation.

SELECT bit_and(5, 4); create. sel ect(bitAnd(5, 4)).fetch();

The result being

Dialect support
This example using jO0Q:

bi t And(5, 4)

Translates to the following dialect specific expressions:

ASE, Aurora MySQL, Aurora Postgres, BigQuery, CockroachDB, DuckDB, MariaDB,
MemSQL, MySQL, Postgres, Redshift, SQLDataWarehouse, SQLServer, SQLite, Sybase,
Vertica, YugabyteDB

(5 & 4)

ClickHouse

bi t And(5, 4)

© 2009 - 2024 by Data Geekery™ GmbH. Page 288 /720

The jOOQ User Manual 4.7.11.2. BIT_COUNT

DB2, H2, HSQLDB, Hana, Informix, Oracle, Snowflake, Teradata
bitand(5, 4)
Exasol
bit_and(5, 4)
Firebird
bin_and(5, 4)
Trino
bi twi se_and(5, 4)

Access, Derby

/* UNSUPPORTED */

4.7.11.2. BIT_COUNT

The BIT_COUNT() function counts the number of bits in a value.

SELECT bit_count(5); create. sel ect(bitCount(5)).fetch();

The result being

L +
| bit_count |
B +
| 2
B +

Dialect support

This example using jOOQ:

© 2009 - 2024 by Data Geekery™ GmbH. Page 289 /720

The jOOQ User Manual 4.7.11.2. BIT_COUNT

bi t Count ((byte) 5)

Translates to the following dialect specific expressions:

Aurora MySQL, DuckDB, MariaDB, MemSQL, MySQL, SQLServer

bi t _count (5)

Aurora Postgres, Postgres, Redshift, SQLite, Vertica, YugabyteDB

CAST(((5 & 1) + ((5 &2) >> 1) + ((5&4) > 2) + ((5&8) > 3) + ((5&16) > 4) + ((5 &32) > 5) + ((5 &64) >> 6) + ((5 & -128)
>> 7)) AS int)

BigQuery

CAST(((5 & 1) + ((5 &2) > 1) + ((5 &4) > 2) + ((5&8) > 3) + ((5 & 16) >> 4) + ((5 &32) > 5) + ((5 &64) >> 6) + ((5 & -128)
>> 7)) AS int64)

ClickHouse

bi t Count (5)

CockroachDB

CAST(((5 & 1) + ((5 &2) >> 1) + ((5&4) > 2) + ((5&8) > 3) + ((5&16) > 4) + ((5 &32) > 5) + ((5&64) > 6) + ((5 & -128)
>> 7)) AS int4)

© 2009 - 2024 by Data Geekery™ GmbH. Page 290/ 720

The jOOQ User Manual 4.7.11.2. BIT_COUNT

Firebird

CAST((bi n_and(5, 1) + bin_shr(
bi n_and(5, 2),
1

) + bin_shr(
bi n_and(5, 4),
2

) + bin_shr(
bi n_and(5, 8),
3

) + bin_shr(
bi n_and(5, 16),
4

) + bin_shr(
bi n_and(5, 32),
5

) + bin_shr(
bi n_and(5, 64),
6

) + bin_shr(
bi n_and(5, -128),
7

)) AS integer)

H2, HSQLDB

CAST((bitand(5, 1) + (bitand(5, 2) / 2) + (bitand(5, 4) / 4) + (bitand(5, 8) / 8) + (bitand(5, 16) / 16) + (bitand(5, 32) / 32) +
(bitand(5, 64) / 64) + (bitand(5, -128) / -128)) AS int)

Hana

bi t count (5)

Informix

CAST((bitand(5, 1) + (bitand(5, 2) / 2) + (bitand(5, 4) / 4) + (bitand(5, 8) / 8) + (bitand(5, 16) / 16) + (bitand(5, 32) / 32) +
(bitand(5, 64) / 64) + (bitand(5, -128) / -128)) AS integer)

Oracle

CAST((bitand(5, 1) + (bitand(5, 2) / 2) + (bitand(5, 4) / 4) + (bitand(5, 8) / 8) + (bitand(5, 16) / 16) + (bitand(5, 32) / 32) +
(bitand(5, 64) / 64) + (bitand(5, -128) / -128)) AS nunber(10))

© 2009 - 2024 by Data Geekery™ GmbH. Page 291 /720

The jOOQ User Manual

Snowflake

CAST((bitand(5, 1) + bitshiftright(

bi tand(5, 2),
1

) + bitshiftright(
bi tand(5, 4),
2

) + bitshiftright(
bi tand(5, 8),
3

) + bitshiftright(
bi tand(5, 16),
4

) + bitshiftright(
bi tand(5, 32),
5|

) + bitshiftright(
bi tand(5, 64),
6

) + bitshiftright(
bi tand(5, -128),
7

)) AS nunber (10))

SQLDataWarehouse, Sybase

4.7.11.2. BIT_COUNT

CAST(((5 & 1) + ((5 &2) / 2) + ((5&4) [4) + ((5&8) / 8) + ((5&16) / 16) + ((5 & 32) / 32) + ((5 & 64) / 64) + ((5 & -128) /

-128)) AS int)

Teradata

countset (5, 1)

Trino

CAST((bi twi se_and(5, 1) + bitw se_right_shift(

bi twi se_and(5, 2),
1

) + bitwise_right_shift(
bi twi se_and(5, 4),
2

) + bitwise_right_shift(
bi twi se_and(5, 8),
&

) + bitwise_right_shift(
bi twi se_and(5, 16),
4

) + bitwise_right_shift(
bi tw se_and(5, 32),
5

) + bitwise_right_shift(
bi tw se_and(5, 64),
6

) + bitwise_right_shift(
bi twi se_and(5, -128),
7

)) ASint)

ASE, Access, DB2, Derby, Exasol

/* UNSUPPORTED */

© 2009 - 2024 by Data Geekery™ GmbH.

Page 292/720

The jOOQ User Manual 4.7.11.3. BIT_NAND

4.7.11.3. BIT_NAND

The BIT_NAND() function produces the bitwise NAND operation.

SELECT bit_nand(5, 4); create. sel ect (bitNand(5, 4)).fetch();

The result being

decccocccoos +
| bit_nand |
decccocccoos +
| -5 |
decccocccoos +

Dialect support
This example using jO0Q:

bi t Nand(5, 4)

Translates to the following dialect specific expressions:

ASE, Aurora MySQL, Aurora Postgres, BigQuery, CockroachDB, DuckDB, MariaDB,
MemSQL, MySQL, Postgres, Redshift, SQLDataWarehouse, SQLServer, SQLite, Sybase,
Vertica, YugabyteDB

~((5 & 4))

ClickHouse

bi t Not (bi t And(5, 4))

DB2, H2, Hana, Informix, Snowflake, Teradata

bi t not (bi tand(5, 4))

Exasol

bit _not (bit_and(5, 4))

© 2009 - 2024 by Data Geekery™ GmbH. Page 293 /720

The jOOQ User Manual 4.7.11.4. BIT_NOR

Firebird

bi n_not (bi n_and(5, 4))
HSQLDB, Oracle

((0 - bitand(5, 4)) - 1)
Trino

bi twi se_not (bi twi se_and(5, 4))

Access, Derby

/* UNSUPPORTED */

4.7.11.4.BIT_NOR

The BIT_NOR() function produces the bitwise NOR operation.

SELECT bit_nor(5, 2); create. sel ect(bitNor(5, 2)).fetch();

The result being

dcccocooccoo +
| bit_nor |
dcccocooccoo +
| -8 |
dcccocooccoo +

Dialect support
This example using jOOQ:

bi t Nor (5, 2)

Translates to the following dialect specific expressions:

© 2009 - 2024 by Data Geekery™ GmbH. Page 294 /720

The jOOQ User Manual 4.7.11.4.BIT_NOR

ASE, Aurora MySQL, Aurora Postgres, BigQuery, CockroachDB, DuckDB, MariaDB,
MemSQL, MySQL, Postgres, Redshift, SQLDataWarehouse, SQLServer, SQLite, Sybase,
Vertica, YugabyteDB

~((51 2))

ClickHouse

bi t Not (bi tOr (5, 2))

DB2, H2, Hana, Informix, Snowflake, Teradata

bi t not (bitor (5, 2))

Exasol

bit_not (bit_or(5, 2))

Firebird

bi n_not (bin_or (5, 2))

HSQLDB

((0 - bitor(5, 2)) - 1)

Oracle

((0 - ((5+2) - bitand(5, 2))) - 1)

Trino

bi twi se_not (bi twi se_or (5, 2))

© 2009 - 2024 by Data Geekery™ GmbH. Page 295/720

The jOOQ User Manual 4.7.11.5. BIT_NOT

Access, Derby

/* UNSUPPORTED */

4.7.11.5. BIT_NOT

The BIT_NOT() function inverts the bits in a number, producing the 2's complement of a signed number.

SELECT bit_not(5); create. sel ect(bitNot(5)).fetch();

The result being

Dialect support
This example using jOOQ:

bi t Not (5)

Translates to the following dialect specific expressions:

ASE, Aurora MySQL, Aurora Postgres, BigQuery, CockroachDB, DuckDB, MariaDB,
MemSQL, MySQL, Postgres, Redshift, SQLDataWarehouse, SQLServer, SQLite, Sybase,
Vertica, YugabyteDB

ClickHouse

bi t Not (5)

DB2, H2, Hana, Informix, Snowflake, Teradata

bi t not (5)

© 2009 - 2024 by Data Geekery™ GmbH. Page 296 /720

The jOOQ User Manual

Exasol

bi t _not (5)

Firebird

bi n_not (5)

HSQLDB, Oracle

((0-5) -1

Trino

bi t wi se_not (5)

Access, Derby

/* UNSUPPORTED */

4.7.11.6. BIT_OR

The BIT_OR() function produces the bitwise OR operation.

SELECT bit_or(5, 2);

The result being

Fomeenea +
| bit_or |
Fomaeneas +
| 7
Fomaeneas +

Dialect support

This example using jOOQ:

© 2009 - 2024 by Data Geekery™ GmbH.

create.select(bitOr (5, 2)).fetch();

4.7.11.6.BIT_OR

Page 297/720

The jOOQ User Manual 47.11.6.BIT_OR

bitOr(5, 2)

Translates to the following dialect specific expressions:

ASE, Aurora MySQL, Aurora Postgres, BigQuery, CockroachDB, DuckDB, MariaDB,
MemSQL, MySQL, Postgres, Redshift, SQLDataWarehouse, SQLServer, SQLite, Sybase,
Vertica, YugabyteDB

(512

ClickHouse

bitar(5, 2)

DB2, H2, HSQLDB, Hana, Informix, Snowflake, Teradata

bitor (5, 2)

Exasol

bit_or (5, 2)

Firebird

bin_or (5, 2)

Oracle

((5 +2) - bitand(5, 2))

Trino

bi twi se_or (5, 2)

© 2009 - 2024 by Data Geekery™ GmbH. Page 298 /720

The jOOQ User Manual 4.7.11.7. BIT_XNOR

Access, Derby

/* UNSUPPORTED */

4.7.11.7. BIT_XNOR

The BIT_XNOR() function produces the bitwise XNOR (exclusive NOR) operation.

SELECT bit_xnor (5, 3); create. sel ect (bitXNor(5, 3)).fetch();

The result being

dicccccocooo +
| bit_xnor |
dicccccocooo +
| -7
dicccccocooo +

Dialect support
This example using jOOQ:

bi t XNor (5, 3)

Translates to the following dialect specific expressions:

ASE, Aurora MySQL, BigQuery, MariaDB, MemSQL, MySQL, SQLDataWarehouse,
SQLServer, Sybase

~((5 " 3))

Aurora Postgres, CockroachDB, Postgres, Redshift, Vertica, YugabyteDB

~((5 # 3))

ClickHouse

bi t Not (bi t Xor (5, 3))

© 2009 - 2024 by Data Geekery™ GmbH. Page 299 /720

The jOOQ User Manual

DB2, Hana, Informix, Snowflake, Teradata

bi t not (bi t xor (5, 3))

DuckDB

~xor (5, 3)

Exasol

bit _not (bit_xor (5, 3))

Firebird

bi n_not (bi n_xor (5, 3))

H2

bi t xnor (5, 3)

HSQLDB

((0 - bitxor(5, 3)) - 1)

Oracle

((0 - bitand(
((0 - bitand(5, 3)) - 1),
((5 + 3) - bitand(5, 3))

)) - 1)

SQLite

~((~((5 &3)) &(51] 3)))

© 2009 - 2024 by Data Geekery™ GmbH.

4.7.11.7. BIT_ XNOR

Page 300/ 720

The jOOQ User Manual 4.7.11.8. BIT_XOR

Trino

bi twi se_not (bitw se_xor (5, 3))

Access, Derby

/* UNSUPPORTED */

4.7.11.8. BIT_XOR

The BIT_XOR() function produces the bitwise XOR (exclusive OR) operation.

SELECT bit_xor (5, 3); create. sel ect (bitXor(5, 3)).fetch();

The result being

L +
| bit_xor |
L +
| 6 |
L +

Dialect support
This example using jOOQ:

bi t Xor (5, 3)

Translates to the following dialect specific expressions:

ASE, Aurora MySQL, BigQuery, MariaDB, MemSQL, MySQL, SQLDataWarehouse,
SQLServer, Sybase

(573

Aurora Postgres, CockroachDB, Postgres, Redshift, Vertica, YugabyteDB

(5 # 3)

© 2009 - 2024 by Data Geekery™ GmbH. Page 301 /720

The jOOQ User Manual

ClickHouse

bi t Xor (5, 3)

DB2, H2, HSQLDB, Hana, Informix, Snowflake, Teradata

bi t xor (5, 3)

DuckDB

xor (5, 3)

Exasol

bit_xor (5, 3)

Firebird

bi n_xor (5, 3)

Oracle

bi t and(
((0 - bitand(5, 3)) - 1),
((5 + 3) - bitand(5, 3))
)

SQLite

(~((5 &3)) & (5] 3))

Trino

bi t wi se_xor (5, 3)

© 2009 - 2024 by Data Geekery™ GmbH.

4.7.11.8. BIT_XOR

Page 302 /720

The jOOQ User Manual 4.7.11.9.SHL

Access, Derby

/* UNSUPPORTED */

4.7.11.9. SHL

The SHL() function produces the bitwise shift left operation.

SELECT shl (1, 4); create.select(shl (1, 4)).fetch();

The result being

E SR +
| shl |
E SR +
|16 |
E SR +

Dialect support
This example using jOOQ:

shi (1, 4)

Translates to the following dialect specific expressions:

ASE, HSQLDB, SQLDataWarehouse, Sybase

(1 * CAST(power(2, 4) ASint))

Aurora MySQL, Aurora Postgres, BigQuery, CockroachDB, DuckDB, MariaDB, MemSQL,
MySQL, Postgres, Redshift, SQLServer, SQLite, Vertica, YugabyteDB

(1 << 4)

ClickHouse

bitShiftleft(1, 4)

© 2009 - 2024 by Data Geekery™ GmbH. Page 303 /720

The jOOQ User Manual 4.7.11.9. SHL

DB2, Informix

(1 * CAST(power (2, 4) AS integer))

Exasol

bit_Ishift(1l, 4)

Firebird

bi n_shl (1, 4)

H2

I'shift(1l, 4)

Oracle

(1 * CAST(power(2, 4) AS nunber(10)))

Snowflake

bitshiftleft(1, 4)

Teradata

shiftleft(1, 4)

Trino

bitwi se_left_shift(1l, 4)

© 2009 - 2024 by Data Geekery™ GmbH. Page 304 /720

The jOOQ User Manual 4.7.11.10. SHR

Access, Derby, Hana

/* UNSUPPORTED */

4.7.11.10. SHR

The SR() function produces the bitwise shift right operation.

SELECT shr (16, 4); create. sel ect(shr(16, 4)).fetch();

The result being

H----- +
| shr |
H----- +
|1
H----- +

Dialect support
This example using jOOQ:

shr (16, 4)

Translates to the following dialect specific expressions:

ASE, HSQLDB, SQLDataWarehouse, Sybase

(16 / CAST(power (2, 4) ASint))

Aurora MySQL, Aurora Postgres, BigQuery, CockroachDB, DuckDB, MariaDB, MemSQL,
MySQL, Postgres, Redshift, SQLServer, SQLite, Vertica, YugabyteDB

(16 >> 4)

ClickHouse

bi t Shi f t Ri ght (16, 4)

© 2009 - 2024 by Data Geekery™ GmbH. Page 305/720

The jOOQ User Manual 4.7.11.10. SHR

DB2, Informix

(16 / CAST(power(2, 4) AS integer))

Exasol

bit_rshift(16, 4)

Firebird

bi n_shr (16, 4)

H2

rshift(16, 4)

Oracle

(16 / CAST(power (2, 4) AS nunber(10)))

Snowflake

bi tshiftright(16, 4)

Teradata

shiftright(16, 4)

Trino

bi twi se_right_shift(16, 4)

© 2009 - 2024 by Data Geekery™ GmbH. Page 306/720

The jOOQ User Manual 4.7.12. String functions

Access, Derby, Hana

/* UNSUPPORTED */

4.7.12. String functions

String formatting can be done efficiently in the database before returning results to your Java
application. As discussed in the chapter about SOL dialects string functions (as any function type) are
mostly emulated in your database, in case they are not natively supported.

4.7.12.1. ASCII

The ASCII() function calculates the ASCII code of a single character.

SELECT ascii('A); create.select(ascii("A")).fetch();

The result being

Dialect support
This example using jOOQ:
ascii ("A")
Translates to the following dialect specific expressions:

Access

asc('A)

ASE, Aurora MySQL, Aurora Postgres, BigQuery, ClickHouse, CockroachDB, DB2,
DuckDB, Exasol, H2, HSQLDB, Hana, Informix, MariaDB, MemSQL, MySQL, Oracle,

© 2009 - 2024 by Data Geekery™ GmbH. Page 307 /720

The jOOQ User Manual 4.7.12.2. BIT_LENGTH

Postgres, SQLDataWarehouse, SQLServer, Snowflake, Sybase, Teradata, Vertica,
YugabyteDB

ascii('A)
Firebird
ascii_val (" A)

Derby, Redshift, SQLite, Trino

/* UNSUPPORTED */

4.7.12.2.BIT_LENGTH

The BIT_LENGTHY() function calculates the length of a given string in bits.

SELECT bit_length('hello"); create. sel ect (bitLength("hello")).fetch();

The result being

dfcccccooccooo +
| bit_length |
dfcccccooccooo +
| 40 |
dfcccccooccooo +

Dialect support
This example using jOO0Q:

bi t Lengt h("hel | 0")

Translates to the following dialect specific expressions:

Access, SQLDataWarehouse, SQLServer

(8 * len('hello"))

© 2009 - 2024 by Data Geekery™ GmbH. Page 308 /720

The jOOQ User Manual 4.7.12.3. CONCAT (| | operator)

ASE

(8 * datalength('hello'))

Aurora MySQL, Aurora Postgres, CockroachDB, DuckDB, Exasol, Firebird, H2, HSQLDB,
Informix, MariaDB, MySQL, Postgres, Redshift, Snowflake, Vertica, YugabyteDB

bit_length('hello")

BigQuery

(8 * byte_length('hello'))
ClickHouse, DB2, Derby, Hana, MemSQL, SQLite, Sybase, Teradata, Trino
(8 * length('hello"))

Oracle

(8 * lengthb('hello'))

4.7.12.3. CONCAT (|| operator)

The CONCAT() function concatenates several strings

SELECT concat (' hello', ' ', "world'); create. sel ect(concat("hello", " ", "world")).fetch();

The result being

Fomm e +
| concat |
Fomm e +
| hello world |
Fomm e +

Dialect support

This example using jOOQ:

© 2009 - 2024 by Data Geekery™ GmbH. Page 309 /720

The jOOQ User Manual 47124, LEFT

concat ("hello", " ", "world")

Translates to the following dialect specific expressions:

Access

("hello" &" ")

ASE, Aurora Postgres, BigQuery, ClickHouse, CockroachDB, DB2, Derby, DuckDB, Exasol,
Firebird, H2, HSQLDB, Hana, Informix, Oracle, Postgres, Redshift, SQLite, Snowflake,
Sybase, Teradata, Trino, Vertica, YugabyteDB

(Chello || * ') [] “world)

Aurora MySQL, MariaDB, MemSQL, MySQL

concat (' hello', * ', "world")

SQLDataWarehouse, SQLServer

(("hello" + ' ") + "world")

47124 LEFT

The LEFT() function calculates the substring of a given string starting from the left end. See also
SUBSTRING, RIGHT

SELECT left('hello world', 5); create.select(left("hello world", 5)).fetch();

The result being

decccocoo +
| left |
decccocoo +
| hello |
decccocoo +

Dialect support

This example using jO0Q:

© 2009 - 2024 by Data Geekery™ GmbH. Page 310/720

The jOOQ User Manual 4.7.12.5. LENGTH

left("hello world", 5)

Translates to the following dialect specific expressions:

ASE, Access, Aurora MySQL, Aurora Postgres, BigQuery, ClickHouse, CockroachDB,
DB2, DuckDB, Exasol, Firebird, H2, HSQLDB, Hana, Informix, MariaDB, MemSQL, MySQL,
Postgres, Redshift, SQLDataWarehouse, SQLServer, Snowflake, Sybase, Teradata,
Vertica, YugabyteDB

left('hello world', 5)

Derby, Oracle, SQLite

substr('hello world, 1, 5)

Trino

substring('hello world , 1, 5)

4.7.12.5. LENGTH

The LENGTHY() function calculates the length of a given string.

SELECT | ength(' hello'); create.sel ect(length("hello")).fetch();

The result being

Dialect support
This example using jOOQ:

| engt h("hel | 0")

Translates to the following dialect specific expressions:

© 2009 - 2024 by Data Geekery™ GmbH. Page 311 /720

The jOOQ User Manual 4.7.12.6. LOWER

Access, SQLDataWarehouse, SQLServer

len(' hello")

ASE, Aurora MySQL, Aurora Postgres, BigQuery, CockroachDB, Exasol, Firebird, H2,
HSQLDB, Informix, MariaDB, MemSQL, MySQL, Postgres, Redshift, Vertica, YugabyteDB

char _l ength(' hello")

ClickHouse, DB2, Derby, DuckDB, Hana, Oracle, SQLite, Snowflake, Sybase, Teradata,
Trino

length(' hello")

4.7.12.6. LOWER

The LOWER() function transforms a string into lower case.

SELECT | ower (' HELLO) ; create. sel ect (| ower ("HELLO'")).fetch();

The result being

decccocoo +
| lower |
decccocoo +
| hello |
decccocoo +

Dialect support
This example using jO0Q:

| over (" HELLO')

Translates to the following dialect specific expressions:

Access

| case(' HELLO)

© 2009 - 2024 by Data Geekery™ GmbH. Page 312/720

The jOOQ User Manual 4.7.12.7. LPAD

ASE, Aurora MySQL, Aurora Postgres, BigQuery, ClickHouse, CockroachDB, DB2, Derby,
DuckDB, Exasol, Firebird, H2, HSQLDB, Hana, Informix, MariaDB, MemSQL, MySQL,
Oracle, Postgres, Redshift, SQLDataWarehouse, SQLServer, SQLite, Snowflake, Sybase,
Teradata, Trino, Vertica, YugabyteDB

| ower (" HELLO)

4.7.12.7. LPAD

The LPAD() pads a string at the left end. See also RPAD.

SELECT | pad(' hello', 10, '."); create. sel ect (I pad(val (“hello"), 10, '.")).fetch();

The result being

E +
| I'pad |
E +
| hello |
E +

Dialect support
This example using jOOQ:

| pad(val ("hello"), 10, '.")

Translates to the following dialect specific expressions:

Access

(replace(space(10 - len('hello")), " ', ".') & 'hello")

ASE

(replicate(

(ELOY - char_length(' hello'))
) || "hello")

© 2009 - 2024 by Data Geekery™ GmbH. Page 313/720

The jOOQ User Manual 4.7.12.8. LTRIM

Aurora MySQL, Aurora Postgres, CockroachDB, DB2, Firebird, H2, HSQLDB, Hana,
Informix, MariaDB, MemSQL, MySQL, Oracle, Postgres, Teradata, Vertica

| pad(' hello', 10, '.")

SQLDataWarehouse, SQLServer

(replicate(

(10 - len(' hello'))
) + "hello")

SQLite
substr (“repl ace" (hex(zerobl ob(10)), *00', '."), 1, 10 - length('hello")) || "hello

Sybase

(repeat (

(10 - length(" hell0o'))
) Il 'hello)

BigQuery, ClickHouse, Derby, DuckDB, Exasol, Redshift, Snowflake, Trino, YugabyteDB

/* UNSUPPORTED */

4.7.12.8. LTRIM

The LTRIM() function trims a string from the left end, stripping it of whitespace. See also RTRIM and TRIM.

SELECT Itrin(* hello "); create.select(ltrim(" hello ")).fetch();

The result being

© 2009 - 2024 by Data Geekery™ GmbH. Page 314 /720

The jOOQ User Manual 4.7.12.9. MD5

Dialect support
This example using jOOQ:

Itrim(" hello ")

Translates to the following dialect specific expressions:

ASE, Access, Aurora MySQL, Aurora Postgres, BigQuery, ClickHouse, CockroachDB,
DB2, Derby, DuckDB, Exasol, H2, HSQLDB, Hana, Informix, MariaDB, MemSQL, MySQL,
Oracle, Postgres, Redshift, SQLDataWarehouse, SQLServer, SQLite, Snowflake, Sybase,
Teradata, Trino, Vertica, YugabyteDB

Itrim(* hello ")

Firebird

trin(LEADING FROM' hello ')

4.7.12.9. MD5

The MD5() function calculates the MD5 hash of a given string.

SELECT nd5(" hello'); create. sel ect(nd5("hello")).fetch();

The result being

S +
| md5 |
S +
| 5d41402abc4b2a76b9719d911017c592 |
S +

Dialect support
This example using jOOQ:

md5(" hel | o")

Translates to the following dialect specific expressions:

© 2009 - 2024 by Data Geekery™ GmbH. Page 315/720

The jOOQ User Manual 4.7.12.10. MID

Aurora MySQL, Aurora Postgres, BigQuery, CockroachDB, DuckDB, MariaDB, MemSQL,
MySQL, Postgres, Snowflake, Vertica, YugabyteDB

nd5(" hel 1 0')

Exasol

hash_nd5(" hel | o')

Oracle

| ower (st andard_hash(' hel l o', ' MD5'))

SQLDataWarehouse

| ower (convert (VARCHAR(32), hashbytes(' MD5', CAST('hello' AS varchar(8000))), 2))

SQLServer

| ower (convert (VARCHAR(32), hashbytes(' MD5', CAST('hello' AS varchar(max))), 2))

ASE, Access, ClickHouse, DB2, Derby, Firebird, H2, HSQLDB, Hana, Informix, Redshift,
SQLite, Sybase, Teradata, Trino

/* UNSUPPORTED */

4.7.12.10. MID

The MID() function is an alias for the substring function

471217 OCTET_LENGTH

The OCTET_LENGTH() function calculates the length of a given string in bytes.

© 2009 - 2024 by Data Geekery™ GmbH. Page 316/720

The jOOQ User Manual 4.7.12.12. POSITION

SELECT octet_|length(' hello"); create. sel ect (octetLength("hello")).fetch();

The result being

dcccccccocccooco +
| octet_length |
dcccccccocccooco +
| 5
dcccccccocccooco +

Dialect support
This example using jO0Q:

octet Lengt h("hel | 0")

Translates to the following dialect specific expressions:

Access, SQLDataWarehouse, SQLServer

len(' hello")

ASE, Aurora MySQL, Aurora Postgres, BigQuery, CockroachDB, Exasol, Firebird, H2,
HSQLDB, Informix, MariaDB, MemSQL, MySQL, Postgres, Redshift, Snowflake, Vertica,
YugabyteDB

octet | ength('hello")

ClickHouse, DB2, Derby, DuckDB, Hana, SQLite, Sybase, Teradata, Trino

I ength(' hello")

Oracle

I engt hb(' hel I 0")

4.7.12.12. POSITION

The POSITION() function finds the first position of a string within another string, starting with 1.

© 2009 - 2024 by Data Geekery™ GmbH. Page 317/720

The jOOQ User Manual

SELECT create. sel ect (

position('hello', 'e"), posi tion("hello",
position('hello", "I', 4); position("hello",

The result being

Fommmmm e aa o Fommmmm e aa o +
| position | position |
Fommmmm e aa o Fommmmm e aa o +
| 2 4|
Fommmmm e aa o Fommmmm e aa o +

Dialect support
This example using jOO0Q:

posi tion("hello", "e")

Translates to the following dialect specific expressions:

ASE, SQLDataWarehouse, SQLServer

charindex('e', "hello")

il
"e", 4)).fetch();

4.7.12.12. POSITION

Aurora MySQL, Aurora Postgres, CockroachDB, DuckDB, Exasol, Firebird, H2, HSQLDB,
MariaDB, MemSQL, MySQL, Postgres, Snowflake, Teradata, Trino, Vertica, YugabyteDB

position('e" IN 'hello")

BigQuery, Informix, Oracle, SQLite

GO o 0cT)

ClickHouse
position('hello, 'e')
DB2, Derby
locate('e', 'hello')

© 2009 - 2024 by Data Geekery™ GmbH.

Page 318/720

The jOOQ User Manual 4.7.12.13. REPEAT

Hana, Sybase

locate(' hello', "e")

Access, Redshift

/* UNSUPPORTED */

4.7.12.13. REPEAT

The REPEAT() function repeats a string a number of times.

SELECT repeat (' abc', 3); create. sel ect(repeat("abc", 3)).fetch();

The result being

R +
| repeat |
R +
| abcabcabc |
R +

Dialect support
This example using jOOQ:

repeat ("abc", 3)

Translates to the following dialect specific expressions:

ASE, SQLDataWarehouse, SQLServer

replicate('abc', 3)

Aurora MySQL, Aurora Postgres, BigQuery, ClickHouse, CockroachDB, DB2, DuckDB,
Exasol, H2, HSQLDB, MariaDB, MySQL, Postgres, Snowflake, Sybase, Vertica,
YugabyteDB

repeat (' abc', 3)

© 2009 - 2024 by Data Geekery™ GmbH. Page 319/720

The jOOQ User Manual 4.7.12.14. REPLACE

Firebird, MemSQL

r pad(
‘abc',
(char_length('abc') * 3),
*abc’

)

Hana, Oracle, Teradata, Trino

rpad(
‘abc',
(l'ength('abc') * 3),
' abc’

)
SQLite
"repl ace" (hex(zeroblob(3)), '00', "abc')

Access, Derby, Informix, Redshift

/* UNSUPPORTED */

4.7.12.14. REPLACE

The REPLACE() function replaces a substring inside of a string by another string.

SELECT replace(' hello world', "lIlo", "y'); create. sel ect(replace(val ("hello world"), "llo", "y")).fetch();

The result being

B +
| replace |
B +
| hey world |
B +

Dialect support
This example using jOOQ:

repl ace(val ("hello world"), "lIlo", "y")

© 2009 - 2024 by Data Geekery™ GmbH. Page 320/720

The jOOQ User Manual 4.7.12.15. REVERSE

Translates to the following dialect specific expressions:

Access, Aurora MySQL, Aurora Postgres, BigQuery, CockroachDB, DB2, DuckDB, Exasol,
Firebird, H2, HSQLDB, Hana, Informix, MariaDB, MemSQL, MySQL, Oracle, Postgres,
SQlLDataWarehouse, SQLServer, Snowflake, Sybase, Trino, Vertica, YugabyteDB

replace('hello world', "Ilo", 'y")

ASE

str_replace(' hello world, "Ilo", 'y")

ClickHouse

replaceAll ("hello world, "Ilo", "y")

SQLite

“replace"('hello world, "Ilo, "y")

Teradata

oreplace(' hello world', "Ilo', 'y")

Derby, Redshift

/* UNSUPPORTED */

4.7.12.15. REVERSE

The REVERSE() function reverses a string.

SELECT reverse(' hello'); create.sel ect(reverse("hello")).fetch();

The result being

© 2009 - 2024 by Data Geekery™ GmbH. Page 321 /720

The jOOQ User Manual 4.7.12.16. RIGHT

B +
| reverse |
B +
| olleh |
B +

Dialect support
This example using jOOQ:

reverse("hello")

Translates to the following dialect specific expressions:

ASE, Aurora MySQL, Aurora Postgres, BigQuery, ClickHouse, CockroachDB, DuckDB,
Exasol, HSQLDB, MariaDB, MySQL, Oracle, Postgres, SQLDataWarehouse, SQLServer,
Snowflake, Teradata, Trino, YugabyteDB

reverse(' hello')

Access, DB2, Derby, Firebird, H2, Hana, Informix, MemSQL, Redshift, SQLite, Sybase,
Vertica

/* UNSUPPORTED */

4.7.12.16. RIGHT

The RIGHT() function calculates the substring of a given string starting from the right end. See also
SUBSTRING, LEFT

SELECT right('hello world', 5); create.select(right("hello world", 5)).fetch();

The result being

Dialect support

This example using jO0Q:

© 2009 - 2024 by Data Geekery™ GmbH. Page 322 /720

The jOOQ User Manual 4.7.12.17. RPAD

right("hello world", 5)

Translates to the following dialect specific expressions:

ASE, Access, Aurora MySQL, Aurora Postgres, BigQuery, ClickHouse, CockroachDB,
DB2, DuckDB, Exasol, Firebird, H2, HSQLDB, Hana, Informix, MariaDB, MemSQL, MySQL,
Postgres, Redshift, SQLDataWarehouse, SQLServer, Snowflake, Sybase, Teradata,
Vertica, YugabyteDB

right("hello world', 5)

Derby

substr (

‘hello world',

(length('hello world') + (1 - 5))
)

Oracle, SQLite

substr(
"hello world',
-5

)

Trino

substring(
‘hello world',
-5

)

4.7.12.17. RPAD

The RPAD() pads a string at the right end. See also LPAD.

SELECT rpad(' hello', 10, '.'); create. sel ect(rpad(val ("hello"), 10, '.")).fetch();

The result being

decccocccoosos +
| rpad |
decccocccoosos +
| hello..... |
decccocccoosos +

© 2009 - 2024 by Data Geekery™ GmbH. Page 323/720

The jOOQ User Manual

Dialect support
This example using jOOQ:

rpad(val ("hello"), 10, '.")

Translates to the following dialect specific expressions:

Access

("hello" & replace(space(10 - len('hello')), " ', "."))

ASE

(*hello" || replicate(

(10 - char_length(' hello'))
))

4.7.12.17. RPAD

Aurora MySQL, Aurora Postgres, CockroachDB, DB2, Firebird, H2, HSQLDB, Hana,

Informix, MariaDB, MemSQL, MySQL, Oracle, Postgres, Teradata, Vertica

rpad(' hello', 10, '.")

SQLDataWarehouse, SQLServer

("hello" + replicate(

(-lOY- len(' hello"))
))

SQLite
"hello' || substr("replace"(hex(zeroblob(10)), 00", '."), 1, 10 - length('hello"))
Sybase

(*hello" || repeat(

(10 - Tength(' hello'))
)

© 2009 - 2024 by Data Geekery™ GmbH.

Page 324 /720

The jOOQ User Manual 4.7.12.18. RTRIM

BigQuery, ClickHouse, Derby, DuckDB, Exasol, Redshift, Snowflake, Trino, YugabyteDB

/* UNSUPPORTED */

4.7.12.18. RTRIM

The RTRIM() function trims a string from the right end, stripping it of whitespace. See also LTRIM and
TRIM.

SELECT rtrim(* hello '); create.select(rtrin(" hello ")).fetch();

The result being

Dialect support
This example using jOOQ:
rtrim(* hello ")

Translates to the following dialect specific expressions:

ASE, Access, Aurora MySQL, Aurora Postgres, BigQuery, ClickHouse, CockroachDB,
DB2, Derby, DuckDB, Exasol, H2, HSQLDB, Hana, Informix, MariaDB, MemSQL, MySQL,
Oracle, Postgres, Redshift, SQLDataWarehouse, SQLServer, SQLite, Snowflake, Sybase,
Teradata, Trino, Vertica, YugabyteDB

rtrim(* hello ")

Firebird

trin(TRAILING FROM' hello ')

© 2009 - 2024 by Data Geekery™ GmbH. Page 325/720

The jOOQ User Manual 4.7.12.19. SPACE

4.7.12.19. SPACE

The SPACE() function repeats a space character a number of times. This is convenience for REPEAT, as
available natively in SQL Server, for example.

SELECT "a' || space(3) || 'b'; create. sel ect(val ("a").concat (space(3)).concat(val ("b")).fetch();

The result being

decccocoo +
| space |
decccocoo +
| a b
decccocoo +

Dialect support
This example using jO0Q:

space(3)

Translates to the following dialect specific expressions:

ASE, Aurora MySQL, ClickHouse, DB2, Exasol, H2, MariaDB, MySQL,
SQLDataWarehouse, SQLServer, Snowflake, Sybase, Vertica

space(3)

Aurora Postgres, BigQuery, CockroachDB, DuckDB, HSQLDB, Postgres, YugabyteDB

repeat (" ', 3)

Firebird, Hana, Informix, MemSQL, Oracle, Teradata, Trino

rpad(' ', 3, ' ")

SQLite

‘|| substr("replace"(hex(zeroblob(3)), ‘00", * "), 1, 3 - length(' "))

© 2009 - 2024 by Data Geekery™ GmbH. Page 326 /720

The jOOQ User Manual 4.7.12.20. SUBSTRING

Access, Derby, Redshift

/* UNSUPPORTED */

4.7.12.20. SUBSTRING

The SUBSTRING() function calculates the substring of a string given a starting position and optionally,
a length. See also LEFT, RIGHT.

SELECT create. sel ect (
substring(' hello world', 7), substring("hello world", 7),
substring('hello world, 7, 1); substring("hello world", 7, 1)).fetch();

The result being

B B +
| substring | substring |
B B +
| world w |
B B +

Dialect support
This example using jOOQ:

substring(val ("hello world"), 7)

Translates to the following dialect specific expressions:

Access

md(" hello world , 7)

ASE, SQLDataWarehouse, SQLServer

substring('hello world', 7, 2147483647)

© 2009 - 2024 by Data Geekery™ GmbH. Page 327/720

The jOOQ User Manual 4.7.12.27. TRANSLATE

Aurora MySQL, Aurora Postgres, BigQuery, ClickHouse, CockroachDB, DuckDB, Exasol,
H2, HSQLDB, Hana, MariaDB, MemSQL, MySQL, Postgres, Redshift, Snowflake, Sybase,
Trino, Vertica, YugabyteDB

substring('hello world', 7)

DB2, Derby, Informix, Oracle, SQLite

substr(' hello world', 7)

Firebird, Teradata

substring('hello world FROM7)

4.7.12.27. TRANSLATE

The TRANSLATE() function translates a set of characters to another set of characters within a string,
based on matching positions within the search and replacement string.

SELECT translate('1 * [2 + 3], "[]1', "()"); create.select(translate(val ("1 * [2 + 3]"), "[]1", "()")).fetch();

The result being

dcccccccocccoos +
| translate |
dcccccccocccoos +
[1*(2+3) |
dcccccccocccoos +

Dialect support
This example using jO0Q:

translate(val ("1 * [2 + 3]"), "[1", "O)")

Translates to the following dialect specific expressions:

© 2009 - 2024 by Data Geekery™ GmbH. Page 328 /720

The jOOQ User Manual 4.7.12.22. TRIM

Aurora Postgres, BigQuery, ClickHouse, CockroachDB, Exasol, H2, HSQLDB, Oracle,
Postgres, SQLServer, Snowflake, Trino, Vertica, YugabyteDB

translate(*1 * [2 +3]', "[1', "O)")

translate('1 * [2 +3]', "()', "[1")
Teradata

otranslate('1 * [2 +3]', "[1', 'O)")

ASE, Access, Aurora MySQL, Derby, DuckDB, Firebird, Hana, Informix, MariaDB,
MemSQL, MySQL, Redshift, SQLDataWarehouse, SQLite, Sybase

/* UNSUPPORTED */

4.7.12.22. TRIM

The TRIM() function trims a string from both ends, stripping it of whitespace. See also LTRIM and RTRIM.

SELECT trim(* hello '); create.select(trinm ™ hello ")).fetch();

The result being

Dialect support
This example using jOOQ:

trim(" hello ")
Translates to the following dialect specific expressions:

© 2009 - 2024 by Data Geekery™ GmbH. Page 329/720

The jOOQ User Manual 4.7.12.23. UPPER

Access, Aurora MySQL, Aurora Postgres, BigQuery, ClickHouse, CockroachDB, DB2,
Derby, DuckDB, Exasol, Firebird, H2, HSQLDB, Hana, Informix, MariaDB, MemSQL,
MySQL, Oracle, Postgres, Redshift, SQLServer, SQLite, Snowflake, Sybase, Teradata,
Trino, Vertica, YugabyteDB

trim(* hello ")

ASE, SQLDataWarehouse

Itrim(rtrin(’ hello "))

4.7.12.23. UPPER

The UPPER() function transforms a string into upper case.

SELECT upper (' hello"); create. sel ect (upper("hello")).fetch();

The result being

Dialect support
This example using jOOQ:

upper ("hel 1 0")

Translates to the following dialect specific expressions:

Access

ucase(' hello")

ASE, Aurora MySQL, Aurora Postgres, BigQuery, ClickHouse, CockroachDB, DB2, Derby,
DuckDB, Exasol, Firebird, H2, HSQLDB, Hana, Informix, MariaDB, MemSQL, MySQL,

© 2009 - 2024 by Data Geekery™ GmbH. Page 330/720

The jOOQ User Manual 4.7.13. Datetime functions

Oracle, Postgres, Redshift, SQLDataWarehouse, SQLServer, SQLite, Snowflake, Sybase,
Teradata, Trino, Vertica, YugabyteDB

upper (‘' hello")

4.7.13. Datetime functions

Datetime functions are useful to calculate date time arithmetic and formatting.

Many functions in this section come with two flavours supporting both the JDBC datetime data types,
and the JSR 310 types. These include:

- SQL DATE modelled by java.time.LocalDate and JDBC's java.sgl.Date
- SQL TIME modelled by java.time.LocalTime and JDBC's java.sgl.Time
- SQL TIMESTAMP modelled by java.time.LocalDateTime and JDBC's java.sgl.Timestamp

Some temporal SQL data types could not be represented canonically with historic JDBC types, but only
with JSR 310 types. These include:

- SQL TIME WITH TIME ZONE modelled by java.time.OffsetTime

- SQL TIMESTAMP WITH TIME ZONE modelled by any of java.time.Instant (e.g. PostgreSQL),
java.time.OffsetDateTime (JDBC and standard SQL), as well as java.time.ZonedDateTime (e.g.
Oracle)

4.7.13.1T. CURRENT_DATE

Get the current server time as a SQL DATE type (represented by java.sgl.Date).

SELECT current_date; create.select(currentDate()).fetch();

The result being something like

Fommmmm e +
| current_date |
Fommmmm e +
| 2020-02-03 |
Fommmmm e +

Dialect support
This example using jOOQ:
current Dat e()

Translates to the following dialect specific expressions:
© 2009 - 2024 by Data Geekery™ GmbH. Page 331 /720

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/LocalDate.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Date.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/LocalTime.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Time.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/LocalDateTime.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Timestamp.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/OffsetTime.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/Instant.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/OffsetDateTime.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/ZonedDateTime.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Date.html

The jOOQ User Manual 4.7.13.2. CURRENT_LOCALDATE

Access

DATE()

ASE, Aurora MySQL, ClickHouse, MariaDB, MemSQL, MySQL, Snowflake

current _date()

Aurora Postgres, BigQuery, CockroachDB, DB2, Derby, DuckDB, Exasol, Firebird, H2,
HSQLDB, Hana, Postgres, Redshift, SQLite, Teradata, Trino, Vertica, YugabyteDB

CURRENT_DATE

Informix

CURRENT YEAR TO DAY

Oracle

trunc(current_date)

SQLDataWarehouse, SQLServer

convert (DATE, current_tinestanp)

Sybase

CURRENT DATE

4.7.13.2. CURRENT_LOCALDATE

Get the current server time as a SQL DATE type (represented by java.time.LocalDate).
This does the same as CURRENT DATE except that the client type representation uses JSR-310 types.

© 2009 - 2024 by Data Geekery™ GmbH. Page 332/720

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/LocalDate.html

The jOOQ User Manual 4.7.13.2. CURRENT_LOCALDATE

SELECT current_date; create. sel ect(currentLocal Date()).fetch();

The result being something like

Dialect support
This example using jO0Q:

current Local Dat e()

Translates to the following dialect specific expressions:

Access

DATE()

ASE, Aurora MySQL, ClickHouse, MariaDB, MemSQL, MySQL, Snowflake

current _date()

Aurora Postgres, BigQuery, CockroachDB, DB2, Derby, DuckDB, Exasol, Firebird, H2,
HSQLDB, Hana, Postgres, Redshift, SQLite, Teradata, Trino, Vertica, YugabyteDB

CURRENT_DATE

Informix

CURRENT YEAR TO DAY

Oracle

trunc(current_date)

© 2009 - 2024 by Data Geekery™ GmbH. Page 333/720

The jOOQ User Manual

SQLDataWarehouse, SQLServer

convert (DATE, current_timestanp)

Sybase

CURRENT DATE

4.7.13.3. CURRENT_LOCALDATETIME

4.7.13.3. CURRENT_LOCALDATETIME

Get the current server time as a SQL TIMESTAMP type (represented by java.time.LocalDateTime).
This does the same as CURRENT TIMESTAMP except that the client type representation uses JSR-310

types.

SELECT current _tinestanp; create. sel ect(currentLocal DateTime()).fetch();

The result being something like

eeme e +
| current_tinestanp |
e eme e +
| 2020- 02- 03 15:30: 45 |
B +

Dialect support
This example using jOOQ:

current Local Dat eTi me()

Translates to the following dialect specific expressions:

Access

now()

ASE

current _bi gdatetine()

© 2009 - 2024 by Data Geekery™ GmbH.

Page 334 /720

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/LocalDateTime.html

The jOOQ User Manual

Aurora MySQL, ClickHouse, MariaDB, MemSQL, MySQL, Snowflake

current _timestanp()

4.7.13.4. CURRENT_LOCALTIME

Aurora Postgres, BigQuery, CockroachDB, DB2, Derby, DuckDB, Exasol, Firebird, H2,
HSQLDB, Hana, Oracle, Postgres, Redshift, SQLDataWarehouse, SQLServer, SQLite,

Teradata, Trino, Vertica, YugabyteDB

CURRENT_TI MESTAVP

Informix

CURRENT YEAR TO FRACTI ON (5)

Sybase

CURRENT TI MESTAMP

4.7.13.4. CURRENT_LOCALTIME

Get the current server time as a SQL TIME type (represented by java.time.LocalTime).

This does the same as CURRENT TIME except that the client type representation uses JSR-310 types.

SELECT current _tine; create. sel ect(currentLocal Tine()).fetch();

The result being something like

Dialect support
This example using jOOQ:

current Local Ti ne()

Translates to the following dialect specific expressions:

© 2009 - 2024 by Data Geekery™ GmbH.

Page 335/720

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/LocalTime.html

The jOOQ User Manual 4.7.13.5. CURRENT_OFFSETDATETIME

Access

I VE()

ASE, Aurora MySQL, MariaDB, MemSQL, MySQL, Snowflake

current _time()

Aurora Postgres, BigQuery, ClickHouse, CockroachDB, DB2, Derby, DuckDB, Firebird, H2,
HSQLDB, Hana, Postgres, Redshift, SQLite, Teradata, Trino, Vertica, YugabyteDB

CURRENT_TI ME

Exasol, Oracle

current _timestanp

Informix

CURRENT HOUR TO SECOND

SQLDataWarehouse, SQLServer

convert (TIME, current_tinestanp)

Sybase

CURRENT TI ME

4.7.13.5. CURRENT_OFFSETDATETIME

Get the current server time as a SQL TIMESTAMP WITH TIME ZONE type (represented by
java.time.OffsetDateTime).

© 2009 - 2024 by Data Geekery™ GmbH. Page 336/720

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/OffsetDateTime.html

The jOOQ User Manual 4.7.13.5. CURRENT_OFFSETDATETIME

This does the same as CURRENT TIMESTAMP except that a cast is added, and the client type
representation uses JSR-310 types.

SELECT current_tinestanp; create.select(currentOffsetDateTine()).fetch();

The result being something like

L +
| current_tinmestanp |
L +
| 2020- 02- 03 15:30: 45 |
L +

Dialect support
This example using jOO0Q:

current O f set Dat eTi me()

Translates to the following dialect specific expressions:

Access
cstr(now())

ASE

CAST(current _bigdatetine() AS tinmestanmp with tine zone)

Aurora MySQL, MariaDB, MemSQL, MySQL

CAST(current _tinmestanp() AS tinestanp with tine zone)

Aurora Postgres, BigQuery, DB2, Derby, DuckDB, Exasol, Firebird, H2, HSQLDB, Hana,
Oracle, Postgres, Redshift, SQLite, Teradata, Trino, Vertica, YugabyteDB

CAST(CURRENT_TI MESTAMP AS tinestanp with tinme zone)

ClickHouse

CAST(current _timestanp() AS Null abl e(tinmestanp with tine zone))

© 2009 - 2024 by Data Geekery™ GmbH. Page 337/720

The jOOQ User Manual

CockroachDB

CAST(CURRENT_TI MESTAMP AS ti mest anpt z)

Informix

CAST(CURRENT YEAR TO FRACTION (5) AS tinestanp with tine zone)

Snowflake

CAST(current _tinmestanp() AS tinestanp_tz)

SQLDataWarehouse, SQLServer

CAST(CURRENT_TI MESTAMP AS dat et i meof f set)

Sybase

CAST(CURRENT TI MESTAMP AS tinestanp with time zone)

4.7.13.6. CURRENT_OFFSETTIME

4.7.13.6. CURRENT_OFFSETTIME

Get the current server time as a SQL TIME WITH TIME ZONE type (represented by java.time.OffsetTime).

This does the same as CURRENT TIME except that a cast is added, and the client type representation

uses JSR-310 types.

SELECT current_tine;

The result being something like

ememee e +
| current_tine |
ememeeeeaa +
| 15:30: 45 |
ememeeeeaa +

© 2009 - 2024 by Data Geekery™ GmbH.

create.select(currentOffsetTime()).fetch();

Page 338/720

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/OffsetTime.html

The jOOQ User Manual 4.7.13.6. CURRENT_OFFSETTIME

Dialect support
This example using jOOQ:

current O f set Ti ne()

Translates to the following dialect specific expressions:

Access

cstr(TIME())

ASE, Aurora MySQL, MariaDB, MemSQL, MySQL, Snowflake

CAST(current _tinme() AS tine with time zone)

Aurora Postgres, BigQuery, CockroachDB, DB2, Derby, DuckDB, Firebird, H2, HSQLDB,
Hana, Postgres, Redshift, SQLite, Teradata, Trino, Vertica, YugabyteDB

CAST(CURRENT_TIME AS tinme with tinme zone)

ClickHouse

CAST(CURRENT_TI ME AS Nul l able(tinme with time zone))

Exasol

CAST(current _tinmestanp AS tine with tine zone)

Informix

CAST(CURRENT HOUR TO SECOND AS tine with time zone)

Oracle

CAST(current _tinmestanp AS tinestanp with tine zone)

© 2009 - 2024 by Data Geekery™ GmbH. Page 339/720

The jOOQ User Manual

SQLDataWarehouse, SQLServer

CAST(convert (TIME, current_timestanp) AS tine with time zone)

Sybase

CAST(CURRENT TIME AS tinme with tinme zone)

4.7.13.7. CURRENT_TIME

Get the current server time as a SQL TIME type (represented by java.sgl.Time).

SELECT current_tine; create.select(currentTinme()).fetch();

The result being something like

ememee e +
| current_tine |
ememeeeeaa +
| 15:30: 45 |
ememeeeeaa +

Dialect support
This example using jOOQ:

current Ti me()

Translates to the following dialect specific expressions:

Access

TI VE()

ASE, Aurora MySQL, MariaDB, MemSQL, MySQL, Snowflake

current _time()

© 2009 - 2024 by Data Geekery™ GmbH.

4.7.13.7. CURRENT_TIME

Page 340/ 720

https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Time.html

The jOOQ User Manual 4.7.13.8. CURRENT_TIMESTAMP

Aurora Postgres, BigQuery, ClickHouse, CockroachDB, DB2, Derby, DuckDB, Firebird, H2,
HSQLDB, Hana, Postgres, Redshift, SQLite, Teradata, Trino, Vertica, YugabyteDB

CURRENT_TI ME

Exasol, Oracle

current _timestanp

Informix

CURRENT HOUR TO SECOND

SQLDataWarehouse, SQLServer

convert (TIME, current_timestanp)

Sybase

CURRENT TI ME

4.7.13.8. CURRENT_TIMESTAMP

Get the current server time as a SQL TIMESTAMP type (represented by java.sgl.Timestamp).

SELECT current _tinestanp; create.sel ect(currentTimestanp()).fetch();

The result being something like

eeme e +
| current_tinestanp |
e eme e +
| 2020- 02- 03 15:30: 45 |
B +

Dialect support

This example using jOOQ:

© 2009 - 2024 by Data Geekery™ GmbH. Page 341 /720

https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Timestamp.html

The jOOQ User Manual 4.7.13.9. DATE

current Ti mest anp()

Translates to the following dialect specific expressions:

Access

now()

ASE

current_bi gdatetime()

Aurora MySQL, ClickHouse, MariaDB, MemSQL, MySQL, Snowflake

current _timestanp()

Aurora Postgres, BigQuery, CockroachDB, DB2, Derby, DuckDB, Exasol, Firebird, H2,
HSQLDB, Hana, Oracle, Po