The jOOQ™ User Manual

SQL was never meant to be abstracted. To be confined in the narrow
boundaries of heavy mappers, hiding the beauty and simplicity of relational
data. SQL was never meant to be object-oriented. SQL was never meant to
be anything other than... SQL!

The jOOQ User Manual

Overview

This manual is divided into six main sections:

Getting started with JOOQ

This section will get you started with jOOQ quickly. It contains simple explanations about what

jO0Q is, what jOOQ isn't and how to set it up for the first time

- SQL building
This section explains all about the jOOQ syntax used for building queries through the query DSL
and the query model API. It explains the central factories, the supported SQL statements and
various other syntax elements

- Code generation
This section explains how to configure and use the built-in source code generator

- SQL execution
This section will get you through the specifics of what can be done with jJOOQ at runtime, in order
to execute queries, perform CRUD operations, import and export data, and hook into the jOOQ
execution lifecycle for debugging

- Reference

This section is a reference for elements in this manual

© 2009 - 2025 by Data Geekery™ GmbH. Page 2/1123

#Overview

The jOOQ User Manual

Table of contents

1. Copyright, LICENSE, ANd TraG@MArKS.ov it
2. Getting started WIth JOOQo
2.1, HOW O r€ad ThiS MANUAL...... it
2.2. The sample database used in this manual
2.3. Different Use CaSES fOI JOOQ ... it

2.3.1.j00Q as a SQL builder withOUT COOE GENEIATION.........c.iiiiiicieies e 29
2.3.2.j00Q as a SQL builder with code generation
2.3.3. JOOQ AS @ SQL BXECULOI ...ttt ettt s ettt
2.3.4. JOOQ TOF CRUD ..ottt
2.3.5. JOOQ TOF PROS ..ottt
2.4, DOWNIOAAING JOOQ. ..o
25 TULOTIAIS oo
2.5.7. JOOQ N 7 CASY STEPS. .ttt
2.5 1.1, SEEP T2 PrOPAIATION. ..ttt bR
2.5.1.2. SEEP 2: YOUE ATADASE. ... e
2.5.1.3. SEP 3: COAE GENETATION. ...t
2.5.1.4. Step 4: CONNECE TO YOUT AALADASE. ...
2.51.5. Step 5:
2.5.1.6. Step 6:
2.51.7. Step 7:
2.5.2. Using jOOQ with Flyway...

2.5.3. USING JOOQ WITN JDANG. ...ttt
2.6, JOOQ @NGA JAVA B
2.7, JOOQ @NA SCAIA- et
2.8, JOOQ @NA GIOOVY. .ot 51
2.9, JOOQ @NA KON, 1ttt 52
2.10. JOOQ @NA NOSQL ..ttt 52
217, JOOQ AN JPA oo 52
212, BUITA YOUT OWN .ottt 53
2.13. JOOQ and backwards-COMPATIDITITY.ot 54
3 SQL DUIIAING £

3.1. The query DSL type
3.2. The DSLContext API
3201 SQL DHAIECE .ot
3.2.2. SQL Dialect Family......ccccoovviriirrininn.

3.2.3. Connection vs. DataSource
324 CUSTOM ATttt bbb 54125111 bbb
3.2.5. CUSTOM EXOCUTELISTENEOIS ..ottt s bbb b s s bbbttt s b

3.2.6. CUSTOM UNWIBPPETS .. ceeitiisii ettt
32,7 CUSTOIM SEULINES ..t h 8218ttt
3.2.7.7. AUTO-ATEECN RECOTTS ..o
3.2.7.2. BACKSIASN ESCAPING. ...t
3.2.7.3. BATCN SIZE...oii e
3.2.7.4. DIialeCt COMPATIDIITY ...

3.2.7.5. EXCCULE LOZEING. ...ttt 1 bbbt
3.2.7.6. Fetch Warnings
3.2.7.7. GROUP_CONCAT Configuration
32,78 IAONEIION SEYIE..o i
3.2.7.9. Implicit join type.....
3.2.7.10. Inline Threshold

© 2009 - 2025 by Data Geekery™ GmbH. Page 3/1123

The jOOQ User Manual

32707 IN-HST PAOAING. s 69
3.2.7.12. INTErPreter CONTIGUIATIONot 70
3.2.7.13. JDBC FlIags....ccccovvvvreunen.

3.2.7.14. Keyword style
3.2.7.15. LIStENET INVOCALION OFTET ..ottt 71
32700, LOCAIES. ... 71
3.2.7.17. MAP JPA ANNOTATIONS. ...ttt
3.2.7.18. OBJECE QUANTICATION. ...ttt
3.2.7.19. OPUMISTIC LOCKING. ...ttt s
3.2.7.20. Parameter NAME PIrEIIX .. .ot
302,727 PaATAMIELET LY PES ettt
3.2.7.22. ParSer CONTIGUIATION. ...t
3.2.7.23. RETIECUON CACNING ...ttt
3.2.7.24. RETUIN all COIUMMNS 0N STOM@.....iiiiiiiiiiii s
3.2.7.25. ReTUIN 1AENTILY VAlUE ON STOTE ...ttt
3.2.7.26. Runtime catalog, schema and table mapping
3.2.7.27. Scalar subqueries fOr STOred fUNCLIONS.
3.2.7.28. STATEIMENT TYDC ottt E e
3.2.7.29. UDAALabI@ Primary KOYS. ... i
3208, TRMEAA SATELY ..o
3.3, SQL STALEMENTS (DMLt ettt ettt ettt ettt ettt 81
3.3.1. JOOQ'S DSL @NA MOTEI AP ..ot 81
3.3.2. TNE WITH CIBUSE ..ot 83
3.3.3. T WITH RECURSIVE CIAUSE... ...ttt 84
3.3.4. THE SELECT STATEIMENT.....uiiiiiiiii s 85
3347, SELECT CIAUSE ... 86
3.3 4. 7.1, PrOJECLION TYPE SATRLY ..ot 87
3.3.4.1.2. SelectField

3.3.4.1.6. SELECT DISTINCT ONoooooiiiiiiesceeese ettt
3.3.4.1.7. CONVENMIENCE MELNOUS.ivitiiiiiei bbb
33142, FROM ClAUSE ...ttt
3314271, JOIN OPBIATON ottt
3.3.4.2.2. IMPHCIE PATN JOIN ..o
331430 WHERE ClAUSE ..o bbb
3.3.4.4, CONNECT BY ClAUSE... oottt
3.3.4.5. GROUP BY ClAUSE ...ttt
3.3.4.5.T. GROUP BY COIUMNS ..ottt
3.3.4.5.2. GROUP BY ROLLUP . ..ottt bbb
3.3.4.5.3. GROUP BY CUBE

3.3.4.5.4. GROUP BY GROUPING SETS
3.3.4.5.5. GROUP BY EMPLY SrOUDPING ST vttt ettt 102
3.3.4.6. HAVING clause.......

3.3.4.7. WINDOW clause
33148, QUALIFY ClAUSE. ...ttt ettt ettt
3.3.4.9. ORDER BY ClAUSE ...ttt 108
3.3.4.9.7. Ordering DY fIEIA TINTEX. ... e 109
3.3.4.9.2. Ordering @Nd NULLSiiiiee bbb 110
3.3.4.9.3. Ordering USING CASE EXPIESSIONS.ttt 111
3.3.4.9.4. Oracle's ORDER SIBLINGS BY ClAUSE........coiiiiieeieiiiece ettt 113
334710, LIMIT oo OFFSET ClaUSE oot 113
B34 T WITH TIES ClAUSE. ...ttt 114
© 2009 - 2025 by Data Geekery™ GmbH. Page 4/1123

The jOOQ User Manual
B340 2. SEEK ClAUSE ...ttt ettt

3.3.4.13. FOR XML clause
3.3.4.13.1. AUTO mode

3.31A.13.2.0 PATH IMIOGE. ..ttt
33141330 RAW IMOG ..
3.3 4.13.4, ROOT GIFECLIVE. ..ottt 123
3.3413.5, ELEMENTS GITECTIVE. ..ottt 125
33474, FOR JSON CIAUSE. ..ottt 126
334 T4 AUTO TNOTE. .o 127
B3 T4.2. PATH IMOGE. ..ttt 130
334743, ROOT GIFECLIVE. ..ot 132
334144, INCLUDE_NULL VALUES GIF@CTIVE.......veuivictirieeiiet ettt 135
3.3.4.14.5. WITHOUT_ARRAY_WRAPPER QIr@CHIVE.cviuiiiiiiiici et 138
334715, FOR UPDATE ClAUSE ...ttt
331410, SO OPEIATIONS. ...ttt

3.3.4.16.1. Type safety
3.3.4.16.2. Projection rowtype

3.3.4.16.3. Differences t0 STANAATT SQLe. ... oo e ettt ettt 142
3314104 UNION .ot 146
3314105, UNION ALL ..ottt 148
3314100, INTERSECT ..ottt s bbb bbbt 149
334167, INTERSECT ALL ..ottt ettt 151
Bi314. 10,8 EXCEPT oottt 152
3.314.16.9. EXCEPT ALL oottt 153
3.3.4.17. Lexical and 108iCal SELECT ClaUSE OFQ@N ..o 154
3.3.5. THE INSERT SEATEMENT. ...oviivieet ettt 156
B350 L INSERT L VALUES o s bbb 156
3.3.5.2. INSERT .. DEFAULT VALUES

3.3.53. INSERT .. SET o,

3.3.5.4. INSERT .. SELECT

3.3.5.5. INSERT .. ON DUPLICATE KEY UPDATEcoiittiiiiiieieie ettt s 162
3.3.5.6. INSERT .. ON DUPLICATE KEY IGNORE.........civiiiiiiieesieeeee ettt 166
3.3.5.7. INSERT .. ON CONFLICT o1ttt 171
3.3.5.8. INSERT .. RETURNINGocttitiet ettt 175
3.3.6. THE UPDATE STATEMIENT. ..ottt s s bbb 177
B.3L0.T. UPDATE . SET oottt 177
3.3.6.2. UPDATE .. SET ROW ..ottt s bbb 178
3.3.6.3. UPDATE .. FROMooiiiiiieee ettt 180
3.3.6.4. UPDATE .. WHERE ...ttt 183
3.3.6.5. UPDATE .. ORDER BY .. LIMIT ..ottt 185
3.3.6.6. UPDATE .. RETURNINGo.etittiittitiiisie ettt 188
3.3.7. The DELETE statement

3371 DELETE L USING . oot 3 s bbb
3372, DELETE ©o WHERE ..ottt
3.3.7.3. DELETE .. ORDER BY .. LIMIT....

3.3.7.4. DELETE .. RETURNINGooiiiitit ettt st
3.3.8. THE MERGE STATEMENT. ..ottt
B.3.8.T. USING 1. ON oottt
3.3.8.2. WHEN MATCHED THEN UPDATE ...ttt 199
3.3.8.3. WHEN MATCHED THEN DELETE ..ottt 201
3.3.8.4. WHEN MATCHED AND ...ttt bbb 203
3.3.8.5. WHEN NOT MATCHED THEN INSERTooeiitiiiiiiieiet ettt ettt 207
3.4, SQL STATEMENTS (DDL).eiiiiiiiieeieiee oottt e ettt ettt ettt ettt 209
341, THE ALTER STALEIMENT. ..ottt ettt 209

© 2009 - 2025 by Data Geekery™ GmbH. Page 5/1123

The jOOQ User Manual

3477 ALTER DATABASE. ..o
34117, ALTER DATABASE .. RENAME. ..ot
3.4.1.1.2. ALTER DATABASE IF EXISTS...............

34712, ALTER DOMAIN ..ttt
3.4.7.2.7. ALTER DOMAIN .. RENAME ...
3.4.1.2.2. ALTER DOMAIN . SET DEFAULT ...oiiiii s 212
3.4.1.2.3. ALTER DOMAIN .. DROP DEFAULTcoitiiiiitirt e 213
3.4.1.2.4. ALTER DOMAIN .. SET NOT NULL. ..ot 214
3.4.1.2.5. ALTER DOMAIN .. DROP NOT NULL ...ttt 214
3.4.1.2.6. ALTER DOMAIN .. ADD CONSTRAINT ..ottt 215
3.4.1.2.7. ALTER DOMAIN .. RENAME CONSTRAINT.....c.ciiiiiiiiiiit ettt 216
3.4.1.2.8. ALTER DOMAIN .. RENAME CONSTRAINT [F EXISTS. ..ot 217
3.4.1.2.9. ALTER DOMAIN .. DROP CONSTRAINTiiiiiiiiitite ettt 218
3.4.1.2.10. ALTER DOMAIN .. DROP CONSTRAINT [F EXISTS ..ottt 218
3.4.7.2.17. ALTER DOMAIN TF EXISTS ... 219
3.4.1.3. ALTER INDEX ...,

3.4.1.3.1. ALTER INDEX .. RENAME

3.4.1.3.2. ALTER INDEX TF EXISTS .o
34T 4 ALTER SCHEMA ...
3.4.1.4.7. ALTER SCHEMA L RENAME ..o 224
3.4.7.4.2. ALTER SCHEMA TF EXISTS ..o 225
3.4.1.5. ALTER SEQUENCE ..o 226
3.4.1.5.7. ALTER SEQUENCE .. RENAMEt 226
3.4.1.5.2. ALTER SEQUENCE . CACTHE ...t 227
3.4.1.5.3. ALTER SEQUENCE .. CYCLE ...t 228
3.4.1.5.4. ALTER SEQUENCE .. MINVALUE. ..ottt 229
3.4.1.5.5. ALTER SEQUENCE .. MAXVALUE........coiiiiiii e 229
3.4.1.5.6. ALTER SEQUENCE .. INCREMENT BY ...ttt 230
3.4.1.5.7. ALTER SEQUENCE .. START WITH

3.4.1.5.8. ALTER SEQUENCE .. RESTART ...t
3.4.1.5.9. ALTER SEQUENCE 1F EXISTS.o
341,60, ALTER TABLE ...t
3.4.7.6.T. ALTER TABLE .. ADD COLUMN. ..ottt
3.4.1.6.2. ALTER TABLE .. ADD COLUMN .. FIRST, BEFORE, AFTER.....c..ciiiiiiiiiie s 236
3.4.1.6.3. ALTER TABLE .. ADD COLUMNSottt
3.4.1.6.4. ALTER TABLE .. ADD COLUMN [F NOT EXISTS ...ttt
3.4.1.6.5. ALTER TABLE .. ADD PRIMARY KEY ..ottt
3.4.1.6.6. ALTER TABLE .. ADD UNIQUE. ..ot
3.4.1.6.7. ALTER TABLE .. ADD FOREIGN KEY ..ot
3.4.1.6.8. ALTER TABLE .. ADD CHECK ..o
3.4.7.6.9. ALTER TABLE .. RENAME ...
3.4.1.6.10. ALTER TABLE .. COMMENT......

3.4.1.6.11. ALTER TABLE .. ALTER COLUMN .. SET DEFAULT

3.4.1.6.12. ALTER TABLE .. ALTER COLUMN .. DROP DEFAULTciiiiiiiiiet e 253

3.4.1.6.13. ALTER TABLE .. ALTER COLUMN .. SET NOT NULL
3.4.1.6.14. ALTER TABLE .. ALTER COLUMN .. DROP NOT NULL

3.4.1.6.15. ALTER TABLE .. ALTER COLUMN .. SET TYPE ...t
3.4.1.6.16. ALTER TABLE .. ALTER CONSTRAINT .. ENFORCED

3.4.1.6.17. ALTER TABLE .. ALTER CONSTRAINT .. NOT ENFORCED......c.cciiiiiiiiiiiiiiiieie i 261
3.4.1.6.18. ALTER TABLE .. RENAME COLUMN ..ottt 261
3.4.1.6.19. ALTER TABLE .. RENAME CONSTRAINT ..ottt 263
3.4.1.6.20. ALTER TABLE .. RENAME INDEX ..ottt 264
3.4.1.6.271. ALTER TABLE .. DROP COLUMN ...ttt 265
3.4.1.6.22. ALTER TABLE .. DROP COLUMN RESTRICT ..ottt 266

© 2009 - 2025 by Data Geekery™ GmbH. Page 6/1123

The jOOQ User Manual

3.4.1.6.23. ALTER TABLE .. DROP COLUMN CASCADEcoiiiiiiieieiitieeeis et
3.4.1.6.24. ALTER TABLE .. DROP COLUMNScoiiiiteieeee ettt
3.4.1.6.25. ALTER TABLE .. DROP COLUMN IF EXISTS
3.4.1.6.26. ALTER TABLE .. DROP CONSTRAINT ..ottt ittt
3.4.1.6.27. ALTER TABLE .. DROP PRIMARY KEY.....ciiiiiiiiiiiietieitiet ettt
3.4.1.6.28. ALTER TABLE .. DROP UNIQUE.......coiiiiiieiiiieseeeee et
3.4.1.6.29. ALTER TABLE .. DROP FOREIGN KEY.....oiiiiiiiiiiiiiiet ettt bbb
3.4.1.6.30. ALTER TABLE .. DROP CONSTRAINT IF EXISTS
3.4.1.6.37. ALTER TABLE TF EXISTS ..ottt bbb
BT 7. ALTER TYPE oottt
34070, ALTER TYPE . RENAME ...t bbb
3.4.1.7.2. ALTER TYPE .. fOF @NUM QIEIATIONS......c.ivievceet ettt
BUT.8. ALTER VIEW . oottt 51411kt
3.4.1.8.1. ALTER VIEW .. COMMENT ..ottt
3.4.1.8.2. ALTER VIEW 1. RENAME ...ttt
3.4.1.8.3. ALTER VIEW IF EXISTS......
3.4.2. The COMMENT statement
3.4.2.17. COMMENT ON COLUMNoiiiicies ettt
3.4.2.2. COMMENT ON TABLE . ..ottt bbb
3.4.2.3. COMMENT ON VIEW......ooiiiiiieieieteee ettt
3.4.3. THE CREATE STALEMENT ..ttt bbb
3431, CREATE DATABASE ..ottt
3.4.3.2. CREATE DOMAIN ...ttt b s bbb
3.4.3.3. CREATE FUNUCTION.ooitcisis ettt
314,331, SCAIAT FUNCLIONS ...t bbb
3.4.3.3.2. CREATE OR REPLACE FUNCTION.oiitiieiiies ettt
3.4.3.3.3. SQL data @CCOSS CNATACLEIISTICS.iuiiiceeeeeee ettt
3.4.3.3.4. DETERMINISTIC CRAraCIISTIC.....cvuiviieiiiiiceeiesce et
3.4.3.3.5. ON NULL INPUT characteristic....
3434, CREATE INDEX ..ottt ettt
3.4.3.5. CREATE PROCEDURE ..ottt bbb
3.4.3.5.1. CREATE OR REPLACE PROCEDURE........cccitiioietiteeeteee sttt
3.4.3.5.2. SQL data @CCOSS CNATACLEIISTICS. ...ttt ettt
3.4.3.6. CREATE SCHEMA ..ottt
3.4.3.7. CREATE SEQUENCEiiiiiiet et bbbt
3.4.3.7.1. CREATE SEQUENCE IF NOT EXISTS......ooiiiiiieeiet ettt
3.4.3.7.2. CREATE SEQUENCE .. CACTHE ..ot
3.4.3.7.3. CREATE SEQUENCE .. CYCLE ... ittt
3.4.3.7.4. CREATE SEQUENCE .. MINVALUE.......coi ittt s
3.4.3.7.5. CREATE SEQUENCE .. MAXVALUEco oottt
3.4.3.7.6. CREATE SEQUENCE .. INCREMENT BY ..ottt
3.4.3.7.7. CREATE SEQUENCE .. START WITH
B14.3.8. CREATE TABLE ...ttt s s bbbt
Bi4.3.8.T. COIUMNS ...t ettt
3.4.3.8.2. Nullability
343183, DEIAUILS ..o
B3 8.4, IABNTITIES ..ot
B4.3.8.5. PIIMIANY KEY...ooiioiii s
3.4.3.8.6. UNIGUE CONSTIAINTS. co. ittt
B4.3.8.7. FOTQIGM KEYS. ...ttt
3.4.3.8.8. ChECK CONSIIAINTS ..iviiiiiiieiet et
3.4.3.8.9. FIOM @ SELECT ..ottt
3.4.3.8.10. GlODAl TEMPOTANY TADIES. ...
3.4.3.9. CREATE TRIGGER ... oottt

© 2009 - 2025 by Data Geekery™ GmbH. Page 7/1123

The jOOQ User Manual

Bi.3.0. 1. EVINES ettt

3.4.3.9.2. REFERENCING ClAUSE.......oooiiveieeeeeeeeeeeee ettt

3.4.3.9.3. STATEMENT vs ROW triggers....

B.4.3.9.4 WHEN ClAUSE ..ot

34310, CREATE TYPE ..ottt bbb
34300 CREATE VIEW oottt ettt
3.4.3.11.1. CREATE OR REPLACE VIEW......oiiiiiiiitieeee ettt
3437712 WITH CHECK OPTION. ..ottt ettt
3431713 WITH READ ONLY oot
344, TNE DROP STALEIMENT.....viivieieiseeee ettt ettt
3447, DROP DATABASEcooiiceeee et
BT T TF EXISTS ettt
3.4.4.2. DROP DOMAIN.......oiiiiiiiit ettt bbb
B2 TF EXISTS oottt
3.4.4.3. DROP FUNCTIONooiiiiiiitieiets ettt 344new)
3.4.43.1. IF EXISTS....... 345new)
B4 44 DROP INDEX ..ottt 346
BT TF EXISTS oottt 347
3.4.4.5. DROP PROCEDURE ..ottt ettt 349new)
BihA5. T TF EXISTS oottt 350 new)
B4.4.6. DROP SCHEMAooiiiiiteieeeee ettt 351
BB, TF EXISTS oottt 353
3.4.4.7. DROP SEQUENGCEooiiiiiieie ettt 354
BT 0 TF EXISTS oottt 355
3448, DROP TABLE ...ttt 357
BB, CASCADE ...ttt 357
Bih4.B.2. IF EXISTS ot 358
3.4.4.9. DROP TRIGGER ..ottt 36Qnew)
3.4.49.1. IF EXISTS........... 361(new)
B4 400, DROP TYPE ..ottt 362
B4 IO, TF EXISTS e 363
B4 AT DROP VIEW. ..ottt 364
BT T EXISTS e 365
3.4.5. TNE GRANT STALEMENT. ..ottt ettt 367
3.4.6. TNE REVOKE SEATEMIENT. ...ttt s 367
34,7, THE SET STALEMENT. ..ottt ettt 367
3470, SET CATALOGt 367
B4.7.2. SET SCHEMA ..ottt 368
3.4.8. TNE TRUNCATE STALEMENT. ..ottt 370
3.4.9. Generating DDL fTOM ODJECES ..o 371
3.5, PrOCEAUIEI STAEEIMENTS ...ttt 372
3.5.1. Block statement

3.5.2. CALL STATOMIENT. 1.tttk sttt

3.5.3. CONTINUE statement
3.5.4. EXECUTE statement....
3 D EXIT STATEMIENT .ottt ettt s stk h e h ket h skttt
3.5.6. FOR STATEIMENT ..ttt s ettt
3.5.7. GOTO STALEMIENT. ..ottt s e bt et 2 22 s s s et h s s sttt s ettt
3D 8 I STATEMIENT ..ttt
35,9, LADBIS .. e e

35T 20 SIGNAL et h LRttt
B0 13. VANIADIES ... 396
© 2009 - 2025 by Data Geekery™ GmbH. Page 8/1123

The jOOQ User Manual

3.5 T4 WHILE STATEMIENT.. ..ot
3.6. Catalog and schema expressions
3.7. Table expressions........

3.7.1. Generated Tables
37,20 AlIASEA TADIES .o
3.7.2.7. Aliased ZENETATEA TADIES 405
3.7.2.2. AlIaSEA TADIE EXPIOSSIONS. ...ttt 405
3.7.2.3. DEMNVEA COMUMIN TISTS oo 406
3.7.2.4. UNNAmMEd AEIIVEA TADIES. ...t 409
B.7.3. JOINEBA TADIES ...
3.7.3.T. CROSS JOIN .ottt
37,320 INNER JOIN oot
3.7.3.30 OUTER JOIN oottt
37,34 SEMIJOIN ..o
37,350 ANTE JOIN ot
3.7.3.6. ON clause
3.7.3.7. ON KEY clause

3.7.3.8. USING ClAUSE. ...t
3.7.3.9. NATURAL ClAUSE ..ottt 421
373100 LATERAL ..ottt 421
37310 APPLY o 423
3.7.3.12. PARTITION BY oottt sttt 424
3.7.4. TNE VALUES() TADI0 CONSIIUCTON ...ttt ettt ettt ettt ettt et ettt ettt 425
375, DEIMVEA LADIES ...t 428
3.7.6. INHINE EIMVEA TADIES ...t bbb 429
3.7.7. TNE OraCle PIVOT ClAUSE ..ottt 430
3.7.8. REIGTHONAI QIVISION ...ttt bbb bbb 430
3.7.9. Array @nd CUMSOT UNNESTING. ..ottt 431
3.7.10. Table-valued functions

3700 GENERATE _SERIES. ...ttt
37020 JSON_TABLE ...t

BU7 03 XMLTABLEt
3714, TRE DUAL T8DIE...oiiiie bbb
3705 TEMPOTAl TADIES ...

3.8, COIUMN EXPIESSIONS ..ottt
3.8, TADIE COIUMINS. ...ttt
3.8.1.1. Generated tADI COIUMINS.....cooiii bbb bbb 446
3.8.1.2. DereferenCed able COIUMMS. ..o ittt 446
3.8.1.3. NAME TADIE COIUMINS.iviiiiiei bbb bbb 447
3.8.2. AlIASEA COIUMNS ...ttt
38,3, CAST X PIESSIONS ettt
3.8.4. Datatype coercions

38,5, COMATIONS ..t
3.8.6. ATMTNMETIC EXPIESSIONS. ...k

3.8.7. String concatenation

3.8.8. Case sensitivity with strings
3.8.9. GENETAI TUNCLIONS. ..eevieiiiii bbb
38001, CHOOSE. ...t
3.8.9.2. COALESCE ...
389,30 DECODE. ...
3804 I e
3805, INULLIF s
3890, INV L. L
3807, INVLZ .

© 2009 - 2025 by Data Geekery™ GmbH. Page 9/1123

The jOOQ User Manual

3.8.10. NUMIETIC TUNCIONS. ...t s 462
3.8.10.1.
3.8.10.2.
3.8.10.3.
3.8.104.
3.8.10.5.
3.8.10.6.
3.8.10.7.
3.8.10.8.
3.8.10.9.
3.8.10.10.
3.8.10.11.
3.8.10.12.
3.8.10.13.
3.8.10.14.
3.8.10.15.
3.8.10.16.
3.8.10.17.
3.8.10.18.
3.8.10.19.
BU8.T0.20. INEG ittt 484
BB T0. 27, Pl 485
BU8.T0.22. POWER ..ottt s bbb 486
BU8.T0.23. RAD ..o 487
BU8.T0.24. RAND ...ttt s 489
3.8.10.25.
3.8.10.26.
3.8.10.27.
3.8.10.28.
3.8.10.29.
3.8.10.30.
3.8.10.31.
3.8.10.32.
3.8.10.33.
3.8.10.34. WIDTH_BUGCKET ...ttt 502
3811, BIWISE FUNCLIONS. ..ottt 503
BB T BIT_AND e s 503
B8, 2. BIT_COUNT ..ottt 504
B8 TT.30 BIT_NAND ..ot 3 508
B8 TT.4 BIT_NOR .ottt ettt 509
B85, BIT_NOT i3s3 bbb s 511
B8 TT.0. BIT_OR .ot 513
B8 TT.7. BIT_XNOR. a3t 514
3.8.11.8. BIT_XOR
B89, SHL it
BB TT. M0, SHR et
3.8.12. String functions
BUBUT 2.0 ASCL et
381 2.2, BIT_LENGTH ittt

B8 2.3, CHR et

3.8 12,4, CONGCAT (| | OPEIALOM ..ttt 527
38T 2.5, DIGITS ettt 528new)
B8 2.0, LEFT bbb 531
B8 2.7 LENGTH oottt 532
© 2009 - 2025 by Data Geekery™ GmbH. Page 10/1123

The jOOQ User Manual

8.1 2.8, LOWER bt 533
B.8.T2.9. LPAD ..
3.8.12.10. LTRIM

LB T 2. T T DSt
U812 T2 IMHID e
38T 2. 13, OCTET _LENGTH. oottt 538
.81 2. T4 OVERLAY ..o 539
3.8 T2.T5. POSITION .t 8188ttt 542
381216, REGEXP_REPLACE ...ttt 543
B 8.l 2. T 7 REP AT R 545
381218, REPLACE .. 546
38T 2. 79, REVERSEt 547
812,20, RIGHT e 548
3.8.12.21.

3.8.12.22.

3.8.12.23.

3.8.12.24. SPLIT_PART

38T 2.25. SUBSTRING. ...ttt 555
3.8.12.26. SUBSTRING_INDEX ...ttt 55@new)
3.8 T2.27. TO_CHAR ettt h Rt 558
B.8.12.28. TO _HEX e e 559new)
3.8 T2.29. TRANSLATE ...ttt 560
381 2,30, TRIMuie e 562
38T 2.3 UPPER AR 562
Bu8.12.32. UUID i 563new)
3.8.13. DALOUME TUNCEIONS ..ot 566
38131 CENTURY ottt

3.8, 13,2, CURRENT _DATE ..ottt
3.8.13.3. CURRENT_LOCALDATE........cccovcvvririias

3.8.13.4. CURRENT_LOCALDATETIME

3.8.13.5. CURRENT_LOCALTIMEttt
3.8.13.6. CURRENT_OFFSETDATETIME ittt 574
3.8.13.7. CURRENT _OFFSETTIME. ..ottt 576
3.8.T3.8. CURRENT _TIME. ettt 578
3.8.13.9. CURRENT_TIMESTAMP ..ottt bbbt 579
3.8 T3. M0, DATE .t h Rttt 581
3.8 13T T, DATEADDt 582
3BT 30T 2. DATEDIFF £ 585
3813130 DATESUB. ... 590
B8 T3. T4 DAY oAt 592
381315, DAY _OF YEAR ... 594
3.8.13.16. DECADE

3.8.13.17.

3.8.13.18.

3.8.13.19.

3.8.13.20. ISO_DAY_OF _WEEK

381327, LOCALDATE ...t 606
3.8.13.22. LOCALDATEADD ..ottt st 608
3.8.13.23. LOCALDATESUB. ...ttt 610
3.8. 13,24, LOCALDATETIME ...ttt 613
3.8.13.25. LOCALDATETIMEADDttt 615
3.8.13.26. LOCALDATETIMESUB. ... oottt 618
381327, LOCALTIME .ttt 8ttt 621
381328, IMILLENNIUM ..o 8 sttt 622
© 2009 - 2025 by Data Geekery™ GmbH. Page 11/1123

The jOOQ User Manual

3.8 T3.29. IMINUTE ...
381330, IMONTH bbbt
3.8.13.31. QUARTER
381332, SECOND ...t
381333, TIME e
3.8.13.34. TIMESTAMP

3.8.13.35. TIMESTAMPADD

3.8.13.36. TIMESTAMPSUB

381337, TO_DATE. ...
3.8.13.38. TO_LOTALDATE. ...t 643
3.8.13.39. TO_LOCALDATETIME. ...ttt 644
3.8.13.40. TO_TIMESTAMPt

B8 TBLAT. TRUNC ..o

B8 13142. YEAR ..o

3.8.14.1. ARRAY_GET.....ceevrnirnne.
3.8.14.2. ARRAY constructor
3.8.14.3. ARRAY constructor from subquery

B8 T4 AL CARDINALITY oot 653
3815, JSON FUNCHIONS ... oottt 654
BL8LT5. T JSON_ARRAY ..ot 654
3L8.15.2. JSON _OBJECT ottt 656
381530 JSON_VALUE ... e 658
38160, XML FUNCHIONS ... s 660
3.8.T6.T. XMLATTRIBUTES ...ttt 660
3.8.16.2. XMLCOMMENT ..ottt 661
3.8.T6.3. XIMLCONCAT ...t 662
3.8.16.4. XMLDOCUMENT ...ttt 663
3.8.16.5. XMLELEMENT

3L8.T0.6. XIMLFOREST ...ttt
3L8.T0.7. XIMLPARSE. ...

BB T0.8. XIMLPLL. iR
3.8.T6.9. XMLQUERY ... s
3816, T0. XIMLSERIALIZE ... e 670new)
3.8.17. CONNECT BY fUNCHONS. ..ottt 671
3.8.17.1. CONNECT _BY _ISCYCLE. ...ttt 671
3.8.17.2. CONNECT_BY _ISLEAF ...t 672
3.8.17.3. CONNECT _BY_ROOT ...ttt 673
BB T 74 LEVEL e 674
BLBLT7.5. PRIOR R 675
3.8.17.6. SYS_CONNECT _BY _PATH. ...ttt 676
3.8.18. System functions..........cc.........

3.8.18.1. CURRENT_CATALOG

3.8.18.2. CURRENT_SCHEMA ... oottt
3.8.18.3. CURRENT_USER..........

3.8.19. Aggregate functions

3810, T, GIOUPINE ..ottt

3.8, 10,2, DISTINMTINESS. .. ettt E Rt
38103, FHIEIING et

B8 T9: 4 OIABIING ook
3.8.19.5. Ordering WITHIN GROUP. ...ttt 687
381000, KBPDINE ..ttt 688
381970 ANY _VALUE ... 688new)
3.8.T9.8. ARRAY _AGG . oot 689

© 2009 - 2025 by Data Geekery™ GmbH. Page 12/1123

The jOOQ U

ser Manual

3L8LT9.9. AVGc.iii s
3.8.T9.T0. BOOL AND ..ottt
3.8.19.11. BOOL_OR....

3819, T2, COLLECT ottt

38 T9. T3 COUNT e
3L8.T9. T4, CUME_DIST oot
381915, DENSE_RANK ...ttt 698
Bu8.T9.T0. EVERY oo 699
3.8.T9.17. GROUP_CONCAT ...ttt 701
3.8.19.T8. JSON_ARRAYAGGttt et 703
3.8.19.19. JSON_OBJECTAGG. oottt 706
3L8.T9.20. LISTAGG. 1ottt 708
3.8.19.21.

3.8.19.22.

3.8.19.23.

3.8.19.24.

3.8.19.25. MULTISET_AGG

3.8.19.26. PERCENT _RANK ...ttt 716
3.8.19.27. PERCENTILE_CONT ..ottt 717
3.8.19.28. PERCENTILE_DISC ..ottt 719
3.8.T9.29. PRODUCT ..t 720
3L8.T9.30. RANK .ttt 723
BL8LT9.37T. SUM. e 724
318.T9.32. XIMLAGG oot 725
3.8.20. WINAOW TUNCEIONS. ...uviiiiiiieti ettt 726
3.8.20.T. PARTITION BY ..ottt 727
3.8.20.2. ORDER BY oottt e 728
3.8.20.3. ROWS, RANGE, GROUPS (fram@ ClAUSE).....ev ittt 730
3.8.20.4. EXCLUDE....cooiiiiiicincsieec s

3.8.20.5. NULL treatment

3.8.20.6. FROM FIRST, FROM LAST ...ttt 735
3.8.20.7. NeSted agEregate fUNCIONS. ... 735
3.8.20.8. WINAOW GEI@EATIONottt 736
3.8.20.9. WINAOW OFAEred @BEIEEALE.ouiiiiiiiieie e 736
3.8.20.T0. ROW_NUMBER ...ttt 737
3820 T T RANK e 738
3.8.20. T2, DENSE_RANK ...ttt 739
3.8.20. 13 PERCENT _RANK ...ttt 740
3.8.20. T4, CUMELDIST oot 741
382015, INTILE et 742
3L8.20.T60. LEAD ... 743
3.8.20.17. LAG....... s 744
3.8.20.T8. FIRST_VALUE. ...ttt 746
3L8.20.T9. LAST WALUE ...ttt 747
3.8.20.20. NTH_VALUE ...t 748
3.8.271. USEr-AefiNEA fUNCHIONSttt 749
3.8.22. User-defined aggregate TUNCIIONS. . ..c i 749
3.8.23. TNE CASE EXPIESSION. ...ttt 751
3.8.24. SEQUENCES ANA SEITAIS ..t 751
38,25, SCAIAI SUDGUETIES ..o 752
3.8.20. ARRAY ValUB CONSTIUCTON .ottt ettt ettt ettt ettt et ettt ettt e ettt 753new)
3.8.27. MULTISET VAlUE CONSTIUCTON ..ottt ettt ettt ettt 753new)
3.8.28. TUPIES OF TOW ValUE EXPIESSIONS. ... eoieeiieieieciseiieie ettt 760
3.8.20. INESEEA TRCOITS. ..ottt ettt 762Anew)
© 2009 - 2025 by Data Geekery™ GmbH. Page 13/1123

The jOOQ User Manual

3.9, CONAILIONAI EXPIESSIONS. ...t
39,7, CONAILION DUIAING. ..o
3.9.2. TRUE and FALSE condition

3.9.3. BOOLEAN COIUMNS ...t
3.9.4. AND, OR, NOT DOOIEAN OPEIGLOIS. i. . ouieeiiririieiseii e 769
3.9.5. BOOIEAN OPEratOr PrECEAENCEot 770
3.9.6. COMPATISON PIOAICATE ...ttt 770
3.9.7. Comparison PrediCate (AEEMEE >). e 771
3.9.8. Quantified COMPANISON PrOAICATEc it 773
3.9.9. BETWEEN PrOOICATE . ..o 774
3.9.70. BETWEEN PrediCate (AT >). 776
39,17, DISTINCT PIrOAICATE. coivuvervieiiiriritie iR 778
3.9.12. DISTINCT PrediCate (AREIMEE >).t 780
3.9.13. DOCUMENT PrEAICATE .. etvirirrieitieeiseeit et 783
3.9.14. EXISTS predicate

3.9.15. IN predicate.....ccccccoeviirirrinnne

3.9.16. IN predicate (degree > 1)

3917, JSON PrEAICATE ...t
3.9.78. JSON_EXISTS PIrEAICATE. ...ttt
39,19, LIKE PrOAICATE ... e
3.9.20. LIKE REGEX PIrEAICATE. ...t
3.9.271. QUANTTIEA LIKE PreOICATE ...t 793
39,22, NULL PrEAICATE ...t 795
3.9.23. NULL PrediCate (AEEIEE >). 796
3.9.24. OVERLAPS PIrEAICATE.....ooiiiiit it
3.9.25. SIMILAR TO PrEAICATE ...ttt
3.9.26. UNIQUE PrOAICATR. ..ot
3.9.27. XMLEXISTS PrOOICALE. .. .ottt
3.9.28. Query By Example (QBE)....

310, OPEraAtOr PrECEARNCE.cuuieieieiee etk
31T, SYNENETIC SQL ClAUSES. ...
3120 DYNAMUC SQLutiit b8 b8 8RRt
3.12.1. OptioNal CONAILIONAI EXPIESSIONS. ...t 806
3130 PIAIN SOt 806
B30T PIAIN SQL AP 807
3.13.2. Plain SQL temMPIlating [ANGUAEE.cuiuiiiieie s 809
BT HINES e 810
BT T . IMYSQL NINES i 810
BT T INAEX NINES oo 810
314720 STRAIGHT JOIN. ottt 811
3.14.1.3. Oracle style NINES IN MYSQLu...iii st 811
3.14.2. Oracle NiNtS....coooveieieiiin,

3.14.3. SQL Server hints

BT 3T WITH s

3.14.3.2. OPTION
3.15. SQL Parser
3050, SQL PAISEE APL ..o ettt

315, 2, SQL PASEE CL oo ettt ettt ettt
315,38, SO PaISEI LISTENE ..ttt ettt ettt 817 new)
BT 5, SO TrANSIATON ..ottt 818
3.1 5.5, SO PSS GIAMIMIAI ... ittt ettt ettt ettt et e ettt ettt ettt et ettt ettt 819
310, S M D B ..ttt Rt 819
317 SCNEIMG GIff bbb 820
318, SCNEMG QT Ll ettt 821

© 2009 - 2025 by Data Geekery™ GmbH. Page 14/1123

The jOOQ User Manual

3.19. NAMES NG IHENTITIEIS. ..ot 821
3.20. BINA VAIUES @NA PArAMETETS. ...t 822
3.20.1. Indexed parameters

3.20.2. NAMEA PArAMETEIS. ..ottt
3.20.3. INNINEA PATAMIETETS. ...
3.20. 4 SO M ECEION. ..ttt
327 QUEIYPAITS bt
32701 SQL TENAEBIING oot
3.271.2. DECIATTION VS TEIEIENCE. ...t 827
3.271.30 Pretty PIINTING SQL. it 8 ettt st 828
32714, VArTADIE DINTAING ... 829
3.271.5. CUSTOM data TYPE DINAINES. ..ot 829
3.27.6. CUSLOM SYNTAX CIEMIENTS ...ttt 833
3.271.7. Plain SQL QUETYPAITS. ...ttt
3218, SOIIANZADIITY . e

3.21.9. SQL transformation
3.21.9.1. ANSI JOIN to table lists

3.271.9.2. Table IStS £O ANSI JOIN ...ttt 838
3.271.9.3. ROWNUM TO LIMIT oot 838
3.21.9.4. QUALIFY £0 EIVEA TADIE. ...ttt 839new)
3.21.9.5. IN condition subquery with LIMIT to derived table........cooiii s 839new)
3.21.9.6. UNNEeCessary arithmetiC EXPIrESSIONS. ...t 839
3.27.10. Custom SQL transformation WIth VIS LISTENME ...t 840
3.21.10.1. Example: Logging abbreviated DINA VAIUES.........ccocoiiii e 840
3.22. Zr0-based VS ONE-DASEA APIS. ... 841
3.23. SQL BUIAING TN KON .ot 842
3.23.1. KON BOOLEAN VaAIUE EXPI@SSIONS. ...ttt 843
3.23.2. KON ARRAY @CCESS. ...t

3.24. SQL building in Scala..........

3.25. Compile time validation

A, SQL EXECULION ...ttt ettt e ettt ettt ettt ettt ettt

4.1. Comparison between JOOQ @Nd JDBC. ... 850
4.2, QUETY VS, RESUITQUETY ..o 850
2.3 FEICIINEG .o 851
4.3.1. RECOTA VS. TADIERECOIT. ..ottt 853
4.3.2. RECOIAT £0 RECOTTZ2....ii s 854
4.3.3. AITAYS, MAPS @M LISTS. oo 855
4.3.4. RESUIQUETY @S TEEIADIE. ... 855
43,5, RECOTAMAPDET ..o 855
.36, POJOS..o iR 856
4.3.7. RECOTAMAPPEIPTOVIAET ... 860
4.3.8. Ad-hoc Converter.................. ... 860new)
4.3.9. ConverterProvider 863
43710, LAZY FEECNING .t s
4.3.11. Lazy fetching with Streams

4302, MANY FEECNINE. ...

4. 3.1 3. LATET TOECNINE et
4304, REACTIVE FETCNING. ...t
4,315, RESUITSEE TOICNING ...t
4.3.16. AULO LA TYPE CONVETSION. .. .ottt
4.3.17. CUSLOM dALa TYPE CONVETSION. ... ceiiiiiiecirtisisiteese s 871
4.3.18. DAta TYPE IOOKUDS. ...t 872
4.4, Static statements VS. Prepared STATEMENTS. ... i 873
4.5. Reusing @ QUENY'S PrepPar@aStalEMEBNT. ..ot 874

© 2009 - 2025 by Data Geekery™ GmbH. Page 15/1123

The jOOQ User Manual

Z0. JDBC A ittt e
4.7. USING JDBC DALCN OPEIATIONS ..ottt
4.8. Sequence execution
4.9. Stored procedures and functions

49,7, OFACIE PACKAGES ...t
4.9.2. Oracle MEMDET PrOCEAUIES. ...t
4.10. Exporting to XML, CSV, JSON, HTML, TEXE, ChaITS. ..ottt 881
AT0.T. EXPOTTING XMLttt
4.10.2. EXPOITING CSV .ttt
A.T0.3. EXPOITING JSON .ot E 8ttt
4104, EXPOITING HTIML ottt

A T0.5. EXPOITING TEXE .ttt 8 st s bttt
4.10.6. Exporting Charts

AT IMIPOITING ATttt
AT7.T. TRE LOGAET AP
4.11.2. Import options....

T2 TIITOTEIING o
4.17.2.2. DUPHCATE MANAIING. ...t 887
00230 EITOT NANAING s 887
A.17.3. IMPOTT AALA SOUITES ..o 887
407370 TMPOTTING TSVt bbbttt 887
AT7.3.2. IMPOTTING JSON ..ot 888888ttt 888
47733 IMPOTTING TECOTTS .ottt 889
AT .34, IMIPOTTING GITAYS ittt ittt 1 e 8228 s sttt 889
Z4.717.3.5. TMPOTTING XMLttt ettt 890
AT IMPOTT ISTEMEIS o2 890
4.71.5. IMpOort result and error NANAING 890
4.12. CRUD WIth UPdatablERECOITS. ... 891
4.12.1. Simple CRUD......ccccoovvviiriiin,

4.12.2. Records' internal flags

1230 IDENTITY VAIUBS. ..ot
A.12.4. NaVIBATION METNOGS. ...t
4.72.5. NON-UPAALADIE TECONAS. ... 895
4.12.6. OPUMUSTIC IOCKING ... 895
A.12.7. BAECN EXECULION. ...t 896
4.712.8. CRUD SPI: RECOTALISTEMET ...ttt 897
A1 3. DADS s 898
A T4, TraNSACTION MANAEEMIENT. ..ottt ettt ettt 8 b1t h b8 et ettt 899
405, EXCOPTION NANAING ittt
416, EXCCULELISTENMEIS ...ttt
4.17. DatADASE META TaLA.... . et

4.17.1. JDBC meta data
4.17.2. Interpreted meta data
A.17.30 XML MNEEA ABEQ ittt
4.17.4. Generated meta data
418, JDBC CONNEBCLION. ..ttt ettt ettt ettt ettt s st et et sttt e ettt e s s sttt s ettt e et e e
4.79. BALCNEA COMNECTION. ...ttt
4.20. MOCKING COMMETTION. ...ttt
4,271, MOCK FIlE DATADESE. ...t
A.22. PATSING CONNMETLION. ..ttt h b8ttt
423, DIBZNOSTICS. c.. ettt
A.23.7. TOO MANY ROWS....coiiiee ettt
4.23.2. TOO MANY COIUMIIS ..ottt

4.23.3. DUPICATE STATEMENTS. ...ttt
© 2009 - 2025 by Data Geekery™ GmbH. Page 16/1123

The jOOQ User Manual

4.23.4. REPEATEA STALEIMIENETS. ooouietieiiisiseiei e
4235 WASNUIT CAIIS. i
4.24. Logging with LoggerListener

A.25. LOZEING COMMEITION. ...ttt 80 sttt
4.26. Performance considerations

4.27. AIterNative @XECUTION MOTERIS. ...t 922
4.27.1. Using JOOQ WIth SPriNg's JADCTEMIPIATE ... 922
4.27.2. USING JOOQ WITN JPA ..ot 923
4.27.2.1. UsiNg JOOQ WIth JPA NATIVE QUETY ...t 924
4.27.2.2. USING JOOQ WITN JPA ©NTITIES ...t 925
4.27.2.3. UsiNg JOOQ WItN JPA ENTLYRESUIT. ... 926
5. OO BENEIATION. ...ttt 929
5.7, Configuration and SELUP OF The GENEIATON ... e 929
5.2. Advanced generator CONFIGUIATION. ..ot 937
52T LOZBEINE ettt bbbt
5.2.2. Error handling

LA T o | o LSOO OO OPTRPR RO
ST B T 1< = 0] OSSOSO
5,25, DALADASE. ... e
5.2.5.1. Database NAME aNd PrOPEITIES.......ciiiiiiiie et 943
5.2.5.2. REZEXFIAZS ... e 945
5.2.5.3. INCIUAES @NA EXCIUGES. ..o 946
5.2.5.4, INCIUAE OIJECT TYPES. ..ot 950
5.2.5.5. Record Version and TIMESTAMP FIEIAS. ..o 951
D2 508, COMIMIBNES. ..ottt ettt ettt ettt et 952new)
5.2.5.7. SYNTNETIC OBDJOCES .. 954
5.2.5.7.1. SYNENETC INTILIES ... it 954
5.2.5.7.2. SYNTNETIC PIIMANY KEYS......oiiiiieeieiiiieieist et 955
5.2.5.7.3. Synthetic unique keys

5.2.5.7.4. Synthetic foreign keys

5.2.5.8. DAl @S LIMESTAMID. 1ottt
5.2.5.9. Ignore procedure return values (AEPrECATEA). .. .o 961
5.2.5.T0. UNSIZNEA TYPES. ottt 961
5.2.5.11. Catalog and SCREMIA MAPPING. ...t 962
5.2.5.12. Catalog and SChEMa VEISION PrOVIAEIS ...t 969
5.2.5.13. Custom ordering Of SENEratead COTR ... 971
5.2.5. T4, FOICRA TYPBS. . i 973
5.2.5.14.7. MatChING OFf fOICEA TYPES. .. i 973
5.2.5.14.2. DATA TYPE TEWIILINEG. ... tvrreviiiteeititietetie ettt
5.2.5.14.3. QUANTIEA CONVEITEIS. ... ettt ettt ettt
5.2.5. 4.4, INHINE CONMVEITEIS. ...ttt
5.2.5.14.5. Lambda converters....

5.2.5.T4.6. ENUIM COMVEITRIS. ...ttt
5.2.5.14.7. DAta tyPE DINAINGS. ...
5.2.5.15. Table valued functions

ST G T T 1< = <O T PR PTTROTRTN
5.2.6. T, ANNOTALIONS. ...ttt
5.2.6.2. COVAMANT OVEITIAES. ...ttt
5.2.6.2.T. OVEITIAING @S()-+urvrrvrtertereiriieieei ittt 8 1 e b
5.2.6.2.2. OVEITIAING FENAME()..... ittt
5.2.6.3. Default Catalog and SCREMIA..... oo 993
5.2.0.4 FIUBNT SETLOIS ... 993
5.2.6.5. FUIlY QUAIITIEA TYPS. ...ttt 994
5.2.6.6. GlIODAI ATTEIACES ..ot 995

© 2009 - 2025 by Data Geekery™ GmbH. Page 17/1123

The jOOQ User Manual

5.2.6.7. Implicit JOIN paths

5.2.6.8. JAVA TIME TYPES. oottt ettt
5.2.6.9. Serial Version UID

5.2.0. T 0. SOUIMTES. ..ttt 8t E oLttt
5.2.6. 17, VISIDIITY IMOGITIEI ...t

5.2.6.12. Whitespace (Newlines and iNAENTATION). ..ot 1001
5.2.6.13. ZEr0 SCAIE DECIMAI TYPES ..ttt 1002
5.2.7. OULPUL LarGET CONTIGUIATIONouiiieiiiisi s 1003
5.3, GENEIALEA OIJECE TYPES. .. it 1004
5,301, GENEIATEA TADIES ... 1004
5.3.2. GENEIATEA TECOTTS. ...ttt 1006
5.3.3. GENETALEA POJOS..... oot 1008
5.3.4. GENEIATEA INTEITACES. ... 1010
5.3.5. GENEIATEA DADS ...ttt 1011
5.3.6. GENEIALEA SEQUEICES. ...ttt 1013
5.3.7. Generated procedures . 1014
5.3.8. GENEIALEA TOMIBINS...iuiiiiiiieii bbb 1015
5.3.9. GENEIATEA UDTS. ..ot 1015
5.3.10. GENErated lODAl GrTETACTS. ...t 1017
5.4. Class Names, METNOA NAMES, 1ML OIS, ... oo et ettt ettt ettt ettt ettt ettt 1018
5.4.7. CUSTOM ZENETIATON SIITALEZIES. ... ittt 1018
5.4.2. MATCNEE STTALEEIES ..ot
5427, MAECNEIRUIB. ...
5.4.2.2. MALCRING CALAIOES. ...t
5.4.2.3. MAECNING SCNBIMAS ...ttt
5.4.2.4, MATCRING TADIES ...
5.4.2.5. MAECNING TIEIAS ...
5.4.2.6. MATCNING FOUTINES ...ttt
5.4.2.7. Matching sequences

5.4.2.8. MATCNING ENMUMS ...ttt
5.4.2.9. MatChiNg MDEATADIES.ot s 1037
5.4.2.10. MATCNEI EXAMPIES. ... 1039
5.5, CUSTOM COUE SETLIOMS. ...ttt 1041
5.6. COdE ZENETAtION EXIENSIONS.oueiieiieitiiieiee ittt 1043 (new)
5.6.7. POSTZrESQL EXTENSIONS. ittt bbbttt 1043 (new)
5.7, EMDEAAADIE TYPES ...

5.7 1. CONTIGUIATION .ttt
5.7.2. Overlapping €mMbDeddable TYPES. ..o

5.7.3. FIEIA TEPIGCEIMENT. ... oo

5,74, EMDEAAEA KEYS... .o

5.7.5. EMDEATEA JOMIGINS ...ttt

5.8. Mapping generated catalogs and schemas

5.9. AltErNative MELA JATA SOUITES......c.iiriiitiee e
5.9.1. JPADatabase: Code generation fromM ENTILIES. ..ot 1057
5.9.2. XMLDatabase: Code generation from XML files... ... 1061
5.9.3. DDLDatabase: Code generation from SQL fileS..........coiiiiiii e 1064
5.9.4. LiquibaseDatabase: Code generation from Liquibase XML, YAML, JSON fileS.......ccoovniiiiesise s 1070
5.70. AILErNATIVE OULPUEL JANGUAEES.ot 1072
5.70.T. XMLGENErator: GENETATING XIML.... vttt 1073
5. 10,2, KOUINMGENMEIATON ...t 1073
5. T0.3. SCAIAGENETIATON ...t 1075
5.77. COAE GENEIAtION EXECULION ...uiveieieieeiii e 1076
5.11.1. Running the code generator Wit IMAVEN ..o 1077
5.11.2. Running the code Zenerator WIEN ANT.......cccoii e 1079

© 2009 - 2025 by Data Geekery™ GmbH. Page 18/1123

The jOOQ User Manual

5.11.3. Running the code generator WIth GIradl@ ...
5.11.4. Programmatic Configuration @nd EXECUTION.viiirieiecieieieie st
5.12. System properties governing code generation
5.13. Code generation dePENAENCIES.oiiiiiiiiiiiie bbb
5.14. Code generation fOr lArZE SCNEIMAS. ...t
5.15. Code generation and VEISION COMTIOL. ...
5.16. Features requiring SENEIAtEA COE.. ..ot
6. COMINEG TTOM JPA ..ot
6.7, ST DASEA TNINMKINE. ...t
0.2, DALADASE FIMST. it
6.3, EQGET OF 1AZY 10GAING ...t
6.4. First level cache and SECONA [8VEI CATNE. ...
6.5, EMIDEATADIE ...
0.6, ATLTIDULECONVEITEN ...t
0.7 USEI LY PES. ottt LRt
6.8. Implicit JOIN

6.9. @0OneToOne or @ManyToOne
6.10. @ONETOMANY OF @MANYTOMEBNY.....uiiiiiiiiei ettt

7 RETEIEICE ..
7.7, SUPPOIMTEA RDBIMS ...
7.2. COMMETCIAl ONIY TEATUIES ...t
7.3, EXPEIIMENTAL FRATUIES...oevoii bbb
T2 BUIITN GAEA DY DS oo
7471 BLOBS @NA CLOBS. ..ottt
7.4.2. BOOLEAN TaATA YDttt
743, UNSIZNEA INTEZEI TYPES ...ttt
T A4, INTERVAL GAA TYPES ittt
T 4.5, JSON LA TYPES ...t
7.4.6. XML data types............
7.4.7. CURSOR data types
7.4.8. ARRAY aNA TABLE GaTA DY PES it
7.4.9. Oracle DATE a8 TP .. it
T AT 0. DOMAINS. .o
7.5. SQL t0 DSL MAPPING TUIES. ...
7.6, QUANTTY ASSUIANCE. ..ot
77 SBCUITEY ettt s e8RS ERE et
770 SQL N CEION ettt
7.7.2. DEDUE TOZINE. ...t s b
7.7.3. EXCEPUION MNESSAEE. ... cuvriieiitete ittt
7.7 A COMTACT ettt E ARt

7.9.1. jO0OQ: Implementing the DSL types
7.9.2. JOOQ: REfEreNCiNG the STEP TYPES. ..
7.9.3. Schema: NULL columns................
7.9.4. Schema: Unnamed constraints
7.9.5. SChema: UNNECESSArY SUMOZATE KEYS........iuiiiiiiiiiieiieti ittt 1114
7.9.6. SCNEMA: WIONEZ LA TYPES. .. iieiiiiiiieiiiei s 1115
7.9.7. SQL: COUNT(*) INSTEAA OF EXISTS()...vvuveuiriiriieiisiiticiee st 1115
7.9.8. SOL: N s 1115
7.9.9. SQL: NATURAL JOIN OF JOIN USING ...ttt 1117
7.9.70. SQL: NOT IN PIrOAICALE ...ve vt 1118
7.9.17. SQL: ORDER BY [COIUMN INAEX] ...ttt ettt 1118

7.9.12. SQL: Rely 0N IMPHCIT OFAIINGo 1119
© 2009 - 2025 by Data Geekery™ GmbH. Page 19/1123

The jOOQ User Manual

7.9.130 SQLE SELECT oo
7.9.14, SQL: SELECT DISTINCT .ottt
7.9.15. SQL: Unnecessary UNION instead of UNION ALL
7.10. The most important jOOQ types
7.11. Credits

© 2009 - 2025 by Data Geekery™ GmbH. Page 20/ 1123

The jOOQ User Manual 1. Copyright, License, and Trademarks

1. Copyright, License, and Trademarks

This section lists the various licenses that apply to different versions of jOOQ. Prior to version 3.2, JOOQ
was shipped for free under the terms of the Apache Software License 2.0. With jJOOQ 3.2,jO0Q became
dual-licensed: Apache Software License 2.0 (for use with Open Source databases) and commercial (for
use with commercial databases).

This manual itself (as well as the www.joog.org public website) is licensed to you under the terms of
the CC BY-SA 4.0 license.

Please contact legal@datageekery.com, should you have any questions regarding licensing.

License for JOOQ 3.2 and later

This work is dual-licensed
- under the Apache Software License 2.0 (the "ASL")
- under the jOOQ License and Maintenance Agreenent (the "jOOQ License")

You may choose which |icense applies to you:

- If you're using this work with Open Source databases, you may choose
ei ther ASL or jOOQ License.

- If you're using this work with at |east one conmercial database, you nust
choose j OOQ Li cense

For nore information, please visit https://wwmjooq.org/licenses

Apache Software License 2.0:

Li censed under the Apache License, Version 2.0 (the "License");
you may not use this file except in conpliance with the License.
You may obtain a copy of the License at

htt ps: // www. apache. org/ | i censes/ LI CENSE- 2. 0

Unl ess required by applicable |aw or agreed to in witing, software

di stributed under the License is distributed on an "AS | S" BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KIND, either express or inplied.
See the License for the specific |anguage governi ng perm ssions and
limtations under the License.

j OOQ License and Mai ntenance Agreenent:

Dat a Geekery grants the Custoner the non-exclusive, tinely limted and
non-transferable |icense to install and use the Software under the terms of
the jOOQ Li cense and Mai nt enance Agreenent .

This library is distributed with a LI M TED WARRANTY. See the jOOQ License
and Mai ntenance Agreement for nore details: https://ww.jooq.org/licensing

Historic license for jJOOQ 1.x, 2.x, 3.0, 3.1

Li censed under the Apache License, Version 2.0 (the "License");
you nmay not use this file except in conpliance with the License.
You may obtain a copy of the License at

https://ww. apache. org/ | i censes/ LI CENSE- 2. 0

Unl ess required by applicable |aw or agreed to in witing, software
distributed under the License is distributed on an "AS | S" BASIS,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KIND, either express or inplied.
See the License for the specific |anguage governing perni ssions and
limtations under the License.

© 2009 - 2025 by Data Geekery™ GmbH. Page 21/1123

https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.jooq.org/licensing
https://www.jooq.org
https://creativecommons.org/licenses/by-sa/4.0/
mailto:legal@datageekery.com

The jOOQ User Manual 1. Copyright, License, and Trademarks

Trademarks owned by Data Geekery™ GmbH

JOOA™ is a trademark by Data Geekery™ GmbH
jOOQ™ is a trademark by Data Geekery™ GmbH
- JOOR™ s a trademark by Data Geekery™ GmbH
jOOU™ is a trademark by Data Geekery™ GmbH
jOOX™ is a trademark by Data Geekery™ GmbH

Trademarks owned by database vendors with no affiliation to Data
Geekery™ GmbH

- Access® is a registered trademark of Microsoft® Inc.

- Adaptive Server® Enterprise is a registered trademark of Sybase®, Inc.
- DB2® s a registered trademark of IBM® Corp.

- Derby is a trademark of the Apache™ Software Foundation

- H2is atrademark of the H2 Group

- HANA'is a trademark of SAP SE

- HSQLDBis a trademark of The hsgl Development Group

- Ingres is a trademark of Actian™ Corp.

- MariaDBis a trademark of Monty Program Ab

- MySQL® is a registered trademark of Oracle® Corp.

- Firebird® is a registered trademark of Firebird Foundation Inc.

- Oracle® database is a registered trademark of Oracle® Corp.

- PostgreSQL® is a registered trademark of The PostgreSQL Global Development Group
- Postgres Plus® is a registered trademark of EnterpriseDB® software

- SQL Anywhere® is a registered trademark of Sybase®, Inc.

- SQL Server® is a registered trademark of Microsoft® Inc.

- SQLite is a trademark of Hipp, Wyrick & Company, Inc.

Other trademarks by vendors with no affiliation to Data Geekery™ GmbH

- Java® is a registered trademark by Oracle® Corp. and/or its affiliates
Liquibase is a trademark by Datical, Inc

- Flyway is a trademark by Red Gate Software Ltd

- Scalais atrademark of EPFL

Other trademark remarks

Other names may be trademarks of their respective owners.

Throughout the manual, the above trademarks are referenced without a formal ® (R) or ™ (TM) symbol.
It is believed that referencing third-party trademarks in this manual or on the jJOOQ website constitutes
"fair use". Please contact us if you think that your trademark(s) are not properly attributed.

© 2009 - 2025 by Data Geekery™ GmbH. Page 22 /1123

mailto:contact@datageekery.com

The jOOQ User Manual 1. Copyright, License, and Trademarks

Contributions

The following are authors and contributors of JOOQ or parts of jJOOQ in alphabetical order:

© 2009 - 2025 by Data Geekery™ GmbH. Page 23/1123

The jOOQ User Manual

© 2009

Aaron Digulla
Andreas Franzén
Anuraag Agrawal
Arnaud Roger

Art O Cathain

Artur Dryomov

Ben Manes

Brent Douglas

Brett Meyer
Christian Stein
Christopher Deckers
Dennis Neufeld

Ed Schaller

Eric Peters

Ernest Mishkin
Espen Stromsnes
Eugeny Karpov
Fabrice Le Roy
Gonzalo Ortiz Jaureguizar
Gregory Hlavac
Henrik Sjostrand
lvan Dugic

Javier Durante
Johannes Buhler
Joseph B Phillips
Joseph Pachod
Knut Wannheden
Laurent Pireyn
Logan Hauspie

Luc Marchaud
Lukas Eder

Matti Tahvonen
Michael Doberenz
Michael Simons
Michat Kotodziejski
Miguel Gonzalez Sanchez
Mustafa Yucel
Nathaniel Fischer
Nicholas Chong W.B.
Octavia Togami
Oliver Flege

Per Lundberg

Peter Ertl

Richard Bradley
Robin Stocker
Roland Weisleder
Samy Deghou
Sander Plas

Sean Wellington
Sergey Epik

Sergey Zhuravlev
Stanislas Nanchen
Stephan Schroevers
Sugiharto Lim

Sven Jacobs
SZyMQDejaGhikEn ™ GrbH.
Terence Zhang
Thomas Darimont
Timothy Wilson

1. Copyright, License, and Trademarks

Page 24 /1123

The jOOQ User Manual 1. Copyright, License, and Trademarks

See the following website for details about contributing to jOOQ:
https://www.joog.org/legal/contributions

© 2009 - 2025 by Data Geekery™ GmbH. Page 25/1123

https://www.jooq.org/legal/contributions

The jOOQ User Manual 2. Getting started with jOOQ

2. Getting started with jJOOQ

These chapters contain a quick overview of how to get started with this manual and with jOOQ. While
the subsequent chapters contain a lot of reference information, this chapter here just wraps up the
essentials.

2.1. How to read this manual

This section helps you correctly interpret this manual in the context of jOOQ.

Code blocks

The following are code blocks:

-- A SQL code bl ock
SELECT 1 FROM DUAL

/1 A Java code bl ock
for (int i =0; i < 10; i++);

<!-- An XML code bl ock -->
<hel | o what ="wor | d"></ hel | 0>

A config file code bl ock
org.j ooq. property=val ue

These are useful to provide examples in code. Often, with jOOQ, it is even more useful to compare SQL
code with its corresponding Java/jJOOQ code. When this is done, the blocks are aligned side-by-side,
with SQL usually being on the left, and an equivalent JOOQ DSL query in Java usually being on the right:

- In SQL: /] Using jOOQ
SELECT 1 FROM DUAL create. sel ect One().fetch()

Code block contents

The contents of code blocks follow conventions, too. If nothing else is mentioned next to any given code
block, then the following can be assumed:

-- SQL assunptions

- If nothing else is specified, assune that the Oracle syntax is used
SELECT 1 FROM DUAL

© 2009 - 2025 by Data Geekery™ GmbH. Page 26 /1123

The jOOQ User Manual 2.2. The sample database used in this manual

/1l Java assunptions
A

/'l \Whenever you see "standal one functions", assume they were static inported from org.jooq.inpl.DSL

/1 "DSL" is the entry point of the static query DSL

exists(); max(); min(); val(); inline(); // correspond to DSL.exists(); DSL.max(); DSL.min(); etc...

/1 \Whenever you see BOOK/ Book, AUTHOR/ Author and simlar entities, assune they were (static) inported fromthe generated schema
BOOK. TI TLE, AUTHOR. LAST_NAME // com exanpl e. gener at ed. Tabl es. BOOK. TI TLE, com exanpl e. gener at ed. Tabl es. AUTHOR. LAST_NAVE
FK_BOOK_AUTHOR /1 com exanpl e. gener at ed. Keys. FK_BOOK_AUTHOR

/'l Whenever you see "create" being used in Java code, assune that this is an instance of org.jooq. DSLCont ext.

/1l The reason why it is called "create" is the fact, that a jOOQ QueryPart is being created fromthe DSL object.

/Il "create" is thus the entry point of the non-static query DSL
DSLCont ext create = DSL.using(connection, SQLDi al ect.ORACLE);

Your naming may differ, of course. For instance, you could name the "create" instance "db", instead.

Execution

When you're coding PL/SQL, T-SQL or some other procedural SQL language, SQL statements are always
executed immediately at the semi-colon. This is not the case in jJOOQ, because as an internal DSL, jOOQ
can never be sure that your statement is complete until you call fetch() or execute(). The manual tries
to apply fetch() and execute() as thoroughly as possible. If not, it is implied:

SELECT 1 FROM DUAL create.sel ectOne().fetch();
UPDATE t SET v = 1 create.update(T).set(T.V, 1).execute();

Degree (arity)

jOOQ records (and many other APl elements) have a degree N between 1 and 22. The variable degree
of an APl element is denoted as [N], e.g. Row[N] or Record[N]. The term "degree" is preferred over arity,
as "degree" is the term used in the SQL standard, whereas "arity" is used more often in mathematics
and relational theory.

Settings

jOOQ allows to override runtime behaviour using org.joog.conf.Settings. If nothing is specified, the
default runtime settings are assumed.

Sample database

jOOQ query examples run against the sample database. See the manual's section about the sample
database used in this manual to learn more about the sample database.

2.2. The sample database used in this manual

For the examples in this manual, the same database will always be referred to. It essentially consists of
these entities created using the Oracle dialect

© 2009 - 2025 by Data Geekery™ GmbH. Page 27/1123

https://www.jooq.org/javadoc/3.15.x/org/jooq/conf/Settings.html

The jOOQ User Manual 2.3. Different use cases for jJOOQ

CREATE TABLE | anguage (

id NUVBER(7) NOT NULL PRI MARY KEY,
cd CHAR(2) NOT NULL,
descri ption VARCHAR2(50)

)i

CREATE TABLE aut hor (

id NUVBER(7) NOT NULL PRI MARY KEY,
first_nane VARCHAR2(50) ,
| ast _name VARCHAR2(50) NOT NULL,

date_of _birth DATE,

year _of _birth NUVBER(7),

di stingui shed NUMBER(1)
)

CREATE TABLE book (

id NUVBER(7) NOT NULL PRI MARY KEY,

aut hor _i d NUVBER(7) NOT NULL,

title VARCHAR2(400) NOT NULL,

publ i shed_in NUVBER(7) NOT NULL,

| anguage_i d NUVBER(7) NOT NULL,

CONSTRAI NT f k_book_aut hor FOREI GN KEY (aut hor _i d) REFERENCES aut hor (i d),

CONSTRAI NT f k_book_| anguage FOREI GN KEY (| anguage_i d) REFERENCES | anguage(i d)
)

CREATE TABLE book_store (
nane VARCHAR2(400) NOT NULL UNI QUE
)

CREATE TABLE book_t o_book_store (

nane VARCHAR2(400) NOT NULL,

book_i d | NTEGER NOT NULL,

st ock | NTEGER,

PRI MARY KEY(name, book_id),

CONSTRAI NT f k_b2bs_book_store FOREI GN KEY (name) REFERENCES book_store (name) ON DELETE CASCADE,
CONSTRAI NT f k_b2bs_book FOREI GN KEY (book_i d) REFERENCES book (i d) ON DELETE CASCADE

More entities, types (e.g. UDT's, ARRAY types, ENUM types, etc), stored procedures and packages are
introduced for specific examples

In addition to the above, you may assume the following sample data:

I NSERT | NTO | anguage (id, cd, description) VALUES (1, 'en', 'English);

I NSERT | NTO | anguage (id, cd, description) VALUES (2, 'de', 'Deutsch');

I NSERT | NTO | anguage (id, cd, description) VALUES (3, 'fr', 'Francais');
I NSERT | NTO | anguage (id, cd, description) VALUES (4, 'pt', 'Portugués');

I NSERT | NTO aut hor (id, first_nane, |ast_nane, date_of _birth , year_of _birth)
VALUES (1, '"George’ , 'Orwell' , DATE '1903-06-26', 1903)

I NSERT | NTO aut hor (id, first_nane, |ast_nane, date_of birth , year_of _birth)
VALUES (2, 'Paulo , 'Coel ho' , DATE '1947-08-24', 1947)

I NSERT | NTO book (id, author_id, title , published_in, |anguage_id)
VALUES (1,1 , '1984' , 1948 , 1 ;

I NSERT | NTO book (id, author_id, title , published_in, |anguage_id)
VALUES (2,1 , "Animal Farm , 1945 , 1 ;

I NSERT | NTO book (id, author_id, title , published_in, |anguage_id)
VALUES (3, 2 , 'O A quinista, 1988 , 4 ;

I NSERT | NTO book (id, author_id, title , published_in, |anguage_id)
VALUES (4, 2 , ' Brida , 1990 , 2 ;

I NSERT | NTO book_store VALUES (' Orell Fussli');
I NSERT | NTO book_store VALUES (' Ex Libris");
I NSERT | NTO book_store VALUES (' Buchhandl ung i m Vol kshaus');

I NSERT | NTO book_t o_book_store VALUES (' Orell Fussli' , 1, 10);
I NSERT | NTO book_t o_book_store VALUES (' Orell Fussli' , 2, 10);
I NSERT | NTO book_t o_book_store VALUES (' Orell Fussli' , 3, 10);
I NSERT | NTO book_t o_book_store VALUES (' Ex Libris' , 1, 1);
I NSERT | NTO book_t o_book_store VALUES (' Ex Libris' , 3, 2)
I NSERT | NTO book_t o_book_store VALUES (' Buchhandl ung i m Vol kshaus', 3, 1)

2.3. Different use cases for jJO0Q

jOOQ has originally been created as a library for complete abstraction of JDBC and all database
interaction. Various best practices that are frequently encountered in pre-existing software products
are applied to this library. This includes:

© 2009 - 2025 by Data Geekery™ GmbH. Page 28/1123

The jOOQ User Manual 2.3.1.jO0Q as a SQL builder without code generation

- Typesafe database object referencing through generated schema, table, column, record,
procedure, type, dao, pojo artefacts (see the chapter about code generation)

- Typesafe SQL construction / SQL building through a complete querying DSL APl modelling SQL
as a domain specific language in Java (see the chapter about the query DSL API)

- Convenient query execution through an improved API for result fetching (see the chapters about
the various types of data fetching)

- SQL dialect abstraction and SQL clause emulation to improve cross-database compatibility and
to enable missing features in simpler databases (see the chapter about SQL dialects)

- SQL logging and debugging using jOOQ as an integral part of your development process (see the
chapters about logging)

Effectively, JOOQ was originally designed to replace any other database abstraction framework short of
the ones handling connection pooling (and more sophisticated transaction management)

Use JOOQ the way you prefer

... but open source is community-driven. And the community has shown various ways of using jOOQ
that diverge from its original intent. Some use cases encountered are:

- Using Hibernate for 70% of the queries (i.e. CRUD) and jOOQ for the remaining 30% where SQL
is really needed

- Using jJOOQ for SQL building and JDBC for SQL execution

- Using jJOOQ for SQL building and Spring Data for SQL execution

- Using JOOQ without the source code generator to build the basis of a framework for dynamic
SQL execution.

The following sections explain about various use cases for using jOOQ in your application.

2.3.1.)00Q as a SQL builder without code
generation

We strongly recommend to use jOOQ with its code generator to get the most out of jOOQ)!

However, if you have a dynamic schema, you don't have to use the code generator. This is the most
simple of all use cases, allowing for construction of valid SQL for any database. In this use case, you will
not use JOOQ's code generator and maybe not even jOOQ's query execution facilities. Instead, you'll use
I00Q's guery DSL API to wrap strings, literals and other user-defined objects into an object-oriented,
type-safe AST modelling your SQL statements. An example is given here:

/] Fetch a SQL string froma jOOQ Query in order to nmanually execute it with another tool.
/'l For sinplicity reasons, we're using the APl to construct case-insensitive object references, here.
Query query = create.select(field("BOOK TITLE"), field("AUTHOR FI RST_NAME"), fi el d("AUTHOR LAST_NAME"))

.fron(tabl e("BOXK"))
.join(table("AUTHOR"))
.on(field("BOOK AUTHOR | D").eq(fiel d("AUTHOR I D")))
.where(fiel d("BOOK. PUBLI SHED | N'). eq(1948));
String sql = query.get SQL();
Li st <Obj ect > bi ndVal ues = query. get Bi ndVal ues();

The SQL string built with the jOOQ query DSL can then be executed using JDBC directly, using
Spring's JdbcTemplate, using Apache DbUtils and many other tools (note that since jOOQ uses

© 2009 - 2025 by Data Geekery™ GmbH. Page 29/1123

The jOOQ User Manual 2.3.2.jO0Q as a SQL builder with code generation

lava.sgl.PreparedStatement by default, this will generate a bind variable for "1948". Read more about
bind variables here).

You can also avoid getting the SQL string and bind values separately:

String sql = query.get SQL(Paranype. | NLI NED) ;

If you wish to use jOOQ only as a SQL builder, the following sections of the manual will be of interest
to you:

- SQL building: This section contains a lot of information about creating SQL statements using the
jOOQ API

- Plain SQL: This section contains information useful in particular to those that want to supply
table expressions, column expressions, etc. as plain SQL to jOOQ), rather than through
generated artefacts

- Bind values: This section explains how bind values are managed and/or inlined in jOOQ.

2.3.2.100Q as a SQL builder with code generation

In addition to using jOOQ as a standalone SQL builder, you can also use jOOQ's code generation
features in order to compile your SQL statements using a Java compiler against an actual database
schema. This adds a lot of power and expressiveness to just simply constructing SQL using the query
DSL and custom strings and literals, as you can be sure that all database artefacts actually exist in the
database, and that their type is correct. We strongly recommend using this approach. An example is
given here:

/] Fetch a SQL string froma jOOQ Query in order to nmanually execute it with another tool.
Query query = create. sel ect (BOOK. TI TLE, AUTHOR. FI RST_NAME, AUTHOR. LAST_NANE)

. f rom(BOOK)

. j oi n(AUTHOR)

. on(BOOK. AUTHOR_| D. eq(AUTHOR. | D))
. wher e(BOOK. PUBLI SHED | N. eq(1948)) ;

String sql = query.get SQL();
Li st <Obj ect > bi ndVal ues = query. get Bi ndVal ues();

The SQL string built with the jOOQ query DSL can then be executed using JDBC directly, using
Spring's JdbcTemplate, using Apache DbUtils and many other tools (note that since jOOQ uses
lava.sgl.PreparedStatement by default, this will generate a bind variable for "1948". Read more about
bind variables here).

You can also avoid getting the SQL string and bind values separately:

String sql = query.get SQL(Paranype. | NLI NED) ;

If you wish to use jOOQ only as a SQL builder with code generation, the following sections of the manual
will be of interest to you:

- SQOL building: This section contains a lot of information about creating SQL statements using the
jOOQ API

- Code generation: This section contains the necessary information to run jOOQ's code generator
against your developer database

- Bind values: This section explains how bind values are managed and/or inlined in jOOQ.

© 2009 - 2025 by Data Geekery™ GmbH. Page 30/1123

https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/PreparedStatement.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/PreparedStatement.html

The jOOQ User Manual 2.3.3.jO0Q as a SQL executor

2.3.3.J00Q as a SQL executor

Instead of any tool mentioned in the previous chapters, you can also use jOOQ directly to execute your
jOOQ-generated SQL statements. This will add a lot of convenience on top of the previously discussed
API for typesafe SQL construction, when you can re-use the information from generated classes to fetch
records and custom data types. An example is given here:

/1l Typesafely execute the SQL statement directly with j OOQ
Resul t <Record3<String, String, String>> result =
create. sel ect (BOOK. TI TLE, AUTHOR FI RST_NAME, AUTHOR. LAST_NAME)
. f r om(BOOK)
. j 0i n(AUTHOR)
. on(BOOK. AUTHOR | D. eq(AUTHOR. | D))
. wher e(BOOK. PUBLI SHED_I N. eq(1948))
.fetch();

By having jOOQ execute your SQL, the jOOQ query DSL becomes truly embedded SQL.

jOOQ doesn't stop here, though! You can execute any SQL with jOOQ. In other words, you can use any
other SQL building tool and run the SQL statements with jOOQ. An example is given here:

/1l Use your favourite tool to construct SQL strings:
String sql = "SELECT title, first_nane, |ast_name FROM book JO N aut hor ON book.author_id = author.id " +
"WHERE book. publ i shed_in = 1984";

I/ Fetch results using jO0Q
Resul t <Record> result = create.fetch(sql);

/Il O execute that SQL with JDBC, fetching the ResultSet wth jOOQ

Resul t Set rs = connection. createStatenent().executeQuery(sql);
Resul t <Record> result = create.fetch(rs);

If you wish to use jOOQ as a SQL executor with (or without) code generation, the following sections of
the manual will be of interest to you:

- SQL building: This section contains a lot of information about creating SQL statements using the
jOOQ API

- Code generation: This section contains the necessary information to run jOOQ's code generator
against your developer database

- SQL execution: This section contains a lot of information about executing SQL statements using
the jOOQ API

- Fetching: This section contains some useful information about the various ways of fetching data
with jOOQ

2.3.4.)00Q for CRUD

Apart from jOOQ's fluent API for query construction, JOOQ can also help you execute everyday CRUD
operations. An example is given here:

© 2009 - 2025 by Data Geekery™ GmbH. Page 31/1123

The jOOQ User Manual 2.3.5.jO0Q for PROs

// Fetch an author
Aut hor Record aut hor = create.fetchOne(AUTHOR, AUTHOR ID.eq(1));

/Il Create a new author, if it doesn't exist yet
if (author == null) {

aut hor = create. newRecor d(AUTHOR) ;

aut hor.setld(1);

aut hor . set Fi r st Nane(" Dan") ;

aut hor . set Last Name(" Brown") ;

}

/1l Mark the author as a "distinguished" author and store it
aut hor . set Di sti ngui shed(1);

/] Executes an update on existing authors, or insert on new ones
aut hor. store();

If you wish to use all of JOOQ's features, the following sections of the manual will be of interest to you
(including all sub-sections):

- SQL building: This section contains a lot of information about creating SQL statements using the
jOOQ API

- Code generation: This section contains the necessary information to run jOOQ's code generator
against your developer database

- SQL execution: This section contains a lot of information about executing SQL statements using
the jOOQ API

2.3.5.]00Q for PROs

jOOQ isn't just a library that helps you build and execute SQL against your generated, compilable
schema. jOOQ ships with a lot of tools. Here are some of the most important tools shipped with jOOQ:

- JOOQ's Execute Listeners: jOOQ allows you to hook your custom execute listeners into jOOQ's
SQL statement execution lifecycle in order to centrally coordinate any arbitrary operation
performed on SQL being executed. Use this for logging, identity generation, SQL tracing,
performance measurements, etc.

- Logging: jOOQ has a standard DEBUG logger built-in, for logging and tracing all your executed
SQL statements and fetched result sets

- Stored Procedures: jOOQ supports stored procedures and functions of your favourite database.
All routines and user-defined types are generated and can be included in jOOQ's SQL building
API as function references.

- Batch execution: Batch execution is important when executing a big load of SQL statements.
jOOQ simplifies these operations compared to JDBC

- Exporting and Importing: jOOQ ships with an API to easily export/import data in various formats

If you're a power user of your favourite, feature-rich database, jOOQ will help you access all of your
database's vendor-specific features, such as OLAP features, stored procedures, user-defined types,
vendor-specific SQL, functions, etc. Examples are given throughout this manual.

2.4. Downloading jO0OQ

jOOQ is distributed over 3 main channels:

© 2009 - 2025 by Data Geekery™ GmbH. Page32/1123

The jOOQ User Manual 2.4, Downloading jOOQ

- The website as downloadable ZIP files: https://www.joog.org/download/versions
- The repository for jJOOQ's commercial editions only: https://repo.joog.org
- Maven Central for jOOQ's open source edition only: https://repol.maven.org/maven2/org/jooq

The ZIP file

If you choose to download jOOQ over the website, you will be able to download a ZIP file with the
following layout:

- maven-deploy.bat: A Windows batch script to deploy artifacts to a maven repository

- maven-deploy.sh: A bash script to deploy artifacts to a maven repository

- maven-install.bat: A Windows batch script to install artifacts to the local maven repository
- maven-install.sh: A bash script to install artifacts to the local maven repository

The website hosts the latest versions of the JOOQ Open Source Edition as well as all the historic versions
of the commercial jJOOQ editions including snapshot builds of all distributions that are available to
paying customers only.

The commercial artifact repository

The commercial artifact repository hosts all the historic versions of the commercial jOOQ editions
including snapshot builds of all distributions that are available to paying customers only.

Below is information regarding how to include these dependencies in Maven / Gradle:
Maven

settings.xm|

<server>
<i d>j ooq- pro</i d>
<user name>[your |icensee email]</username>
<passwor d>[your |icense key] </ password>

</ server>

© 2009 - 2025 by Data Geekery™ GmbH. Page 33/1123

https://www.jooq.org/download/versions
https://repo.jooq.org
https://repo1.maven.org/maven2/org/jooq

The jOOQ User Manual 2.4, Downloading jOOQ

pom.xml

<repositories>
<reposi tory>
<id>central </id>
<url >https://repol. maven. or g/ maven2/ </ url >
</ repository>
<!-- Oher repositories ... -->

<reposi tory>
<i d>j oog- pro</i d>
<url >https://repo.jooq. org/repo</url >
</ repository>
</repositories>
<pl ugi nReposi tori es>
<pl ugi nReposi t ory>
<id>central </id>
<url >https://repol. maven. or g/ maven2/ </ url >
</ pl ugi nReposi t ory>
<!-- Oher repositories ... -->

<pl ugi nReposi t ory>
<i d>j oog- pro</i d>
<url >https://repo.jooq.org/repo</url >
</ pl ugi nReposi t ory>
</ pl ugi nReposi tories>

Gradle (Kotlin)

/1 The j 0OQ codegen- gradi e pl ugin has been introduced in version 3.19 only.
Gradle (Groovy)
Dependencies

Depending on the edition you're using, please declare the following dependencies in Maven or Gradle:
Maven

<dependency>
<l-- Use org.jooq for the Open Source Edition
org.j 0og. pro for comercial editions with Java 17 support,
org.jooq.pro-java-11 for comercial editions with Java 11 support,
org.joog.pro-java-8 for comercial editions with Java 8 support,
org.jooq.trial for the free trial edition with Java 17 support,

org.joog.trial-java-11 for the free trial edition with Java 11 support,
org.joog.trial-java-8 for the free trial edition with Java 8 support

Note: Only the Open Source Edition is hosted on Maven Central .
Install the others locally using the provided scripts, or access themfromhere: https://repo.jooq.org
See the JDK version support natrix here: https://ww.]jooq. org/ downl oad/ support-matrix-jdk -->

<gr oupl d>or g. j ooq</ gr oupl d>
<artifactld>jooq</artifactld>

<ver si on>3. 15. 12</ ver si on>
</ dependency>

Gradle (Kotlin)

dependenci es {

/1l Use org.jooq for the Open Source Edition

Il org.jooq. pro for commercial editions with Java 17 support,

Il org.jooq.pro-java-11 for comercial editions with Java 11 support,

Il org.jooq. pro-java-8 for commercial editions with Java 8 support,

Il org.joog.trial for the free trial edition with Java 17 support,

Il org.jooqg.trial-java-11 for the free trial edition with Java 11 support,

Il org.joog.trial-java-8 for the free trial edition with Java 8 support

Il

// Note: Only the Open Source Edition is hosted on Maven Central .

Il Install the others locally using the provided scripts, or access themfrom here: https://repo.jooq.org
Il See the JDK version support matrix here: https://wwwjoog. org/ downl oad/ support-matrix-j dk

i npl enent ati on("org.jooq: jooq: 3. 15. 12")

Gradle (Groovy)

© 2009 - 2025 by Data Geekery™ GmbH. Page 34/1123

The jOOQ User Manual 2.5. Tutorials

2.5. Tutorials

Don't have time to read the full manual? Here are a couple of tutorials that will get you into the most
essential parts of JOOQ as quick as possible.

2.5.1.]J00Q In 7 easy steps

This manual section is intended for new users, to help them get a running application with jJOOQ, quickly.

2.5.1.1. Step 1: Preparation

If you haven't already downloaded it, download jOOQ:
https://www.joog.org/download

Alternatively, you can create a Maven dependency to download jOOQ artefacts:

Open Source Edition

<dependency>
<gr oupl d>or g. j ooq</ gr oupl d>
<artifactld>jooqg</artifactld>
<ver si on>3. 15. 12</ ver si on>

</ dependency>

<!-- These may not be required, unless you use the GenerationTool manually for code generation -->

<dependency>
<gr oupl d>or g. j oog</ gr oupl d>
<artifact!ld>j oog-neta</artifactld>
<ver si on>3. 15. 12</ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. j ooq</ gr oupl d>
<artifact!d>j oog-codegen</artifactld>
<ver si on>3. 15. 12</ ver si on>

</ dependency>

Commercial Editions (Java 17+)

<!-- Note: These aren't hosted on Maven Central. Inport them manually from your distribution -->
<dependency>

<gr oupl d>or g. j 0oq. pr o</ gr oup! d>

<artifactld>joog</artifactld>

<ver si on>3. 15. 12</ ver si on>
</ dependency>

<!-- These nmay not be required, unless you use the GenerationTool manually for code generation -->

<dependency>
<gr oupl d>or g. j 0oq. pr o</ gr oupl d>
<artifact!d>j oog-neta</artifactld>
<ver si on>3. 15. 12</ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. j 0oq. pr o</ gr oupl d>
<artifact!d>j oog-codegen</artifactld>
<ver si on>3. 15. 12</ ver si on>

</ dependency>

© 2009 - 2025 by Data Geekery™ GmbH. Page35/1123

https://www.jooq.org/download

The jOOQ User Manual

Commercial Editions (Java 11+)

<l-- Note: These aren't hosted on Maven Central. Inport them manually fromyour distribution -->
<dependency>

<gr oupl d>or g. j 00q. pro-j ava- 11</ gr oupl d>

<artifactld>jooqg</artifactld>

<ver si on>3. 15. 12</ ver si on>
</ dependency>

<!-- These may not be required, unless you use the GenerationTool manually for code generation -->
<dependency>
<gr oupl d>or g. j 00q. pro-j ava- 11</ gr oupl d>
<artifactld>j oog-neta</artifactld>
<ver si on>3. 15. 12</ ver si on>
</ dependency>
<dependency>
<gr oupl d>or g. j 00q. pro-j ava- 11</ gr oupl d>
<artifact!d>j oog-codegen</artifactld>
<ver si on>3. 15. 12</ ver si on>
</ dependency>

Commercial Editions (Java 8+)

<!-- Note: These aren't hosted on Maven Central. Inport them manually from your distribution -->
<dependency>

<gr oupl d>or g. j 0oq. pr o-j ava- 8</ gr oupl d>

<artifactld>joog</artifactld>

<ver si on>3. 15. 12</ ver si on>
</ dependency>

<!-- These nmay not be required, unless you use the GenerationTool manually for code generation -->

<dependency>
<gr oupl d>or g. j 0oq. pr o-j ava- 8</ gr oupl d>
<artifact!d>j oog-neta</artifactld>
<ver si on>3. 15. 12</ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. j 0oq. pr o-j ava- 8</ gr oupl d>
<artifact!d>j oog-codegen</artifactld>
<ver si on>3. 15. 12</ ver si on>

</ dependency>

Commercial Editions (Free Trial, Java 17+)

<!-- Note: These aren't hosted on Maven Central. Inport them manually from your distribution -->
<dependency>

<groupl d>org. jooq.trial </ groupl d>

<artifactld>jooq</artifactld>

<ver si on>3. 15. 12</ ver si on>
</ dependency>

<!-- These may not be required, unless you use the GenerationTool nenually for code generation -->

<dependency>
<groupl d>org. jooq.trial </ groupl d>
<artifactld>jooq-neta</artifactld>
<ver si on>3. 15. 12</ ver si on>

</ dependency>

<dependency>
<groupl d>org. jooq.trial </ groupl d>
<artifactld>j ooq-codegen</artifactld>
<ver si on>3. 15. 12</ ver si on>

</ dependency>

© 2009 - 2025 by Data Geekery™ GmbH.

2.5.1.1. Step 1: Preparation

Page36/1123

The jOOQ User Manual

Commercial Editions (Free Trial, Java 11+)

<l-- Note: These aren't hosted on Maven Central. Inport them manually fromyour distribution -->
<dependency>

<groupl d>org. jooq. trial -java-11</ gr oupl d>

<artifactld>jooqg</artifactld>

<ver si on>3. 15. 12</ ver si on>
</ dependency>

<!-- These may not be required, unless you use the GenerationTool manually for code generation -->
<dependency>
<groupl d>org. jooq. trial -java-11</ gr oupl d>
<artifactld>j oog-neta</artifactld>
<ver si on>3. 15. 12</ ver si on>
</ dependency>
<dependency>
<groupl d>org. jooq. trial -java-11</ gr oupl d>
<artifact!d>j oog-codegen</artifactld>
<ver si on>3. 15. 12</ ver si on>
</ dependency>

Commercial Editions (Free Trial, Java 8+)

<!-- Note: These aren't hosted on Maven Central. Inport them manually from your distribution -->
<dependency>

<groupl d>org. j ooq. trial -j ava- 8</ groupl d>

<artifactld>joog</artifactld>

<ver si on>3. 15. 12</ ver si on>
</ dependency>

<!-- These nmay not be required, unless you use the GenerationTool manually for code generation -->
<dependency>
<groupl d>org. j ooq. trial -j ava- 8</ groupl d>
<artifact!d>j oog-neta</artifactld>
<ver si on>3. 15. 12</ ver si on>
</ dependency>
<dependency>
<groupl d>org. j ooq. trial -j ava- 8</ groupl d>
<artifact!d>j oog-codegen</artifactld>
<ver si on>3. 15. 12</ ver si on>
</ dependency>

Commercial Editions (Java 6+)

<!-- Note: These aren't hosted on Maven Central. Inport them manually from your distribution -->
<dependency>

<gr oupl d>or g. j 00q. pr o-j ava- 6</ gr oupl d>

<artifactld>jooq</artifactld>

<ver si on>3. 15. 12</ ver si on>
</ dependency>

<!-- These may not be required, unless you use the GenerationTool manually for code generation -->

<dependency>
<gr oupl d>or g. j 00q. pr o-j ava- 6</ gr oupl d>
<artifactld>jooq-neta</artifactld>
<ver si on>3. 15. 12</ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. j 00q. pr o-j ava- 6</ gr oupl d>
<artifactld>j ooq-codegen</artifactld>
<ver si on>3. 15. 12</ ver si on>

</ dependency>

2.5.1.1. Step 1: Preparation

Note that only the JOOQ Open Source Edition is available from Maven Central. If you're using the jOOQ
Professional Edition or the JOOQ Enterprise Edition, you will have to manually install JOOQ in your local
Nexus, or in your local Maven cache. For more information, please refer to the licensing pages.

Please refer to the manual's section about Code generation configuration to learn how to use jOOQ's

code generator with Maven.

© 2009 - 2025 by Data Geekery™ GmbH.

Page 37/1123

https://www.jooq.org/licensing

The jOOQ User Manual 2.5.1.2. Step 2: Your database

For this example, we'll be using MySQL. If you haven't already downloaded MySQL Connector/},
download it here:

https://dev.mysgl.com/downloads/connector/j/

If you don't have a MySQL instance up and running yet, get it from https://www.mysgl.com or https://
hub.docker.com/ /mysgl now!

2.5.1.2. Step 2: Your database

We're going to create a database called "library" and a corresponding "author" table. Connect to MySQL
via your command line client and type the following:

CREATE DATABASE “library’;

USE “library’;
CREATE TABLE "aut hor™ (

“id int NOT NULL,

“first_nane’ varchar(255) DEFAULT NULL,
“last _nane’ varchar (255) DEFAULT NULL,
PRI MARY KEY (“id")
)

2.5.1.3. Step 3: Code generation

In this step, we're going to use jJOOQ's command line tools to generate classes that map to the Author
table we just created. More detailed information about how to set up the jOOQ code generator can
be found here:

iI0O0Q manual pages about setting up the code generator

The easiest way to generate a schema is to copy the jOOQ jar files (there should be 3) and the MySQL
Connector jar file to a temporary directory. Then, create a library.xml that looks like this:

© 2009 - 2025 by Data Geekery™ GmbH. Page 38/1123

https://dev.mysql.com/downloads/connector/j/
https://www.mysql.com/
https://hub.docker.com/_/mysql
https://hub.docker.com/_/mysql

The jOOQ User Manual

<?xm version="1.0" encodi ng="UTF-8" standal one="yes"?>
<confi guration>
<!-- Configure the database connection here -->
<j dbc>
<driver>com nysql.cj.jdbc.Driver</driver>
<url >j dbc: nysql :/ /1 ocal host: 3306/ i brary</url>
<user >r oot </ user >
<passwor d></ passwor d>
</ j dbc>

<gener at or >

<!-- The default code generator. You can override this one, to generate your own code style.

Supported generators:

- org.jooq. codegen. JavaGener at or

- org.jooq. codegen. Kot | i nGener at or

- org.jooq. codegen. Scal aGener at or

Defaults to org.jooq.codegen. JavaGenerator -->
<nane>or g. j ooq. codegen. JavaGener at or </ nane>

<dat abase>
<!-- The database type. The format here is:
org.jooq. net a. [dat abase] . [dat abase] Dat abase -->
<name>or g. j 00q. net a. nysql . MySQLDat abase</ name>

<!-- The database schena (or in the absence of schenma support, in your RDBMS this
can be the owner, user, database nane) to be generated -->
<i nput Schema>| i br ary</ i nput Schema>

<l-- Al elenents that are generated from your schenma
(A Java regul ar expression. Use the pipe to separate several expressions)

Watch out for case-sensitivity. Depending on your database, this mght be inportant! --

<i ncl udes>. *</ i ncl udes>

<l-- Al elenents that are excluded from your schema
(A Java regul ar expression. Use the pipe to separate several expressions).
Excl udes match before includes, i.e. excludes have a higher priority -->

<excl udes></ excl udes>
</ dat abase>

<target >

<!-- The destination package of your generated classes (wthin the destination directory) --

<packageNanme>t est . gener at ed</ packageNane>

<!-- The destination directory of your generated classes. Using Maven directory |ayout here --

<di rect ory>C: / wor kspace/ M\ySQLTest / src/ nai n/ j ava</ di rect ory>
</target>
</ gener at or >
</ configuration>

>

2.5.1.3. Step 3: Code generation

Replace the username (<username/> or <user/>) with whatever user has the appropriate privileges to
query the database meta data. You'll also want to look at the other values and replace as necessary.

Here are the two interesting properties:

<packageName/> - set this to the parent package you want to create for the generated
classes. Setting the value to testgenerated will cause the test.generated.tables.Author and

test.generated.tables.records.AuthorRecord classes to be created

<directory/> - the directory to output the generated classes to.

Once you have the JAR files and library.xml in your temp directory, type this on a Windows machine:

java -classpath joog-3.15.12.jar; "
joog-neta-3.15.12.jar; "

j oog- codegen-3.15.12.jar; "
reactive-streans-1.0.3.jar;"
r2dbc-spi-0.9.0. ML. j ar; A
jaxb-api-2.3.1.jar;"

nysql -connector-java.jar;. *

org. j ooq. codegen. Generati onTool |ibrary.xni

... or type this on a UNIX/ Linux / Mac system (colons instead of semi-colons):

java -classpath joog-3.15.12.jar:\
joog-neta-3.15.12. jar:\

j 0oog- codegen-3.15.12.jar:\
reactive-streans-1.0.3.jar:\
r2dbc-spi-0.9.0. ML. jar:\
jaxb-api-2.3.1.jar:\

nysql -connector-java.jar:. \

org. j ooq. codegen. GenerationTool |ibrary.xm

")

© 2009 - 2025 by Data Geekery™ GmbH.

Page 39/1123

The jOOQ User Manual

2.5.1.4. Step 4: Connect to your database

- jOOQ will try loading the library.xml from your classpath. Thisis also why thereisatrailing period (.)
on the classpath. If the file cannot be found on the classpath, jOOQ will look on the file system from the
current working directory.

- Replace the filenames with your actual filenames. In this example, jOOQ 3.15.12 is being used.
- If you're using a linux style shell on Windows, but a Windows JDK/JRE, you still need to
use semi-colons in your classpath! (;) In git-bash, you might have to quote your classpath

("joog-3.15.12.jar;joog-meta-3.15.12 jar;...")

If everything has worked, you should see this in your console output:

Nov 1, 2011 7:25:06 PM org.jooq
INFO Initialising properties
Nov 1, 2011 7:25:07 PM org.jooq
I NFO Dat abase paraneters

Nov 1, 2011 7:25:07 PM org.jooq

.inpl.JoogLogger i

/library.xni

.inpl.JoogLogger i

.inpl.JoogLogger i

e e

Nov 1, 2011 7:25:07 PM org.jooq
I NFO: di al ect

Nov 1, 2011 7:25:07 PM org.jooq
I NFO: schena

Nov 1, 2011 7:25:07 PM org.jooq
I NFO target dir

Nov 1, 2011 7:25:07 PM org.jooq
I NFO target package

Nov 1, 2011 7:25:07 PM org.jooq

.inpl.JoogLogger i
T MYSQL

i npl . JoogLogger
library
.inpl . JoogLogger

info

info

C: / wor kspace/ \ySQLTest/ src

.inpl.JoogLogger

test. generat ed

.inpl.JoogLogger

info

info

o T

Nov 1, 2011 7:25:07 PM org.jooq
I NFO Enptyi ng

Nov 1, 2011 7:25:

INFO Generating

Nov 1, 2011 7:25:

07 PM org. j ooq
classes in
07 PM org. j ooq

I NFO Generating schena

Nov 1, 2011 7:25:07 PM org.jooq
I NFO Schema gener at ed

Nov 1, 2011 7:25:07 PM org.jooq
I NFO Sequences fetched

Nov 1, 2011 7:25:07 PM org.jooq
INFO Tabl es fetched

Nov 1, 2011 7:25:07 PM org.jooq
INFO Generating tables

Nov 1, 2011 7:25:07 PM org.jooq
I NFO ARRAYs fetched

Nov 1, 2011 7:25:07 PM org.jooq
INFG: Enuns fetched

Nov 1, 2011 7:25:07 PM org.jooq
INFO UDTs fetched

Nov 1, 2011 7:25:07 PM org.jooq
INFO Generating table

Nov 1, 2011 7:25:07 PM org.jooq
I NFO Tabl es generated

Nov 1, 2011 7:25:07 PM org.jooq
I NFO Generating Keys

Nov 1, 2011 7:25:08 PM org.jooq
I NFO Keys gener at ed

Nov 1, 2011 7:25:08 PM org.jooq
I NFO Generating records

Nov 1, 2011 7:25:08 PM org.jooq
I NFO Generating record

Nov 1, 2011 7:25:08 PM org.jooq
INFO Tabl e records generated
Nov 1, 2011 7:25:08 PM org.jooq
INFO Routines fetched

Nov 1, 2011 7:25:08 PM org.jooq
I NFO Packages fetched

Nov 1, 2011 7:25:08 PM org.jooq
I NFO GENERATI ON FI NI SHED!

.inpl.JoogLogger

info

C: /wor kspace/ MySQLTest / src/ t est/ gener at ed

.inpl . JoogLogger

info

C: / wor kspace/ MySQLTest / src/ t est/ gener at ed

.inpl . JoogLogger
Library.java
.inpl.JoogLogger

Total : 122.18ms

i npl . JoogLogger
: 0 (0 included,
.inpl.JoogLogger
: 5 (5 included,
.inpl . JoogLogger

info
info

info
0 excl uded)
info
0 excl uded)
info

C: /wor kspace/ M\ySQLTest / src/ t est/ gener at ed/ t abl es

.inpl.JoogLogger
: 0 (0 included,
.inpl.JoogLogger
: 0 (0 included,
i npl . JoogLogger
: 0 (0 included,
.inpl.JoogLogger
Aut hor . j ava
.inpl . JoogLogger

info
0 excl uded)
info
0 excl uded)
info
0 excl uded)
info

info

Total : 680.464ms, +558.284ns

.inpl.JoogLogger

info

C: /wor kspace/ M\ySQLTest / src/ t est/ gener at ed/ t abl es

.inpl.JoogLogger

info

Total : 718.621ns, +38.157ns

.inpl.JoogLogger

info

C: / wor kspace/ MySQLTest / src/ t est/ gener at ed/ t abl es/ recor ds

.inpl . JoogLogger

info

Aut hor Record. j ava

i npl.JoogLogger

info

Total : 782.545nms, +63.924ns

.inpl.JoogLogger
: 0 (0 included,
i npl . JoogLogger
: 0 (0 included,
.inpl.JoogLogger

info
0 excl uded)
info
0 excl uded)
info

Total : 791.688ns, +9.143ms

2.5.1.4. Step 4: Connect to your database

Let's just write a vanilla main class in the project containing the generated classes:

© 2009 - 2025 by Data Geekery™ GmbH.

Page40/1123

The jOOQ User Manual 2.5.1.5. Step 5: Querying

/'l For conveni ence, always static inport your generated tables and jOOQ functions to decrease verbosity:
inmport static test.generated. Tables. *;
import static org.jooq.inpl.DSL.*;

import java.sql.*;

public class Main {
public static void main(String[] args) {

String userName = "root";
String password = "";
String url = "jdbc:nysql://local host:3306/1ibrary";

// Connection is the only JDBC resource that we need

/'l PreparedStatenment and ResultSet are handled by jOOQ internally

try (Connection conn = DriverManager. get Connection(url, userName, password)) {
1.

}

/'l For the sake of this tutorial, let's keep exception handling sinple
catch (Exception e) {

e.printStackTrace();
}

}
}

This is pretty standard code for establishing a MySQL connection.

2.5.1.5. Step 5: Querying

Let's add a simple query constructed with jOOQ's query DSL:

DSLCont ext create = DSL.using(conn, SQLDi al ect. MYSQL);
Resul t <Record> result = create.select().fron(AUTHOR).fetch();

First get an instance of DSLContext so we can write a simple SELECT query. We pass an instance of
the MySQL connection to DSL. Note that the DSLContext doesn't close the connection. We'll have to
do that ourselves.

We then use jOOQ's query DSL to return an instance of Result. We'll be using this resultin the next step.

2.5.1.6. Step 6: Iterating

After the line where we retrieve the results, let's iterate over the results and print out the data:

for (Record r : result) {
Integer id = r.getVal ue(AUTHOR | D) ;
String firstNanme = r.getVal ue(AUTHOR. Fl RST_NAME) ;
String |astNane = r.get Val ue(AUTHOR. LAST_NAME) ;

Systemout.printin("ID " +id + " first nane: " + firstNane + " last name: " + |astNane);

The full program should now look like this:

© 2009 - 2025 by Data Geekery™ GmbH. Page41/1123

The jOOQ User Manual 2.5.1.7. Step 7: Explore!

package test;

/'l For conveni ence, always static inmport your generated tables and
// jOOQ functions to decrease verbosity:

inmport static test.generated. Tables. *;

import static org.jooq.inpl.DSL.*;

import java.sql.*;

import org.jooq.*;
import org.jooq.inpl.*;

public class Main {

J**
* (@aram ar gs
*/
public static void main(String[] args) {
String userName = "root";
String password = "";
String url = "jdbc:nysql://local host:3306/1ibrary";

// Connection is the only JDBC resource that we need

/'l PreparedStatenent and ResultSet are handled by jOOQ internally

try (Connection conn = DriverManager. get Connection(url, userName, password)) {
DSLCont ext create = DSL.using(conn, SQLDi al ect.MYSQL);
Resul t <Record> result = create.select().fron{ AUTHOR).fetch();

for (Record r : result) {
Integer id = r.getVal ue(AUTHOR | D);
String firstName = r.getVal ue(AUTHOR FI RST_NAME) ;
String | astNane = r. get Val ue(AUTHOR. LAST_NAME) ;

Systemout.printIn("ID: " +id + " first nane: " + firstName + " last nanme: " + |astNane);
}
}

/'l For the sake of this tutorial, let's keep exception handling sinple

catch (Exception e) {
e.printStackTrace();
}

}
}

2.5.1.7. Step 7: Explore!

jOOQ has grown to be a comprehensive SQL library. For more information, please consider the
documentation:
https://www.joog.org/learn

... explore the Javadoc:
https://www.jooqg.org/javadoc/latest/

... or join the news group:
https://groups.google.com/forum/#!forum/joog-user

This tutorial is the courtesy of Ikai Lan. See the original source here:
https://ikaisays.com/2011/11/01/getting-started-with-joog-a-tutorial/

2.5.2. Using jJOOQ with Flyway

When
performing database migrations, we at Data Geekery recommend using jOOQ with Flyway - Database
Migrations Made Easy. In this chapter, we're going to look into a simple way to get started with the two
frameworks.

© 2009 - 2025 by Data Geekery™ GmbH. Page42/1123

https://www.jooq.org/learn
https://www.jooq.org/javadoc/latest/
https://groups.google.com/forum/#!forum/jooq-user
https://ikaisays.com/2011/11/01/getting-started-with-jooq-a-tutorial/
https://flywaydb.org/

The jOOQ User Manual 2.5.2. Using jOOQ with Flyway

Philosophy

There are a variety of ways how jOOQ and Flyway could interact with each other in various development
setups. In this tutorial we're going to show just one variant of such framework team play - a variant that
we find particularly compelling for most use cases.

The general philosophy behind the following approach can be summarised as this:

- 1. Database increment
- 2. Database migration
- 3. Code re-generation
- 4. Development

The four steps above can be repeated time and again, every time you need to modify something in your
database. More concretely, let's consider:

- 1. Database increment - You need a new column in your database, so you write the necessary
DDL in a Flyway script

- 2. Database migration - This Flyway script is now part of your deliverable, which you can share
with all developers who can migrate their databases with it, the next time they check out your
change

- 3. Code re-generation - Once the database is migrated, you regenerate all JOOQ artefacts (see
code generation), locally

- 4. Development - You continue developing your business logic, writing code against the updated,
generated database schema

Maven Project Configuration - Properties

The following properties are defined in our pom.xml, to be able to reuse them between plugin
configurations:

<properties>
<db. url >j dbc: h2: ~/ f| yway-t est </ db. ur| >
<db. user name>sa</ db. user name>

</ properties>

0. Maven Project Configuration - Dependencies

While jOOQ and Flyway could be used in standalone migration scripts, in this tutorial, we'll be using
Maven for the standard project setup.

These are the dependencies that we're using in our Maven configuration:

© 2009 - 2025 by Data Geekery™ GmbH. Page 43/1123

The jOOQ User Manual

<l-- We'll add the latest version of jOOQ and our JDBC driver - in this case H2 -->
<dependency>
<!-- Use org.jooq for the Open Source Edition

org.joog. pro for comercial editions with Java 17 support
org.joog. pro-java-11 for comercial editions with Java 11 support
org.joog. pro-java-8 for commercial editions with Java 8 support
org.joog.trial for the free trial edition with Java 17 support
org.jooqg.trial-java-11 for the free trial edition with Java 11 support
org.joog.trial-java-8 for the free trial edition with Java 8 support

Note: Only the Open Source Edition is hosted on Maven Central

Install the others locally using the provided scripts
See the JDK version support matrix here

<gr oupl d>or g. j oog</ gr oupl d>
<artifactld>jooqg</artifactld>
<ver si on>3. 15. 12</ ver si on>

</ dependency>

<dependency>
<gr oupl d>com h2dat abase</ gr oupl d>
<artifactld>h2</artifactld>
<versi on>1. 4. 197</ ver si on>

</ dependency>

<l-- For inproved |ogging, we'll be using |og4j via slf4

<dependency>
<groupl d>or g. apache. | oggi ng. | og4j </ gr oupl d>
<artifactld>l og4j-slf4j-inpl</artifactld>
<version>2. 11. 0</ versi on>

</ dependency>

<!-- To ensure our code is working, we're using JUnit -->

<dependency>
<gr oupl d>j uni t </ gr oupl d>
<artifactld>junit</artifactld>
<versi on>4. 11</ ver si on>
<scope>t est </ scope>

</ dependency>

0. Maven Project Configuration - Plugins

or access them from here:
htt ps: // ww. j 0og. or g/ downl oad/ support-matrix-jdk -->

2.5.2. Using jJOOQ with Flyway

https://repo.jooq.org

to see what's going on during migration and code generation -->

After the dependencies, let's simply add the Flyway and jOOQ Maven plugins like so. The Flyway plugin:

<pl ugi n>
<groupl d>or g. f | ywaydb</ gr oupl! d>

<artifact!d>flyway-maven-pl ugi n</artifact!d>

<ver si on>3. 0</ ver si on>

<!-- Note that we're executing the Flyway plugin in the "generate-sources" phase -->

<executions>
<execution>

<phase>gener at e- sour ces</ phase>

<goal s>
<goal >ni gr at e</ goal >
</ goal s>
</ executi on>
</ executi ons>

<!-- Note that we need to prefix the db/mgration path with filesystem to prevent Flyway

from | ooking for our migration scripts only on the classpath -->

<confi guration>
<url>${db. url}</url>
<user >${ db. user nane} </ user >
<l ocati ons>

<l ocation>fil esystem src/ nai n/ resources/db/ m gration</|ocation>

</l ocations>
</ configuration>
</ pl ugi n>

The above Flyway Maven plugin configuration will read and execute all database migration scripts
from src/main/resources/db/migration prior to compiling Java source code. While the official Flyway
documentation may suggest that migrations be done in the compile phase, the jOOQ code generator

relies on such migrations having been done prior to code generation.

After the Flyway plugin, we'll add the jJOOQ Maven Plugin. For more details, please refer to the manual's
section about the code generation configuration.

© 2009 - 2025 by Data Geekery™ GmbH.

Page 44/1123

The jOOQ User Manual 2.5.2. Using jJOOQ with Flyway

<pl ugi n>

<!-- Use org.jooq for the Open Source Edition
org.joog. pro for comercial editions with Java 17 support,
org.joog. pro-java- 11 for comercial editions with Java 11 support,
org.jooq. pro-java-8 for commercial editions with Java 8 support,
org.joog.trial for the free trial edition with Java 17 support,

org.jooqg.trial-java-11 for the free trial edition with Java 11 support,
org.joog.trial-java-8 for the free trial edition with Java 8 support

Note: Only the Open Source Edition is hosted on Maven Central .
Install the others locally using the provided scripts, or access themfrom here: https://repo.jooq.org
See the JDK version support matrix here: https://ww.joog.org/ downl oad/ support-matrix-jdk -->

<gr oupl d>or g. j ooq</ gr oupl d>
<artifact!|d>j oog-codegen-maven</artifact|d>
<versi on>${ org. j 0oq. versi on} </ ver si on>

<l-- The jOOQ code generation plugin is also executed in the generate-sources phase, prior to conpilation -->
<executions>
<execution>
<phase>gener at e- sour ces</ phase>
<goal s>
<goal >gener at e</ goal >
</ goal s>
</ executi on>
</ executi ons>

<l-- This is a minimal working configuration. See the manual's section about the code generator for nore details -->
<confi guration>
<j dbc>

<url>${db.url}</url>
<user >${ db. user nane} </ user >
</ j dbc>
<gener at or >
<dat abase>
<i ncl udes>. *</i ncl udes>
<i nput Schema>FLYWAY_TEST</ i nput Schena>
</ dat abase>
<t arget >
<packageNanme>or g. j ooq. exanpl e. f | yway. db. h2</ packageNanme>
<di rect ory>t ar get/ gener at ed- sour ces/ j oog- h2</ di rect ory>
</target>
</ gener at or >
</ configuration>
</ pl ugi n>

This configuration will now read the FLYWAY_TEST schema and reverse-engineer it into the target/
generated-sources/joog-h2 directory, and within that, into the org.joog.example.flyway.db.h2 package.

1. Database increments

Now, when we start developing our database. For that, we'll create database increment scripts, which we
put into the src/main/resources/db/migration directory, as previously configured for the Flyway plugin.
We'll add these files:

- V1__initialise_database.sql
- V2__create_author_table.sql
- V3__create_book_table_and_records.sql

These three scripts model our schema versions 1-3 (note the capital V!). Here are the scripts' contents

- V1__initialise_database. sql
DROP SCHEMA flyway_test |F EXISTS;

CREATE SCHEMA f | yway_test;

© 2009 - 2025 by Data Geekery™ GmbH. Page45/1123

The jOOQ User Manual

V2__create_author_table. sql

CREATE SEQUENCE f | yway_test.s_author_id START WTH 1;

CREATE TABLE flyway_test.author (
id INT NOT NULL,
first_name VARCHAR(50),
|l ast _nane VARCHAR(50) NOT NULL,
dat e_of _birth DATE,
year _of _birth INT,
address VARCHAR(50),

CONSTRAI NT pk_aut hor PRI MARY KEY (I D)

-- V3__create_book_tabl e_and_records. sql
CREATE TABLE fl yway_t est. book (

id INT NOT NULL,

author _id I NT NOT NULL,

title VARCHAR(400) NOT NULL,

CONSTRAI NT pk_book PRI MARY KEY (id),
CONSTRAI NT f k_book_aut hor _i d FOREI GN KEY (

)i

| NSERT
| NSERT

aut hor VALUES (next
aut hor VALUES (next

I NTO fl yway_test.
I NTO fl yway_test.

| NSERT
| NSERT
| NSERT
| NSERT

I NTO fl yway_test.
I NTO fl yway_test.
I NTO fl yway_test.
I NTO fl yway_test.

book VALUES (1,
book VALUES (2,
book VALUES (3,
book VALUES (4,

PP

2. Database migration an

aut hor _i d) REFERENCES f| yway_t est. aut hor (i d)

value for flyway_test.s_author_id,
value for flyway_test.s_author_id,

' CGeorge',
' Paul o',

11984);
"Aninmal Farm);
'O A quinmista');
‘Brida');

d 3. Code regeneration

"Owel ",
' Coel ho',

' 1903- 06- 25'
' 1947-08- 24",

2.5.2. Using jJOOQ with Flyway

, 1903,
1947,

null);
null);

The above three scripts are picked up by Flyway and executed in the order of the versions. This can

be seen very simply by executing:
mvn clean install
And then observing the log outpu

[INFQ ---

fl yway- maven-plugin:3.0: mgrate (

t from Flyway...

default) @joog-flyway-exanple ---

[I NFO
[I NFO
[I NFO
[I NFO
[I NFO
[I NFO
[I NFO

Dat abase: jdbc: h2: ~/flyway-test (H2 1.4)

Val idated 3 migrations (execution tine 00:00.004s)
Creating Metadata table: "PUBLIC'."schena_version"
Current version of schema "PUBLIC': << Enpty Schena >>
M grating schema "PUBLIC' to version 1

M grating schema "PUBLIC' to version 2

M grating schema "PUBLIC' to version 3

[I NFO

Successfully applied 3 migrations to

..and from jOOQ on the console:

schema " PUBLI C' (execution tine 00:00.073s).

[INFQ --- joog-codegen-maven: 3. 15.12: generate (default) @j oog-flyway-exanple ---
[INFQ --- joog-codegen-maven: 3. 15.12: generate (default) @j oog-flyway-exanple ---
[INFO Using this configuration:

[INFO GCenerating schenata : Total: 1

[INFO GCenerating schena : FlywayTest.java

T =

[....]

[INFO GENERATI ON FI NI SHED! : Total: 337.576ns, +4.299ns

4. Development

Note that all of the previous steps are executed automatically, every time someone adds new migration
scripts to the Maven module. For instance, a team member might have committed a new migration
script, you check it out, rebuild and get the latest jJOOQ-generated sources for your own development

or integration-test database.

© 2009 - 2025 by Data Geekery™ GmbH.

Page 46/ 1123

The jOOQ User Manual 2.5.2. Using jJOOQ with Flyway

Now, that these steps are done, you can proceed writing your database queries. Imagine the following
test case

import org.jooq.Result;
import org.jooq.inpl.DSL;
import org.junit.Test;

i mport java.sql.DriverManager;

inmport static java.util.Arrays.asList;
inmport static org.jooq.exanple.flyway.db. h2. Tables.*;
inmport static org.junit.Assert.assertEquals;

public class AfterM grationTest {

@est
public void testQueryingAfterMgration() throws Exception {
try (Connection c¢ = DriverManager.get Connection("jdbc: h2: ~/flyway-test", "sa", "")) {
Resul t<?> result =
DSL. usi ng(c)
.sel ect (
AUTHOR. FI RST_NAME,
AUTHOR. LAST_NAME,
BOXK. | D,
BOXK. TI TLE

)

. f r om(AUTHOR)

. j 0i n(BOOK)

. on(AUTHOR. | D. eq(BOOK. AUTHOR_I D))
. order By(BOOK. I D. asc())

.fetch();

assert Equal s(4, result.size());
assert Equal s(asList(1, 2, 3, 4), result.getValues(BOXK. ID));

Reiterate

The power of this approach becomes clear once you start performing database modifications this way.
Let's assume that the French guy on our team prefers to have things his way:

- V4__le_french. sql
ALTER TABLE fl yway_t est.book ALTER COLUW title RENAME TO le_titre;

They check it in, you check out the new database migration script, run

nvn clean install

And then observing the log output:

[INFQ --- flyway-nmaven-plugin:3.0:migrate (default) @joog-flyway-exanple ---

[INFQ --- flyway-maven-plugin:3.0:migrate (default) @joog-flyway-exanple ---

[INFQ Database: jdbc:h2:~/flyway-test (H2 1.4)

[INFQ Validated 4 migrations (execution time 00:00.005s)

[INFQ Current version of schema "PUBLIC': 3

[INFO Mgrating schena "PUBLIC' to version 4

[INFQ Successfully applied 1 migration to schema "PUBLIC' (execution time 00:00.016s).

So far so good, but later on:

[ERROR] COWPI LATI ON ERRCR :

[R I T

[ERROR] C:\...\jOOQflyway-exanple\src\test\java\AfterMgrationTest.java:[24,19] error: cannot find symbol
[INFO 1 error

When we go back to our Java integration test, we can immediately see that the TITLE column is still
being referenced, but it no longer exists:

© 2009 - 2025 by Data Geekery™ GmbH. Page47/1123

The jOOQ User Manual 2.5.3. Using jOOQ with jbang

public class AfterM grationTest {

@est
public void testQueryingAfterMgration() throws Exception {
try (Connection ¢ = DriverManager. get Connection("jdbc: h2: ~/flyway-test”, "sa", "")) {
Resul t<?> result =
DSL. usi ng(c)
.sel ect(
AUTHOR. FI RST_NAME,
AUTHOR. LAST_NAME,
BOCK. | D,
BOOK. TI TLE
Il AANAN This columm no | onger exists. We'll have to rename it to LE TITRE
)
. from(AUTHOR)
. j 0i n(BOOK)
. on(AUTHOR. | D. eq(BOOK. AUTHOR_I D))
. order By(BOOK. I D. asc())
.fetch();
assert Equal s(4, result.size());
assert Equal s(asList(1, 2, 3, 4), result.getValues(BOXK. ID));
}
}
}
Automation

The above steps can be automated in your build using another third party called testcontainers. Please
look at this article here for examples on how to do that: https://blog.joog.org/using-testcontainers-to-
generate-joog-code/

Conclusion

This tutorial shows very easily how you can build a rock-solid development process using Flyway and
jOOQ to prevent SQL-related errors very early in your development lifecycle - immediately at compile
time, rather than in production!

Please, visit the Flyway website for more information about Flyway.

2.5.3. Using jJO0OQ with jbang

ibang allows for quickly working with all sorts of Java libraries without the hassle of setting up
environments, dependencies, etc. This catalog allows for using jOOQ's code generator right away on
an existing database.

For more information on jbang, see:

- Installation
- Usage
An example

In a shell, type

git clone https://github. conmjOOQ j bang- exanpl e
cd j bang- exanpl e
j bang Exanpl e. j ava

© 2009 - 2025 by Data Geekery™ GmbH. Page 48/1123

https://www.testcontainers.org
https://blog.jooq.org/using-testcontainers-to-generate-jooq-code/
https://blog.jooq.org/using-testcontainers-to-generate-jooq-code/
https://flywaydb.org/
https://www.jbang.dev
https://www.jbang.dev/documentation/guide/latest/installation.html
https://www.jbang.dev/documentation/guide/latest/usage.html

The jOOQ User Manual 2.6.j00Q and Java 8

In order to re-generate the example code, e.g. when your schema changes, just type:

j bang codegen@ ooq db. xm

If you prefer working with a pre-existing database, just edit the db.xml file and point it to your database.
Add the JDBC driver dependency like this:

jbang --deps org. postgresql: postgresql : RELEASE codegen@ ooq db. xm

To override the jOOQ version from the default RELEASE to a specific version, use

j bang - Dj 0oq. ver si on=<ver si on> codegen@ ooq db. xni

2.6.]00Q and Java 8

Java 8 has introduced a great set of enhancements, among which lambda expressions and the new
java.util.stream.Stream. These new constructs align very well with jJOOQ's fluent APl as can be seen in
the following examples:

jO0Q and lambda expressions

jOOQ's RecordMapper APl is fully Java-8-ready, which basically means that it is a SAM (Single Abstract
Method) type, which can be instanciated using a lambda expression. Consider this example:

try (Connection ¢ = get Connection()) {
String sql = "select schema_nane, is_default " +
"frominformtion_schena.schemata " +
"order by schema_nane";

DSL. usi ng(c)
.fetch(sql)

// We can use | anbda expressions to map j OOQ Records
.map(rs -> new Schema(

rs. get Val ue(" SCHEMA_NAME", String.cl ass),

rs. getVal ue("l S_DEFAULT", bool ean. cl ass)
))

/1 ... and then profit fromthe new Col | ection nethods
.forEach(Systemout::println);

The above example shows how jOOQ's Result.map() method can receive a lambda expression that
implements RecordMapper to map from jOOQ Records to your custom types.

jO0Q and the Streams API

jOOQ's Result type extends java.util.List, which opens up access to a variety of new Java features
in Java 8. The following example shows how easy it is to transform a jOOQ Result containing
INFORMATION_SCHEMA meta data to produce DDL statements:

© 2009 - 2025 by Data Geekery™ GmbH. Page 49/1123

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/stream/Stream.html
https://www.jooq.org/javadoc/3.15.x/org/jooq/Result.html#map()
https://www.jooq.org/javadoc/3.15.x/org/jooq/Record.html
https://www.jooq.org/javadoc/3.15.x/org/jooq/Result.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/List.html

The jOOQ User Manual 2.7.j00Q and Scala

DSL. usi ng(c)
.sel ect(
COLUWNS. TABLE_NAME,
COLUWNS. COLUVN_NAME,
COLUMNS. TYPE_NANVE

)

. f r om(COLUWNS)

. order By(
COLUWNS. TABLE_CATALOG,
COLUWNS. TABLE_SCHENA,
COLUWNS. TABLE_NAME,
COLUWNS. ORDI NAL_PCsI TI ON

)
.fetch() // jOOQ ends here
.stream() // JDK 8 Streans start here
. col | ect (groupi ngBy(
r -> r.getVal ue(COLUWS. TABLE_NAME) ,
Li nkedHashMap: : new,
mappi ng(
r -> new Col umm(
r. get Val ue(COLUWMNS. COLUWN_NAME) ,
r. get Val ue(COLUWNS. TYPE_NAME)
),
toList()
)
))
. for Each(
(table, colums) -> {
/1 Just emt a CREATE TABLE statenent
System out. println(
"CREATE TABLE " + table + " (");
// Map each "Colum" type into a String
/1 containing the colum specification,
// and join themusing coma and
/1l new ine. Done!
System out. println(
col umms. strean)
.map(col ->" " + col.nanme +
" + col.type)
.collect(Coll ectors.joining(",\n"))

)3

Systemout.printin(");");

2.7.J00Q and Scala

As any other library, JOOQ can be easily used in Scala, taking advantage of the many Scala language
features such as for example:

- Optional "." to dereference methods from expressions

- Optional "(" and ")" to delimit method argument lists

- Optional ";" at the end of a Scala statement

- Type inference using "var" and "val" keywords

- Lambda expressions and for-comprehension syntax for record iteration and data type
conversion

But jOOQ also leverages other useful Scala features, such as

- implicit defs for operator overloading
- Scala Macros (soon to come)

All of the above heavily improve jOOQ's querying DSL API experience for Scala developers.

A short example jJOOQ application in Scala might look like this:

© 2009 - 2025 by Data Geekery™ GmbH. Page 50/ 1123

The jOOQ User Manual 2.8.j00Q and Groovy

import collection.JavaConversions. _ // Inport inplicit defs for iteration over org.jooq.Result
Il
inport java.sql.DriverManager Il
Il
import org.jooq._ Il
inport org.jooq.inpl._ Il
inport org.jooq.inpl.DSL. _ Il
i mport org.jooq.exanpl es. scal a. h2. Tabl es. _ Il
inport org.jooq.scal aext ensi ons. Conversi ons. _ /1 Inport inplicit defs for overloaded j OOQ SQL operators
Il
obj ect Test { Il
def main(args: Array[String]): Unit = { Il
val c¢ = DriverManager. get Connection("jdbc: h2: ~/test", "sa", ""); // Standard JDBC connection
val e = DSL.using(c, SQDialect.H2); Il
val x = AUTHOR as "x" /1l SQL-esque table aliasing
Il
for (r <- e Il lteration over Result. "r" is an org.jooq. Record3
sel ect (Il
BOOK. | D * BOOK. AUTHOR | D, /1l Using the overloaded "*" operator
BOOK. I D + BOOK. AUTHOR ID * 3 + 4, /1l Using the overloaded "+" operator
BOOK TITLE || " abc" || " xy" /'l Using the overloaded "||" operator
) Il
from BOOK /1 No need to use parentheses or "." here
leftQuterJoin (Il
select (x.1D, x.YEAR OF BI RTH) /I Dereference fields fromaliased table
from x Il
limt 1 Il
asTabl e x. get Nane() Il
) Il
on BOOK. AUTHOR I D === x.ID /1l Using the overloaded "===" oper at or
where (BOXK. ID <> 2) /'l Using the ol erl oaded "<>" operator
or (BOOK. TITLE in ("O Al quinista", "Brida")) /1 Neat IN predicate expression
fetch Il
) | 1
println(r) Il
Il
} Il

For more details about jOOQ's Scala integration, please refer to the manual's section about SQL building
with Scala.

2.8.]00Q and Groovy

As any other library, JOOQ can be easily used in Groovy, taking advantage of the many Groovy language
features such as for example:

- Optional ";" at the end of a Groovy statement
- Type inference for local variables

A short example jOOQ application in Groovy might look like this:

Note that while Groovy supports some means of operator overloading, we think that these means
should be avoided in ajOOQ integration. For instance, a + b in Groovy maps to a formal a.plus(b) method
invocation, and jOOQ provides the required synonyms in its API to help you write such expressions.
Nonetheless, Groovy only offers little typesafety, and as such, operator overloading can lead to many
runtime issues.

Another caveat of Groovy operator overloading is the fact that operators such as == or >= map to
a.equals(b), a.compareTo(b) == 0, a.compareTo(b) >= 0 respectively. This behaviour does not make sense
in a fluent APl such as jOOQ.

© 2009 - 2025 by Data Geekery™ GmbH. Page 51/1123

https://groovy-lang.org/operators.html#Operator-Overloading

The jOOQ User Manual 2.9.j00Q and Kotlin

2.9.100Q and Kotlin

As any other library, JOOQ can be easily used in Kotlin, taking advantage of the many Kotlin language
features such as for example:

- Optional ";" at the end of a Kotlin statement
- Type inference for local variables

A short example jOOQ application in Kotlin might look like this:

Note that Kotlin supports some means of operator overloading. For instance, a + b in Kotlin maps to
a formal a.plus(b) method invocation, and jOOQ provides the required synonyms in its API to help you
write such expressions.

One particularly nice language feature is the fact that [square brackets] allow for accessing any object's
contents via get() and set() methods. Instead of using the above value(), value2(), and value3() methods,
we could also iterate as such:

A caveat of Kotlin operator overloading is the fact that operators such as == or >= map to a.equals(b),
a.compareTo(b) == 0, a.compareTo(b) >= 0 respectively. This behaviour does not make sense in a fluent
APl such as jOOQ.

2.10.j00Q and NoSQL

jOOQ users often get excited about jOOQ's intuitive APl and would then wish for NoSQL support.

There are a variety of NoSQL databases that implement some sort of proprietary query language. Some
of these query languages even look like SQL. Examples are JCR-SQL2, CQL (Cassandra Query Language),
Cypher (Neo4j's Query Language), and many more.

Mapping the jOOQ API onto these alternative query languages would be a very poor fit and a leaky
abstraction. We believe in the power and expressivity of the SQL standard and its various dialects.
Databases that extend this standard too much, or implement it not thoroughly enough are often not
suitable targets for jOOQ. It would be better to build a new, dedicated API for just that one particular
query language. E.g. for Cypher, there's Cypher-DSL, which is a much better fit.

jOOQ is about SQL, and about SQL alone.

2.11.j00Q and JPA

Just because you're using JOOQ doesn't mean you have to use it for everything!

When introducing jOOQ into an existing application that uses JPA, the common question is always:
"Should we replace JPA by jJOOQ?" and "How do we proceed doing that?"

Beware that jOOQ is not a replacement for JPA. Think of jOOQ as a complement. JPA (and ORMs in
general) try to solve the object graph persistence problem. In short, this problem is about

© 2009 - 2025 by Data Geekery™ GmbH. Page 52 /1123

https://kotlinlang.org/docs/reference/operator-overloading.html
https://www.h2database.com/jcr/grammar.html
https://cassandra.apache.org/doc/cql/CQL.html
https://neo4j.com/docs/cypher-manual/current/
https://github.com/neo4j/cypher-dsl

The jOOQ User Manual 2.12. Build your own

- Loading an entity graph into client memory from a database
- Manipulating that graph in the client
Storing the modification back to the database

As the above graph gets more complex, a lot of tricky questions arise like:

- What's the optimal order of SQL DML operations for loading and storing entities?

- How can we batch the commands more efficiently?

- How can we keep the transaction footprint as low as possible without compromising on ACID?
- How can we implement optimistic locking?

JO0Q only has some of the answers.

While jOOQ does offer updatable records that help running simple CRUD, a batch AP, optimistic locking
capabilities, jJOOQ mainly focuses on executing actual SQL statements.

SQL is the preferred language of database interaction, when any of the following are given:

- You run reports and analytics on large data sets directly in the database
You import / export data using ETL
- You run complex business logic as SQL queries

Whenever SQL is a good fit, JOOQ is a good fit. Whenever you're persisting an object graph, JPA is a good
fit. Though note that starting with jJOOQ 3.15 you can also load trees with the MULTISET AGG function
and the MULTISET value constructor very easily.

And sometimes, it's best to combine both

2.12. Build your own

In order to build jOOQ (Open Source Edition) yourself, please download the sources from https://
github.com/[00Q/[00Q and use Maven to build jOOQ, preferably in Eclipse. The jOOQ Open Source
Edition requires Java 8+ to compile and run. The commercial jJOOQ Editions require Java 8+ or Java 6+
to compile and run, depending on the distribution.

Some useful hints to build JOOQ yourself:

© 2009 - 2025 by Data Geekery™ GmbH. Page 53/1123

https://github.com/jOOQ/jOOQ
https://github.com/jOOQ/jOOQ

The jOOQ User Manual 2.13.jO0Q and backwards-compatibility

- Get the latest version of Git or EGit

- Get the latest version of Maven or M2E

- Check out the jOOQ sources from https://github.com/[00Q/j0O0Q

- Optionally, import Maven artefacts into an Eclipse workspace using the following command (see
the maven-eclipse-plugin documentation for details):

* mvn eclipse:eclipse
- Build the joog-parent artefact by using any of these commands:

* mvn clean package

create .jar files in ${project.build.directory}
* mvn clean install

install the jar files in your local repository (e.g. ~/.m?2)
* mvn clean {goal} -Dmaven.test.skip=true

don't run unit tests when building artefacts

2.13.J00Q and backwards-compatibility

Semantic versioning

jOOQ's understanding of backwards compatibility is inspired by the rules of semantic versioning
according to https://semver.org. Those rules impose a versioning scheme [X].[Y].[Z] that can be
summarised as follows:

- If a patch release includes bugfixes, performance improvements and API-irrelevant new features,
[Z] is incremented by one.

- Ifaminor release includes backwards-compatible, API-relevant new features, [Y] is incremented
by one and [Z] is reset to zero.

- Ifamajor release includes backwards-incompatible, API-relevant new features, [X] is
incremented by one and [Y], [Z] are reset to zero.

jO0Q's understanding of backwards-compatibility

Backwards-compatibility is important to jOOQ. You've chosen jOOQ as a strategic SQL engine and you
don't want your SQL to break.

However, there are some elements of API evolution that would be considered backwards-incompatible
in other APIs, but not in jJOOQ. As discussed later on in the section about JOOQ's query DSL API, much
of JOOQ's APl is indeed an internal domain-specific language implemented mostly using Java interfaces.
Adding language elements to these interfaces means any of these actions:

© 2009 - 2025 by Data Geekery™ GmbH. Page 54 /1123

https://git-scm.com
https://www.eclipse.org/egit
https://maven.apache.org
https://eclipse.org/m2e
https://github.com/jOOQ/jOOQ
https://maven.apache.org/plugins/maven-eclipse-plugin/
https://semver.org

The jOOQ User Manual 2.13.jO0Q and backwards-compatibility

- Adding methods to the interface
- Overloading methods for convenience
- Changing the type hierarchy of interfaces (including raw type or binary compatibility implications)

It becomes obvious that it would be impossible to add new language elements (e.g. new SQL functions,
new SELECT clauses) to the API without breaking any client code that actually implements those
interfaces. Hence, the following rules should be observed:

- jOOQ's DSL interfaces should not be implemented by client code! Extend only those extension
points that are explicitly documented as "extendable" (e.g. custom QueryParts).

- Generated code implements such interfaces and extends internal classes, and as such is
recommended to be re-generated with a matching code generator version every time the
runtime library is upgraded.

- Binary compatibility can be expected from patch releases, but not from minor releases as it is
not practical to maintain binary compatibility in an internal DSL.

- Source compatibility can be expected from patch and minor releases, the exception being raw
type compatibility (see #11879), and rare exceptions where APl design is clearly lacking.

- Behavioural compatibility can be expected from patch and minor releases.

- AnyjOOQ SPI XYZ that is meant to be implemented ships with a DefaultXYZ or AbstractXYZ,
which can be used safely as a default implementation.

jO0Q-codegen and JO0OQ-meta

While a reasonable amount of care is spent to maintain these two modules under the rules of semantic
versioning, it may well be that minor releases introduce backwards-incompatible changes. This will be
announced in the respective release notes and should be the exception.

© 2009 - 2025 by Data Geekery™ GmbH. Page 55/1123

https://github.com/jOOQ/jOOQ/issues/11879

The jOOQ User Manual 3.SQL building

3. SQL building

SQL is a declarative language that is hard to integrate into procedural, object-oriented, functional or
any other type of programming languages. jJOOQ's philosophy is to give SQL the credit it deserves and
integrate SQL itself as an "internal domain specific language" directly into Java.

With this philosophy in mind, SQL building is the main feature of jOOQ. All other features (such as SOL
execution and code generation) are mere convenience built on top of JOOQ's SQL building capabilities.

This section explains all about the various syntax elements involved with jOOQ's SQL building
capabilities. For a complete overview of all syntax elements, please refer to the manual's sections about
SQL to DSL mapping rules.

3.1. The query DSL type

jOOQ exposes a lot of interfaces and hides most implementation facts from client code. The reasons
for this are:

- Interface-driven design. This allows for modelling queries in a fluent APl most efficiently

- Reduction of complexity for client code.

- APl guarantee. You only depend on the exposed interfaces, not concrete (potentially dialect-
specific) implementations.

The org.joog.impl.DSL class is the main class from where you will create all JOOQ objects. It serves as a
static factory for table expressions, column expressions (or "fields"), conditional expressions and many

other QueryParts.

The static query DSL API

With jOOQ 2.0, static factory methods have been introduced in order to make client code look more
like SQL. Ideally, when working with jOOQ), you will simply static import all methods from the DSL class:

import static org.jooq.inpl.DSL.*;

Note, that when working with Eclipse, you could also add the DSL to your favourites. This will allow to
access functions even more fluently:

concat (trim(FI RST_NAME), trin{LAST_NAME));

/1 ... which is in fact the same as:
DSL. concat (DSL. tri m(FI RST_NAME), DSL.tri nm(LAST_NAME));

© 2009 - 2025 by Data Geekery™ GmbH. Page 56/ 1123

https://en.wikipedia.org/wiki/Domain_Specific_Language
https://www.jooq.org/javadoc/3.15.x/org/jooq/impl/DSL.html

The jOOQ User Manual 3.2. The DSLContext API

3.2. The DSLContext API

DSLContext references a org.joog.Configuration, an object that configures jOOQ's behaviour when
executing queries (see SQL execution for more details). Unlike the static DSL, the DSLContext allow for
creating SQL statements that are already "configured" and ready for execution.

Fluent creation of a DSLContext object

The DSLContext object can be created fluently from the DSL type:

/Il Create it froma pre-existing configuration
DSLCont ext create = DSL.using(configuration);

I/l Create it from ad-hoc argunents
DSLCont ext create = DSL.using(connection, dialect);

If you do not have a reference to a pre-existing Configuration object (e.g. created from
org.joog.impl.DefaultConfiguration), the various overloaded DSL.using() methods will create one for
you.

Contents of a Configuration object

A Configuration can be supplied with these objects:

© 2009 - 2025 by Data Geekery™ GmbH. Page 57 /1123

https://www.jooq.org/javadoc/3.15.x/org/jooq/Configuration.html
https://www.jooq.org/javadoc/3.15.x/org/jooq/impl/DefaultConfiguration.html

The jOOQ User Manual 3.2. The DSLContext API

- org.jooq.SQLDialect : The dialect of your database. This may be any of the currently supported
database types (see SQL Dialect for more details)

- orgjoog.conf.Settings : An optional runtime configuration (see Custom Settings for more details)

- org.joog.ExecutelistenerProvider : An optional reference to a provider class that can provide
execute listeners to jOOQ (see Executelisteners for more details)

- orgjoog.ParselListenerProvider : An optional reference to a provider class that can provide parse
listeners to jOOQ (see SQL Parser Listener for more details)

- org.joog.RecordListenerProvider : An optional reference to a provider class that can provide
record listeners to jOOQ (see CRUD SPI: RecordListener for more details)

- org.joog.RecordMapperProvider : An optional reference to a provider class that can provide
record mappers to jOOQ (see RecordMapperProvider for more details)

-]DBC access:

* java.sgl.Connection : An optional JDBC Connection that will be re-used for the whole
lifecycle of your Configuration (see Connection vs. DataSource for more details). For
simplicity, this is the use-case referenced from this manual, most of the time.

* java.sgl.DataSource : An optional JDBC DataSource that will be re-used for the whole
lifecycle of your Configuration. If you prefer using DataSources over Connections, jOOQ
will internally fetch new Connections from your DataSource, conveniently closing them
again after query execution. This is particularly useful in Java EE or Spring contexts (see
Connection vs. DataSource for more details)

* org.joog.ConnectionProvider : A custom abstraction that is used by jOOQ to "acquire"
and "release" connections. jJOOQ will internally "acquire" new Connections from your
ConnectionProvider, conveniently "releasing" them again after query execution. (see
Connection vs. DataSource for more details)

- R2DBC access:

* Jjo.r2dbc.spi.Connection : An optional R2DBC Connection that will be re-used for the
whole lifecycle of your Configuration (see Connection vs. DataSource for more details). For
simplicity, this is the use-case referenced from this manual, most of the time.

* jo.r2dbc.spi.ConnectionFactory : An optional R2DBC ConnectionFactory that will be re-used
for the whole lifecycle of your Configuration. If you prefer using ConnectionFactories over
Connections, jOOQ will internally fetch new Connections from your ConnectionFactory,
conveniently closing them again after query execution. This is particularly useful in Spring
contexts (see Connection vs. DataSource for more details)

Usage of DSLContext

Wrapping a Configuration object, a DSLContext can construct statements, for later execution. An
example is given here:

/1l The DSLContext is "configured" with a Connection and a SQLDi al ect
DSLCont ext create = DSL.using(connection, dialect);

/1l This select statement contains an internal reference to the DSLContext's Configuration:
Sel ect <?> sel ect = create. sel ectOne();

/1l Using the internally referenced Configuration, the select statenment can now be executed:
Resul t<?> result = select.fetch();

Note that you do not need to keep a reference to a DSLContext. You may as well inline your local variable,
and fluently execute a SQL statement as such:

© 2009 - 2025 by Data Geekery™ GmbH. Page 58/1123

https://www.jooq.org/javadoc/3.15.x/org/jooq/SQLDialect.html
https://www.jooq.org/javadoc/3.15.x/org/jooq/conf/Settings.html
https://www.jooq.org/javadoc/3.15.x/org/jooq/ExecuteListenerProvider.html
https://www.jooq.org/javadoc/3.15.x/org/jooq/ParseListenerProvider.html
https://www.jooq.org/javadoc/3.15.x/org/jooq/RecordListenerProvider.html
https://www.jooq.org/javadoc/3.15.x/org/jooq/RecordMapperProvider.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Connection.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/DataSource.html
https://www.jooq.org/javadoc/3.15.x/org/jooq/ConnectionProvider.html
https://r2dbc.io/spec/0.9.0.M2/api/io/r2dbc.spi/Connection.html
https://r2dbc.io/spec/0.9.0.M2/api/io/r2dbc.spi/ConnectionFactory.html

The jOOQ User Manual 3.2.1.SQL Dialect

Il Execute a statenent froma single execution chain:
Resul t<?> result =
DSL. usi ng(connection, dialect)

.select()

. f r om(BOOK)

. wher e(BOOK. TI TLE. | i ke(" Ani nal %'))

.fetch();

3.2.7. SQL Dialect

While jOOQ tries to represent the SQL standard as much as possible, many features are vendor-specific
to a given database and to its "SQL dialect". jJOOQ models this using the org.jooq.SQLDialect enum type.

The SQL dialect is one of the main attributes of a Configuration. Queries created from DSLContexts will
assume dialect-specific behaviour when rendering SOL and binding bind values.

Some parts of the JOOQ API are officially supported only by a given subset of the supported SQL dialects.
For instance, the Oracle CONNECT BY clause, which is supported by the Oracle and Informix databases,
is annotated with a org.jooq.Support annotation, as such:

/**
* Add an Oracl e-specific <code>CONNECT BY</code> cl ause to the query
*/

@upport ({ SQLDi al ect. | NFORM X, SQLDi al ect. ORACLE })

Sel ect Connect ByCondi ti onSt ep<R> connect By(Condi ti on condition);

jOOQ APl methods which are not annotated with the org.joog.Support annotation, or which are
annotated with the Support annotation, but without any SQL dialects can be safely used in all SQL
dialects. An example for this is the SELECT statement factory method:

[xx
* Create a new DSL sel ect statenent.
*
/
@uppor t
Sel ect Sel ect St ep<R> sel ect (Fi el d<?>... fields);

jO0Q's SQL clause emulation capabilities

The aforementioned Support annotation does not only designate, which databases natively support a
feature. It also indicates that a feature is emulated by jJOOQ for some databases lacking this feature. An
example of this is the DISTINCT predicate, a predicate syntax defined by SQL:1999 and implemented
only by H2, HSQLDB, and Postgres:

A IS DI STINCT FROM B

Nevertheless, the IS DISTINCT FROM predicate is supported by jOOQ in all dialects, as its semantics can
be expressed with an equivalent CASE expression. For more details, see the manual's section about
the DISTINCT predicate.

jO0Q and the Oracle SQL dialect

Oracle SQL is much more expressive than many other SQL dialects. It features many unique keywords,
clauses and functions that are out of scope for the SQL standard. Some examples for this are

© 2009 - 2025 by Data Geekery™ GmbH. Page 59/1123

https://www.jooq.org/javadoc/3.15.x/org/jooq/SQLDialect.html
https://www.jooq.org/javadoc/3.15.x/org/jooq/Support.html
https://www.jooq.org/javadoc/3.15.x/org/jooq/Support.html

The jOOQ User Manual 3.2.2. SQL Dialect Family

- The CONNECT BY clause, for hierarchical queries

- The PIVOT keyword for creating PIVOT tables

- Packages, object-oriented user-defined types, member procedures as described in the section
about stored procedures and functions

- Advanced analytical functions as described in the section about window functions

jOOQ has a historic affinity to Oracle's SQL extensions. If something is supported in Oracle SQL, it has
a high probability of making it into the jJOOQ AP

3.2.2. SQL Dialect Family

In jJOOQ 3.1, the notion of a SQLDialect.family() was introduced, in order to group several similar SQL
dialects into a common family. An example for this is SQL Server, which is supported by jOOQ in various
versions:

- SQL Server: The "version-less" SQL Server version. This always maps to the latest supported
version of SQL Server

- SQL Server 2012: The SQL Server version 2012

- SQL Server 2008: The SQL Server version 2008

In the above list, SQLSERVER is both a dialect and a family of three dialects. This distinction is used
internally by jOOQ to distinguish whether to use the OFFSET .. FETCH clause (SQL Server 2012), or
whether to emulate it using ROW_NUMBER() OVER() (SQL Server 2008).

3.2.3. Connection vs. DataSource

Interact with JDBC Connections

While you can use jOOQ for SQL building only, you can also run queries against a JDBC
java.sgl.Connection. Internally, jOOQ creates java.sgl.Statement or java.sgl.PreparedStatement objects
from such a Connection, in order to execute statements. The normal operation mode is to provide a
Configuration with a JDBC Connection, whose lifecycle you will control yourself. This means that jOOQ
will not actively close connections, rollback or commit transactions.

Note, in this case, jJOOQ will internally use a org.joog.impl.DefaultConnectionProvider, which you can
reference directly if you prefer that. The DefaultConnectionProvider exposes various transaction-
control methods, such as commit(), rollback(), etc.

Interact with JDBC DataSources

If you're in a Java EE or Spring context, however, you may wish to use a javax.sgl.DataSource instead.
Connections obtained from such a DataSource will be closed after query execution by jOOQ. The
semantics of such a close operation should be the returning of the connection into a connection pool,
not the actual closing of the underlying connection. Typically, this makes sense in an environment using
distributed JTA transactions.

© 2009 - 2025 by Data Geekery™ GmbH. Page 60/ 1123

https://www.jooq.org/javadoc/3.15.x/org/jooq/SQLDialect.html#SQLSERVER
https://www.jooq.org/javadoc/3.15.x/org/jooq/SQLDialect.html#SQLSERVER2012
https://www.jooq.org/javadoc/3.15.x/org/jooq/SQLDialect.html#SQLSERVER2008
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Connection.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Statement.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/PreparedStatement.html
https://www.jooq.org/javadoc/3.15.x/org/jooq/impl/DefaultConnectionProvider.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/javax/sql/DataSource.html

The jOOQ User Manual 3.2.4. Custom data

Note, in this case, JOOQ will internally use a org.joog.impl.DataSourceConnectionProvider, which you
can reference directly if you prefer that.

Inject custom behaviour

If your specific environment works differently from any of the above approaches, you can inject your own
custom implementation of a ConnectionProvider into jJOOQ. This is the API contract you have to fulfil:

public interface ConnectionProvider {

/1l Provide jOOQ with a connection
Connection acquire() throws DataAccessException;

I/ Get a connection back fromjOOQ
voi d rel ease(Connection connection) throws DataAccessException;

Reactive querying

If you wish to use an R2DBC driver, you do not have to supply a org.joog.ConnectionProvider to your
Configuration. Instead, jOOQ can work with a io.r2dbc.spi.Connection (jOOQ will never close it) or
io.r2dbc.spi.ConnectionFactory (jOOQ will close all R2DBC Connections that it creates).

3.2.4. Custom data

In advanced use cases of integrating your application with jJOOQ, you may want to put custom data into
your Configuration, which you can then access from your...

- Custom Executelisteners
- Custom QueryParts

Here is an example of how to use the custom data APIl. Let's assume that you have written an
Executelistener, that prevents INSERT statements, when a given flag is set to true:

public class NolnsertlListener extends Defaul t Executelistener {

@verride
public void start(ExecuteContext ctx) {

/Il This listener is active only, when your customflag is set to true
if (Bool ean. TRUE. equal s(ctx. configuration().data("com exanpl e. ny-nanespace. no-inserts"))) {

/Il If active, fail this execution, if an INSERT statenment is being executed
if (ctx.query() instanceof Insert) {
t hrow new Dat aAccessException("“No | NSERT statenents al |l owed");
}
}
}

See the manual's section about Executelisteners to learn more about how to implement an
Executelistener.

Now, the above listener can be added to your Configuration, but you will also need to pass the flag to
the Configuration, in order for the listener to work:

© 2009 - 2025 by Data Geekery™ GmbH. Page 61/1123

https://www.jooq.org/javadoc/3.15.x/org/jooq/impl/DataSourceConnectionProvider.html
https://r2dbc.io
https://www.jooq.org/javadoc/3.15.x/org/jooq/ConnectionProvider.html
https://r2dbc.io/spec/0.9.0.M2/api/io/r2dbc.spi/Connection.html
https://r2dbc.io/spec/0.9.0.M2/api/io/r2dbc.spi/ConnectionFactory.html

The jOOQ User Manual 3.2.5. Custom Executelisteners

/1l Create your Configuration
Configuration configuration = new Defaul t Configuration().set(connection).set(dialect);

/1 Set a new execute listener provider onto the configuration:
configuration. set (new Def aul t Execut eLi st ener Provi der (new Nol nsertListener()));

// Use any String literal to identify your custom data
configuration. data("com exanpl e. ny- nanmespace. no-i nserts", true);
/1 Try to execute an | NSERT statenent
try {
DSL. usi ng(confi guration)

.insertlnto(AUTHOR, AUTHOR | D, AUTHOR LAST_NAME)

.values(1l, "Owell")

. execute();

/1 You shouldn't get here
Assert.fail();
}

/1 Your NolnsertListener should be throwi ng this exception here:
catch (DataAccessException expected) {

Assert . assert Equal s("No | NSERT statenents all owed", expected. get Message());
}

Using the data() methods, you can store and retrieve custom data in your Configurations.

3.2.5. Custom ExecutelListeners

Executelisteners are a useful tool to...

- implement custom logging
- apply triggers written in Java
- collect query execution statistics

Executelisteners are hooked into your Configuration by returning them
org.jooqg.ExecutelistenerProvider:

/1 Create your Configuration
Configuration configuration = new Defaul t Configuration().set(connection).set(dialect);

/1 Hook your |istener providers into the configuration:

configuration. set(
new Def aul t Execut eLi st ener Provi der (new MyFirstListener()),
new Def aul t Execut eLi st ener Provi der (new Per f or mancelLoggi ngLi stener()),
new Def aul t Execut eLi st ener Provi der (new Nol nsertLi stener())

from an

See the manual's section about Executelisteners to see examples of such listener implementations.

3.2.6. Custom Unwrappers

JDBC knows the java.sgl.Wrapper API, which is implemented by all JDBC types in order to be able to

"unwrap" a native driver implementation for any given type. For example:

// This may be some proxy froma connection pool
Connection ¢ = get Connection();

/] Sonmetimes, we want the native driver connection instance
Oracl eConnection oc = c.unw ap(Oracl eConnecti on. cl ass);
Array array = oc.creat eARRAY("ARRAY_TYPE", new Object[] { "a", "b" });

jOOQ internally makes similar calls occasionally. For this, it needs to unwrap the native
java.sgl.Connection or java.sgl.PreparedStatement instance. Unfortunately, not all third party

© 2009 - 2025 by Data Geekery™ GmbH.

Page 62 /1123

https://www.jooq.org/javadoc/3.15.x/org/jooq/ExecuteListenerProvider.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Wrapper.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Connection.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/PreparedStatement.html

The jOOQ User Manual 3.2.7. Custom Settings

libraries correctly implement the Wrapper API contract, so this unwrapping might not work. The
org.joog.Unwrapper SPI is designed to allow for custom implementations to be injected into jOOQ
configurations:

/1 Your jOOQ configuration
Configuration cl = getConfiguration();
Configuration c2 = c.derive(new Unwr apper () {
@verride
public <T> T unw ap(W apper wrapper, C ass<T> iface) {
try {
i f (wrapper instanceof Connection)
1.
else if (wapper instanceof Statenent)
1.
clse
wr apper . unw ap(i f ace) ;

}

catch (SQLException e) {
1.

}

}
1)

/1 Work with the derived configuration, where needed
DSL. using(c2).fetch("...");

3.2.7. Custom Settings

The jOOQ Configuration allows for some optional configuration elements to be used by advanced users.
The org.joog.conf.Settings class is a JAXB-annotated type, that can be provided to a Configuration in
several ways:

- In the DSLContext constructor (DSL.using()). This will override default settings below

- inthe orgjooqg.impl.DefaultConfiguration constructor. This will override default settings below
- From a location specified by a JVM parameter: -Dorg.jooq.settings

- From the classpath at /joog-settings.xml

- From the settings defaults, as specified in https://www.joog.org/xsd/joog-runtime-3.15.0.xsd

The most specific settings for a given context will apply.

If you wish to configure your settings through XML, but explicitly load them for a given Configuration,
you can do so as well, using JAXB:

Settings settings = JAXB.unmarshal (new File("/path/to/settings.xm "), Settings.class);

Example

For example, if you want to indicate to jOOQ, that it should inline all bind variables, and execute static
java.sgl.Statement instead of binding its variables to java.sgl.PreparedStatement, you can do so by
creating the following DSLContext:

Settings settings = new Settings();
settings. set St at enent Type(St at ement Type. STATI C_STATEMENT) ;
DSLCont ext create = DSL.using(connection, dialect, settings);

© 2009 - 2025 by Data Geekery™ GmbH. Page 63/1123

https://www.jooq.org/javadoc/3.15.x/org/jooq/Unwrapper.html
https://www.jooq.org/javadoc/3.15.x/org/jooq/conf/Settings.html
https://www.jooq.org/javadoc/3.15.x/org/jooq/impl/DefaultConfiguration.html
https://www.jooq.org/xsd/jooq-runtime-3.15.0.xsd
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Statement.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/PreparedStatement.html

The jOOQ User Manual 3.2.7.1. Auto-attach Records

More details

Please refer to the jJOOQ runtime configuration XSD for more details:
https://www.joog.org/xsd/joog-runtime-3.15.0.xsd

3.2.7.7. Auto-attach Records

By default, all records fetched through jOOQ are "attached" to the configuration that created them. This
allows for features like updatable records as can be seen here:

Aut hor Record aut hor =

DSL. usi ng(configuration) // This configuration will be attached to any record produced by the bel ow query.
. sel ect Fr on{ AUTHOR)
. wher e(AUTHOR. I D. eq(1))
.fetchOne();

aut hor . set Last Name("Smi th");
aut hor.store(); // This store call operates on the "attached" configuration.

In some cases (e.g. when serialising records), it may be desirable not to attach the Configuration that
Created a record to the record. This can be achieved with the attachRecords setting:

Example configuration

Settings settings = new Settings()
.withAttachRecords(false); // Defaults to true

3.2.7.2. Backslash Escaping

Some databases (mainly MySQL and MariaDB) unfortunately chose to go an alternative, non-SQL-
standard route when escaping string literals. Here's an example of how to escape a string containing
apostrophes in different dialects:

SELECT 'I''msure this is OK AS val -- Standard SQL escapi ng of apostrophe by doubling it.
SELECT '"I\'mcertain this causes trouble' AS val -- Vendor-specific escaping of apostrophe by using a backsl ash.

As most databases don't support backslash escaping (and MySQL also allows for turning it off!), JOOQ
by default also doesn't support it when inlining bind variables. However, this can lead to SQL injection
vulnerabilities and syntax errors when not dealing with it carefully!

This feature is turned on by default and for historic reasons for MySQL and MariaDB.

- DEFAULT (the - surprise! - default): Turns the feature ON for MySQL and MariaDB and OFF for all
other dialects

- ON: Turn the feature on.

- OFF: Turn the feature off.

Example configuration

© 2009 - 2025 by Data Geekery™ GmbH. Page 64 /1123

https://www.jooq.org/xsd/jooq-runtime-3.15.0.xsd

The jOOQ User Manual 3.2.7.3. Batch size

Settings settings = new Settings()
.wi t hBacksl ashEscapi ng(Backsl ashEscapi ng. OFF); // Default to DEFAULT

3.2.7.3. Batch size

jOOQ offers a transparent batching API, which can buffer all statements generated by jJOOQ and other
JDBC backed APIs transparently in order to batch them:

// Everything in the below | anbda will be buffered and batched
DSL. usi ng(confi guration).batched(c -> {

nodul el. i nsert Sonet hi ng(c);

nodul e2. i nsert Sonet hi ngEl se(c);

b)s

Use the Settings.batchSize flag to govern the maximum batch statement size of this API:

Settings settings = new Settings()
.withBatchSi ze(100); // Default |nteger.MAX VALUE

3.2.7.4. Dialect compatibility

When supporting multiple dialects, there are some dialect specific behaviours that are inconsistent
between dialects. This is especially true for NULL values in Oracle.

The following settings govern dialect compatibility behaviour:

- Settings.renderCoalesceToEmptyStringinConcat: This flag will use COALESCE on all operands of a
String concatenation expression in order to turn NULL values to ", which is Oracle's more useful,
but not standards compliant behaviour.

3.2.7.5. Execute Logging

The executeLogging setting turns off the default loggin implemented through
org.joog.tools.Loggerlistener

Example configuration

Settings settings = new Settings()
.wi t hExecut eLoggi ng(fal se); // Defaults to true

© 2009 - 2025 by Data Geekery™ GmbH. Page 65/1123

https://www.jooq.org/javadoc/3.15.x/org/jooq/tools/LoggerListener.html

The jOOQ User Manual 3.2.7.6. Fetch Warnings

3.2.7.6. Fetch Warnings

Apart from JDBC exceptions, there is also the possibility to handle java.sgl.SQLWarning, which are made
available to jOOQ users through the java.sgl.Executelistener SPI and the log. Users who do not wish
to get these notifications (e.g. for performance reasons), may turn off fetching of warnings through the
fetchWarnings setting:

Example configuration

Settings settings = new Settings()
.wi t hFet chWarni ngs(false); // Defaults to true

3.2.7.7. GROUP_CONCAT Configuration

The MySQL GROUP_CONCAT function suffers from a controversial design decision where results are
truncated after a certain length, the @@group_concat_max_len.

Whenever jOOQ generates a GROUP_CONCAT function, by default, that MySQL system variable is
increased to the maximum value for the scope of a single statement, e.g.

SET @ = @EBROUP_CONCAT_MAX_LEN;

SET @EBROUP_CONCAT_MAX_LEN = 4294967295;
SELECT GROUP_CONCAT(TI TLE SEPARATCR ', ')
FROM BOOK;

SET @EBROUP_CONCAT_MAX_LEN = @;

More details here. While this is a reasonable default behaviour (as opposed to the random truncation),
it may occasionally be undesired, e.g. if statement batches (; separated statements) aren't possible in
a single JDBC statement. The feature can be turned off with

Example configuration

Settings settings = new Settings()
. wi t hRender G oupConcat MaxLenSessi onVari abl e(fal se); // Defaults to true

3.2.7.8. |dentifier style

By default, JOOQ will always generate quoted names for all identifiers (even if this manual omits this
for readability).

For instance:

SELECT "TABLE"."COLUW' FROM "TABLE" -- SQL standard style
SELECT "TABLE . COLUW FROM "TABLE -- M/SQL style
SELECT [TABLE].[COLUMN] FROM [TABLE] -- SQL Server style

Quoting has the following effect on identifiers in most (but not all) databases:

© 2009 - 2025 by Data Geekery™ GmbH. Page 66/ 1123

https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/SQLWarning.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/ExecuteListener.html
https://blog.jooq.org/mysqls-allowmultiqueries-flag-with-jdbc-and-jooq/

The jOOQ User Manual 3.2.7.9. Implicit join type

- It allows for using reserved names as object names, e.g. a table called "FROM" is usually possible
only when quoted.

- Itallows for using special characters in object names, e.g. a column called "FIRST NAME" can be
achieved only with quoting.

- ltturns what are mostly case-insensitive identifiers into case-sensitive ones, e.g. "name" and
"NAME" are different identifiers, whereas name and NAME are not. Please consider your
database manual to learn what the proper default case and default case sensitivity is.

The renderQuotedNames and renderNameCase settings allow for overriding the name of all identifiers
in jOOQ to a consistent style. The two flags are independent of one another. Possible options are:

RenderQuotedNames

- ALWAYS: This will quote all identifiers.

- EXPLICIT_DEFAULT_QUOTED: This will quote all identifiers, which are not explicitly unquoted
using DSL.unquotedName().

- EXPLICIT_DEFAULT_UNQUQOTED: This will not quote any identifiers, unless they are explicitly
quoted using DSL.quotedName().

- NEVER: This will not quote any identifiers.

RenderNameCase

- AS_IS: This will generate all names in their proper case.

- LOWER: This will transform all names to lower case.

- LOWER_IF_UNQUQOTED: This will transform all names to lower case if the name is unquoted.
- UPPER: This will transform all names to upper case.

- UPPER_IF_UNQUQOTED: This will transform all names to upper case if the name is unquoted.

(1) In some database products, quoted identifiers only enable special characters. Other database
products use quotes also to make identifiers case sensitive. Keep this in mind when working with the
above flags.

Example configuration

Settings settings = new Settings()
. wi t hRender Quot edNanes(Render Quot edNanes. EXPLI CI T_DEFAULT_UNQUOTED) // Defaults to EXPLI Cl T_DEFAULT_QUOTED
.wi t hRender NaneCase(Render NameCase. LOAER | F_UNQUOTED) ; Il Defaults to AS IS

The behaviour of this setting is influenced by the renderlLocale setting.

3.2.7.9. Implicit join type

jO0Q's very useful implicit JOIN feature can be used to use a path notation to join tables on their actual,
or synthetic foreign keys. For example:

© 2009 - 2025 by Data Geekery™ GmbH. Page 67/1123

https://www.jooq.org/javadoc/3.15.x/org/jooq/impl/DSL.html#unquotedName(String)
https://www.jooq.org/javadoc/3.15.x/org/jooq/impl/DSL.html#quotedName(String)

The jOOQ User Manual 3.2.7.10. Inline Threshold

I/ Get all books, their authors, and their respective |anguage
create. sel ect (
BOOK. aut hor () . FI RST_NAME,
BOOK. aut hor () . LAST_NANE,
BOOK. Tl TLE,
BOCK. | anguage() . CD. as("| anguage"))
. f r om(BOOK)
.fetch();

By default, this produces:

- An INNER_JOIN if all columns of the foreign key are NOT NULL
- ALEFT_JOIN if the foreign key is nullable / optional

The above defaults are important to prevent implicit joins from filtering results when placed in clauses
that are not meant to filter, such as the SELECT clause or the ORDER BY clause.

Users may prefer to enforce a different behaviour, including:

- Always produce a LEFT_JOIN, e.g. because this was the behaviour before jOOQ 3.14
- Always produce an INNER_JOIN, e.g. because they're migrating off Hibernate / JPA, and depend
on Hibernate's implicit joins producing inner joins

This change of behaviour can be achieved with the following setting:

Example configuration

Settings settings = new Settings()
.wi t hRender | npl i ci t Joi nType(Render | npli ci t Joi nType. | NNER_JO N) ;

3.2.7.10. Inline Threshold

Previous sections showed how the SQL generation of bind values can be controlled, e.g. by forcing them
to be inlined, or by running a static JDBC statement.

Sometimes, inlining needs to be enforced dynamically, depending on the query content. This is the case
when there are a great number of bind variables. Known vendor-specific limits are:

- Access : 768

- Ingres : 1024

- Oracle : 32767

- PostgreSQL : 32767
- SQLite : 999

- SQL Server : 2100

- Sybase ASE : 2000

- Teradata : 2536

By default, JOOQ will automatically inline all bind variables in any SQL statement, once these thresholds
have been reached. However, it is possible to override this default and provide a setting to re-define
a global threshold for all dialects.

Example configuration

© 2009 - 2025 by Data Geekery™ GmbH. Page 68 /1123

The jOOQ User Manual 3.2.7.11. IN-list Padding

Settings settings = new Settings()
.wi thinlineThreshol d(100); // Defaults to 0, which neans the default thresholds are applied

3.2.7.117. IN-list Padding

Databases that feature a cursor cache / statement cache (e.g. Oracle, SQL Server, DB2, etc.) are highly
optimised for prepared statement re-use. When a client sends a prepared statement to the server, the
server will go to the cache and look up whether there already exists a previously calculated execution
plan for the statement (i.e. the SQL string). This is called a "soft-parse" (in Oracle). If not, the execution
plan is calculated on the fly. This is called a "hard-parse" (in Oracle).

Preventing hard-parses is extremely important in high throughput OLTP systems where queries are
usually not very complex but are run millions of times in a short amount of time. Using bind variables,
this is usually not a problem, with the exception of the IN predicate, which generates different SQL
strings even when using bind variables:

- Al of these are different SQL statenents:
SELECT * FROM AUTHOR WHERE ID IN (?)

SELECT * FROM AUTHOR WHERE ID IN (?, ?)

SELECT * FROM AUTHOR WHERE ID IN (?, ?, ?)
SELECT * FROM AUTHOR WHERE ID IN (?, ?, ?, ?)
SELECT * FROM AUTHOR WHERE ID IN (?, ?, ?, ?, ?)

This problem may not be obvious to Java / jOOQ developers, as they are always produced from the
same jOOQ statement:

/1 Al of these are the sane jOOQ st atenent
DSL. usi ng(confi guration)
.select()
. from(AUTHOR)
. wher e(AUTHOR. I D.i n(col | ection))
.fetch();

Depending on the possible sizes of the collection, it may be worth exploring using arrays or temporary
tables as a workaround, or to reuse the original query that produced the set of IDs in the first place
(through a semi-join). But sometimes, this is not possible. In this case, users can opt in to a third
workaround: enabling the inListPadding setting. If enabled, jJOOQ will "pad" the IN list to a length that is
a power of two (configurable with Settings.inListPadBase). So, the original queries would look like this
instead:

- Original -- Padded
SELECT * FROM AUTHOR WHERE I D IN (?) SELECT * FROM AUTHOR WHERE ID IN (?)
SELECT * FROM AUTHOR WHERE ID IN (?, ?) SELECT * FROM AUTHOR WHERE ID IN (?, ?)
SELECT * FROM AUTHOR WHERE ID IN (?, 2, ?) SELECT * FROM AUTHOR WHERE ID IN (?, ?, ?, ?)
SELECT * FROM AUTHOR WHERE ID IN (2, 2, 2, ?) SELECT * FROM AUTHOR WHERE ID IN (?, ?, ?, ?)
SELECT * FROM AUTHOR WHERE ID IN (2, 2, 2, 2, ?) SELECT * FROM AUTHOR WHERE ID IN (?, 2, 2, ?, ?2, 2, 2, ?)
SELECT * FROM AUTHOR WHERE ID IN (?, 2, 2, 2, 2, ?) SELECT * FROM AUTHOR WHERE ID IN (?, 2, 2, ?, ?2, 2, 2, ?)

This technique will drastically reduce the number of possible SQL strings without impairing too much
the usual cases where the IN list is small. When padding, the last bind variable will simply be repeated
many times.

Usually, there is a better way - use this as a last resort!

Example configuration

© 2009 - 2025 by Data Geekery™ GmbH. Page 69/1123

The jOOQ User Manual 3.2.7.12. Interpreter Configuration

Settings settings = new Settings()
.withlnListPadding(true) // Default to false
.wi thlnLi st PadBase(4); I/ Default to 2

3.2.7.12. Interpreter Configuration

The SOL Interpreter API ships with a variety of settings that govern its behaviour. These settings include:

- interpreterDialect: The interpreter input dialect. This dialect is used to decide whether DDL
interpretation should be done on an actual in-memory database of a specific type, or using
jOOQ's built in DDL interpretation.

- interpreterDelayForeignKeyDeclarations: Whether the interpreter should delay the application of
foreign key declarations (in case of which forward references are possible).

- interpreterLocale: The locale to use for things like case insensitive comparisons.

- interpreterNamelLookupCaseSensitivity: The identifier case sensitivity that should be applied
when interpreting SQL, depending on whether identifiers are quoted or not.

- interpreterSearchPath: The search path for unqualified schema objects used by the interpreter.

Example configuration

Settings settings = new Settings()

.withlnterpreterDial ect(H2) /| Defaults to DEFAULT

.wi thlnterpreterDel ayFor ei gnKeyDecl ar ati ons(true) /] Defaults to fal se
.withlnterpreterLocal e(Local e. forLanguageTag("de")) /'l Defaults to Local e.getDefaul t()
.wi thlnterpreterNanmeLookupCaseSensi ti vity(NEVER) /| Defaults to WHEN QUOTED
.withlnterpreterSearchPath(...); /| Defaults to an enpty |ist

3.2.7.13. JDBC Flags

JDBC statements feature a couple of flags that influence the execution of such a statement. Each of
these flags can be configured through jOOQ's org.joog.Query and org.joog.ResultQuery on a statement-
per-statement basis, but there's also the possibility to centrally specify a value for these flags. These
are the three flags:

- queryTimeout: The JDBC statement timeout in seconds. Corresponds to Query.queryTimeout()
or Statement.setQueryTimeout()

- maxRows: The maximum number of rows returned by the JDBC statement. Corresponds to
ResultQuery.maxRows() or Statement.setMaxRows()

- fetchSize: The number of rows to be buffered by the JDBC ResultSet. Corresponds to
ResultQuery.fetchSize() or Statement.setFetchSize()

All of these flags are JDBC-only features with no direct effect on jOOQ. JOOQ only passes them through
to the underlying statement.

Example configuration

© 2009 - 2025 by Data Geekery™ GmbH. Page 70/ 1123

https://www.jooq.org/javadoc/3.15.x/org/jooq/Query.html
https://www.jooq.org/javadoc/3.15.x/org/jooq/ResultQuery.html
https://www.jooq.org/javadoc/3.15.x/org/jooq/Query.html#queryTimeout(int)
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Statement.html#setQueryTimeout(int)
https://www.jooq.org/javadoc/3.15.x/org/jooq/ResultQuery.html#maxRows(int)
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Statement.html#setMaxRows(int)
https://www.jooq.org/javadoc/3.15.x/org/jooq/ResultQuery.html#fetchSize(int)
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Statement.html#setFetchSize(int)

The jOOQ User Manual 3.2.7.14. Keyword style

Settings settings = new Settings()
.wi t hQuer yTi meout (5)
. wi t hQuer yPool abl e(DEFAULT)
. Wi t hMaxRows (1000)
. W t hFet chSi ze(20) ;

3.2.7.14. Keyword style

In all SQL dialects, keywords are case insensitive, and this is also the default in jOOQ, which mostly
generates lower-case keywords. Users may wish to adapt this and they have these options for the
renderKeywordCase setting:

- AS_IS (the default): Generate keywords as they are defined in the codebase (mostly lower case).
- LOWER: Generate keywords in lower case.

- UPPER: Generate keywords in upper case.

- PASCAL: Generate keywords in pascal case.

Example configuration

Settings settings = new Settings()
. wi t hRender Keywor dCase(Render Keywor dCase. UPPER); // Defaults to AS_ IS

3.2.7.15. Listener Invocation Order

jOOQ offers a variety of SPIs in the Configuration object. Some of those SPIs are event listeners, that
can listen to "start" and "end" events, such as for example the Executelistener that listens to the query
execution lifecycle.

When registering multiple listeners of a type, the invocation order may be relevant as custom listeners
might communicate with each other. In such a case, the following settings allow for overriding the
invocation order of "start" and "end" events for each type of listener:

Example configuration

Settings settings = new Settings()
.wi thTransactionLi stener Start|nvocati onOr der (DEFAULT) // Defaults to DEFAULT
.wi t hTransacti onLi st ener Endl nvocat i onOr der (REVERSE) I/ Defaults to DEFAULT

.withVisitListenerStartlnvocationO der (DEFAULT) I/ Defaults to DEFAULT
.wi thVi sitLi st ener Endl nvocat i onOr der (REVERSE) /1 Defaults to DEFAULT
.wi t hRecor dLi st ener Start | nvocati onOr der (DEFAULT) I/ Defaults to DEFAULT
.wi t hRecor dLi st ener Endl nvocat i onOr der (REVERSE) I/ Defaults to DEFAULT
.wi t hExecut eLi st ener Start | nvocati onOr der (DEFAULT) I/ Defaults to DEFAULT
.wi t hExecut eLi st ener Endl nvocat i onOr der (REVERSE) ; I/ Defaults to DEFAULT

3.2.7.16. Locales

When doing locale sensitive operations, such as upper casing or lower casing a name (see Name styles),
then it may be important in some areas to be able to specify the java.util.Locale for the operation.

© 2009 - 2025 by Data Geekery™ GmbH. Page 71/1123

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Locale.html

The jOOQ User Manual 3.2.7.17. Map JPA Annotations

Example configuration

/1 Al of these default to Locale.getDefault(), if not specified explicitly
Settings settings = new Settings()

.wi thLocal e(Local e. f or LanguageTag("de")) /I The default locale if no nore specific |ocales are specified
.wi t hRender Local e(Local e. f or LanguageTag("de")) I/ The | ocal e used when rendering SQL
.wi t hPar seLocal e(Local e. f or LanguageTag("de")) /1 The |l ocal e used when parsing SQL

.withlnterpreterlLocal e(Local e. forLanguageTag(“de")); // The |ocal e used when interpreting SQL

3.2.7.17. Map JPA Annotations

The org.joog.impl.DefaultRecordMapper supports basic JPA mapping (mostly @Table and @Column
annotations). Looking up these annotations costs a slight extra overhead (mostly taken care of through
reflection caching). It can be turned off using the mapJPAAnnotations setting:

Example configuration

Settings settings = new Settings()
.wi t hMapJPAAnnot ations(false); // Defaults to true

3.2.7.18. Object qualification

By default, jOOQ fully qualifies all objects with their catalog and schema names, if such qualification is
made available by the code generator.

For instance, the following SQL statement containing full qualification may be produced by jOOQ code
with seemingly no qualification:

- Full qualification on columms and tables DSL. usi ng(confi gurati on)
SELECT cat al og. schens. t abl e. col um .sel ect (TABLE. COLUMN) // Columm only qualified with table
FROM cat al og. schens. t abl e . fron{ TABLE) /1 No qualification on table

While the jJOOQ code is also implicitly fully qualified (see implied imports), it may not be desireable to
use fully qualified object names in SQL. The renderCatalog and renderSchema settings are used for this.

Example configuration

new Settings()
.wi t hRender Catal og(false) // Defaults to true
.wi t hRender Schema(fal se); // Defaults to true

More sophisticated multitenancy approaches are available through the render mapping feature.

3.2.7.19. Optimistic Locking

There are two settings governing the behaviour of the jJOOQ optimistic locking feature:

© 2009 - 2025 by Data Geekery™ GmbH. Page 72/1123

https://www.jooq.org/javadoc/3.15.x/org/jooq/impl/DefaultRecordMapper.html

The jOOQ User Manual 3.2.7.20. Parameter name prefix

- updateRecordVersion: Whether UpdatableRecord instances should modify the record version
prior to storing the record. This feature is independent of, but related to optimistic locking.

- updateRecordTimestamp: Whether UpdatableRecord instances should modify the record
timestamp prior to storing the record. This feature is independent of, but related to optimistic
locking.

- executeWithOptimisticLocking: This allows for turning off the feature entirely.

- executeWithOptimisticLockingExcludeUnversioned: This allows for turning off the feature for
updatable records who are not explicitly versioned.

Example configuration

Settings settings = new Settings()

.wi t hUpdat eRecor dVer si on(true) I/ Defaults to true
.wi t hUpdat eRecor dTi nest anp(true) I/ Defaults to true
.wi t hExecut eWt hOpti mi sti cLocki ng(true) Il Defaults to false

.wi t hExecut eW t hOpti mi sti cLocki ngExcl udeUnver si oned(false); // Defaults to false

For more details, please refer to the manual's section about the optimistic locking feature.

3.2.7.20. Parameter name prefix

When choosing a ParameterType.NAMED to produce named parameters, the default is to use a colon
as a prefix to the parameter name.

For example:

- NAMED
SELECT FIRST_NAME || :1 FROM AUTHOR WHERE ID = : X

Depending on how the named parameters are interpreted, this default is not optimal. A better character
might be the $ sign, e.g. in PostgreSQL or R2DBC. For this, the renderNamedParamPrefix setting can
be used:

Example configuration

Settings settings = new Settings()
.wi t hRender NanedPar anPrefi x("$"); // Defaults to ":"

3.2.7.21. Parameter types

Bind values or bind parameters come in different flavours in different SQL databases. JDBC standardises
on their syntax by allowing only ? (question mark) characters as placeholders for bind variables. Thus,
jOOQ, by default, generates ? placeholders for JDBC consumptions. Users who wish to use jOOQ with
a different backend than JDBC can specify that all JOOQ bind values, including indexed parameters and
named parameters generate alternative strings, other than ?.

These are the current options:

© 2009 - 2025 by Data Geekery™ GmbH. Page 73/1123

https://www.jooq.org/javadoc/3.15.x/org/jooq/UpdatableRecord.html
https://www.jooq.org/javadoc/3.15.x/org/jooq/UpdatableRecord.html

The jOOQ User Manual

3.2.7.22. Parser Configuration

- INDEXED (the default): Generates indexed parameter placeholders using ?.

- NAMED: Generates named parameter placeholders, such as :param for parameters that are
named explicitly or :1 for unnamed, indexed parameters.

- NAMED_OR_INLINED: Generates named parameter placeholders for parameters that are named

explicitly and inlines all unnamed parameters.

- INLINED: Inlines all parameters.

An example:

- | NDEXED
SELECT FIRST_NAME || ? FROM AUTHOR WHERE ID = ?

- NAMED

SELECT FIRST_NAME || :1 FROM AUTHOR WHERE ID = :x
- NAVED ORI NLI NED

SELECT FIRST_NAME || 'x' FROM AUTHOR WHERE ID = : x
- I NLI NED

SELECT FIRST_NAME || 'x' FROM AUTHOR WHERE | D = 42

Example configuration

Settings settings = new Settings()

. Wi t hPar anifype(Par anifype. NAMED) ; // Defaults to | NDEXED

ParanxString> x = val ("x");
Paranxl nteger> i = paran("x", 42);

DSL. usi ng(confi gurati on)
. sel ect (FI RST_NAME. concat (X))
. f ron{ AUTHOR)
.where(lD.eq(i))
.fetch();

The following setting statementType may override this setting.

3.2.7.22. Parser Configuration

The SQL Parser API ships with a variety of settings that govern its behaviour. These settings include:

© 2009 - 2025 by Data Geekery™ GmbH.

Page 74 /1123

The jOOQ User Manual

3.2.7.22. Parser Configuration

- parseDialect: The parser input dialect. This dialect is used to decide what vendor specific
grammar should be applied in case of ambiguities that cannot be resolved from the context.
- parseDateFormat: The date format that is applied automatically when parsing date formatting

functions without an explicit format.

- parselgnoreComments: Using this flag, the parser can ignore certain sections that would
otherwise be executed by RDBMS. Everything between an parselgnoreCommentStart and the
parselgnoreCommentStop token will be ignored.

- parselgnoreCommentStart: The token that delimits the beginning of a section to be ignored by
jOOQ. Ideally, this token is placed inside of a SQL comment.

- parselgnoreCommentStop: The token that delimits the end of a section to be ignored by jOOQ.
Ideally, this token is placed inside of a SQL comment.

- parseSearchPath: The search path to look up unqualified identifiers to be used when using
parseWithMetalLookups. Most dialects support a single schema on their search path (the
CURRENT_SCHEMA). PostgreSQL supports a 'search_path', which allows for listing multiple
schemata to use to look up unqualified tables, procedures, etc. in.

- parseTimestampFormat: The timestamp format that is applied automatically when parsing
timestamp formatting functions without an explicit format.

- parseUnsupportedSyntax: The parser can parse some syntax that jOOQ does not support. By
default, such syntax is ignored. Use this flag if you want to fail in such cases.

- parseUnknownFunctions: The parser only parses "known" (to jOOQ) built in functions, and fails
otherwise. This flag allows for parsing any built in function using a standard func_name(arg1,

arg2, ...) syntax.

- parseWithMetal.ookups: Whether org.joog.Meta should be used to look up meta information
such as schemas, tables, columns, column types, etc.

An example of using the parselgnoreComments feature:

- What you execute

/* [jooq ignore start] */
CREATE SCHEMA s1;

SET SCHEMA s1;

/* [jooq ignore stop] */

- What the jOOQ parser sees
/*

*/

/* [jooq ignore start] */ -- /* [jooq ignore stop] */ CREATE /*

SCHEMA s2; SCHEMA s2;

/* [jooq ignore start] */ -- /* [jooq ignore stop] */ SET SCHEMA /*

s2; s2;

CREATE TABLE t (i | NTEGER); CREATE TABLE t (i | NTEGER);

Example configuration

Settings settings = new Settings()

. Wi thPar seDi al ect (SQLSERVER)

. Wi t hPar seW t het aLookups(THRON ON_FAI LURE)

. Wi t hPar seSear chPat h(
new Par seSear chSchemat a() . wi t hSchema("PUBLI C"),
new Par seSear chSchemat a() . wi t hSchema(" TEST"))

. Wi t hPar seUnsuppor t edSynt ax(FAI L)

. Wi t hPar seUnknownFunct i ons(| GNORE)

. Wi t hPar sel gnor eConmrent s(true)

. Wi t hPar sel gnor eConment St art (" <i gnor e>")

.wi t hPar sel gnor eComrment St op(" </ i gnor e>")

Il
Il

Il
Il
Il
Il
Il

Defaults to DEFAULT
Defaults to OFF

Defaults to | GNORE

Defaults to FAIL

Defaults to fal se

Defaults to “[jooq ignore start]"
Defaults to "[jooq ignore stop]"

In addition to the above settings, there is also a powerful parser listener

org.jooq.ParselListener.

© 2009 - 2025 by Data Geekery™ GmbH.

SPI

*/ CREATE

*/ SET SCHENMA

called the

Page 75/ 1123

https://www.jooq.org/javadoc/3.15.x/org/jooq/Meta.html
https://www.jooq.org/javadoc/3.15.x/org/jooq/ParseListener.html

The jOOQ User Manual 3.2.7.23. Reflection caching

3.2.7.23. Reflection caching

All operations of the DefaultRecordMapper are cached in the Configuration by default for improved
mapping and reflection speed. Users who prefer to override this cache, or work with their own custom
record mapper provider may wish to turn off the out-of-the-box caching feature.

Example configuration

Settings settings = new Settings()
.withRefl ectionCaching(false); // Defaults to true

3.2.7.24. Return all columns on store

When using the updatable records feature, JOOQ always fetches the generated identity value, if such a
value is availableand if the return identity on store feature is enabled (it is, by default).

The identity value is not the only value that is generated by default. Specifically, there may be triggers
that are used for auditing or other reasons, which generate LAST_UPDATE or LAST_UPDATE_BY values
in a record. Users who wish to also automatically fetch these values after all store(), insert(), or update()
calls may do so by specifying the returnAllOnUpdatableRecord setting. This setting depends on the
availability of INSERT .. RETURNING, UPDATE .. RETURNING, and DELETE .. RETURNING statements,
which are not available from all databases, in case of which a refresh() call may be issued, creating a
separate round trip to the server.

Example configuration

Settings settings = new Settings()
.wi t hRet ur nAl | OnUpdat abl eRecord(true); // Defaults to false

3.2.7.25. Return Identity Value On Store

When using the updatable records feature, jOOQ by default fetches the generated identity value. In
some situations, it is desirable for this feature to be turned off using the following flag:

Example configuration

Settings settings = new Settings()
.wi thReturnldentityOnUpdat abl eRecord(false); // Defaults to true

© 2009 - 2025 by Data Geekery™ GmbH. Page 76 /1123

The jOOQ User Manual 3.2.7.26. Runtime catalog, schema and table mapping

3.2.7.26. Runtime catalog, schema and table
mapping

Most SQL object types are qualified with a org.joog.Catalog and org.joog.Schema. In multi-tenant
application, users may want to map these identifier namespaces to something other than the default.

Mapping your DEV schema to a productive environment

You may wish to design your database in a way that you have several instances of your schema. This
is useful when you want to cleanly separate data belonging to several customers / organisation units /
branches / users and put each of those entities' data in a separate database or schema.

In our AUTHOR example this would mean that you provide a book reference database to several
companies, such as My Book World and Books R Us. In that case, you'll probably have a schema setup
like this:

- DEV: Your development schema. This will be the schema that you base code generation upon,
with jOOQ

- MY_BOOK_WORLD: The schema instance for My Book World

- BOOKS_R_US: The schema instance for Books R Us

Mapping DEV to MY_BOOK_WORLD with jOOQ

When a user from My Book World logs in, you want them to access the MY_BOOK_WORLD schema
using classes generated from DEV. This can be achieved with the org.joog.conf.RenderMapping class,
that you can equip your Configuration's settings with. Take the following example:

Example configuration

Settings settings = new Settings()
.wi t hRender Mappi ng(new Render Mappi ng()
.wi t hSchemat a(
new MappedSchema() . wi t hl nput (" DEV")
. Wit hQut put (" MY_BOOK_WORLD") ,
new MappedSchema(). withl nput ("LOG")
. Wit hQut put (" MY_BOOK_WORLD LOG')));

The query executed with a Configuration equipped with the above mapping will in fact produce this
SQL statement:

SELECT * DSL. usi ng(connection, dialect, settings)
FROM MY_BOOK_WORLD. AUTHOR . sel ect Fr on{ DEV. AUTHOR)

This works because AUTHOR was generated from the DEV schema, which is mapped to the
MY_BOOK_WORLD schema by the above settings.

Mapping of tables

Not only schemata can be mapped, but also tables. If you are not the owner of the database

your application connects to, you might need to install your schema with some sort of prefix to
© 2009 - 2025 by Data Geekery™ GmbH. Page 77 /1123

https://www.jooq.org/javadoc/3.15.x/org/jooq/Catalog.html
https://www.jooq.org/javadoc/3.15.x/org/jooq/Schema.html
https://www.jooq.org/javadoc/3.15.x/org/jooq/conf/RenderMapping.html

The jOOQ User Manual 3.2.7.26. Runtime catalog, schema and table mapping

every table. In our examples, this might mean that you will have to map DEV.AUTHOR to something
MY_BOOK_WORLD.MY_APP__AUTHOR, where MY_APP__is a prefix applied to all of your tables. This can
be achieved by creating the following mapping:

Example configuration

Settings settings = new Settings()
- wi t hRender Mappi ng(new Render Mappi ng()
.wi t hSchemat a(
new MappedSchema() . wi t hl nput (" DEV")
.wi t hTabl es(
new MappedTabl e(). wi t hl nput (" AUTHOR")
. Wi t hQut put (" MY_APP__AUTHOR'))));

The query executed with a Configuration equipped with the above mapping will in fact produce this
SQL statement:

SELECT * FROM DEV. MY_APP__AUTHOR

Table mapping and schema mapping can be applied independently, by specifying several
MappedSchema entries in the above configuration. jJOOQ will process them in order of appearance and
map at first match. Note that you can always omit a MappedSchema's output value, in case of which,
only the table mapping is applied.

Mapping of catalogs

For databases like SQL Server, it is also possible to map catalogs in addition to schemata. The
mechanism is exactly the same. So let's assume that we generated code for a table [dev].[dbo].[author]
and want to map it to [my_book_world].[dbo].[author] at runtime. This can be achieved as follows:

Example configuration

Settings settings = new Settings()
. Wi t hRender Mappi ng(new Render Mappi ng()
. Wit hCat al ogs(
new MappedCat al og().w t hl nput (" DEV")
. Wi t hQut put (" MY_BOOK_WORLD")));

To give you full control of how each and every table gets mapped, a MappedCatalog object can contain
MappedSchema (and thus also MappedTable) definitions.

Using regular expressions

All of the above examples were using 1:1 constant name mappings where the input and output schema
or table names are fixed by the configuration. With jOOQ 3.8, regular expression can be used as well
for mapping, for example:

Example configuration

Settings settings = new Settings()
. wi t hRender Mappi ng(new Render Mappi ng()
.wi t hSchemat a(
new MappedSchema() . wi t hl nput Expressi on(Pattern. conpile("DEV_(.*)"))
. Wi t hQut put (" PROD_$1")
.wi t hTabl es(
new MappedTabl e().w t hl nput Expressi on(Pattern. conpile("DEV_(.*)"))
. Wit hQut put ("PROD_$1"))));

The only difference to the constant version is that the input field is replaced by the inputExpression field
of type java.util.regex.Pattern, in case of which the meaning of the output field is a pattern replacement,
not a constant replacement.

© 2009 - 2025 by Data Geekery™ GmbH. Page 78 /1123

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Pattern.html

The jOOQ User Manual 3.2.7.27. Scalar subqueries for stored functions

Hard-wiring mappings at code-generation time

Note that the manual's section about code generation schema mapping explains how you can hard-
wire your catalog, schema and table mappings at code generation time.

Limitations

Mapped objects need to be known to the JOOQ org.joog.RenderContext, which means that for example
plain SOL templates and their contents cannot be mapped. See also features requiring code generation
for more details.

3.2.7.27. Scalar subqgueries for stored functions

This setting is useful mostly for the Oracle database, which implements a feature called scalar subguery
caching, which is a good tool to avoid the expensive PL/SQL-to-SQL context switch when predicates
make use of stored function calls.

With this setting in place, all stored function calls embedded in SQL statements will be wrapped in a
scalar subquery:

SELECT DSL. usi ng(confi guration)
(SELECT ny_package. f or mat (LANGUAGE_| D) FROM dual) . sel ect (MyPackage. f or mat (BOOK. LANGUAGE_| D))
FROM BOOK . from(BOOK)

If our table contains thousands of books, but only a dozen of LANGUAGE_ID values, then with scalar
subquery caching, we can avoid most of the function calls and cache the result per LANGUAGE_ID.

Example configuration

Settings settings = new Settings()
.wi t hRender Scal ar Subquer i esFor St or edFuncti ons(true);

3.2.7.28. Statement Type

JDBC knows two types of statements:

- java.sgl.PreparedStatement: This allows for sending bind variables to the server. jJOOQ uses
prepared statements by default.

- java.sgl.Statement: Also "static statement”. These do not support bind variables and may be
useful for one-shot commands like DDL statements.

The statementType setting allows for overriding the default of using prepared statements internally.
There are two possible options for this setting:

© 2009 - 2025 by Data Geekery™ GmbH. Page 79/1123

https://www.jooq.org/javadoc/3.15.x/org/jooq/RenderContext.html
https://blog.jooq.org/oracle-scalar-subquery-caching/
https://blog.jooq.org/oracle-scalar-subquery-caching/
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/PreparedStatement.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Statement.html

The jOOQ User Manual 3.2.7.29. Updatable Primary Keys

- PREPARED_STATEMENT (the default): Use prepared statements.
- STATIC_STATEMENT: Use static statements. This enforces the paramType == INLINED. See
parameter types

Example configuration

Settings settings = new Settings()
.wi t hSt at enent Type(St at enent Type. STATI C_STATEMENT); // Defaults to PREPARED STATEMENT

3.2.7.29. Updatable Primary Keys

In most database design guidelines, primary key values are expected to never change - an assumption
that is essential to a normalised database.

As always, there are exceptions to these rules, and users may wish to allow for updatable primary
key values in the updatable records feature (note: any value can always be updated through ordinary
update statements). An example:

Aut hor Record aut hor =

DSL. usi ng(configuration) // This configuration will be attached to any record produced by the bel ow query.
. sel ect Fr on{ AUTHOR)
. wher e(AUTHOR. | D. eq(1))
.fetchOne();

aut hor. set1d(2);
aut hor.store(); // The behaviour of this store call is governed by the updatabl ePrimaryKeys flag

The above store call depends on the value of the updatablePrimaryKeys flag:

- false (the default): Since immutability of primary keys is assumed, the store call will create a new
record (a copy) with the new primary key value.

- true: Since mutablity of primary keys is allowed, the store call will change the primary key value
from 1 to 2.

Example configuration

Settings settings = new Settings()
.wi t hUpdat abl ePri maryKeys(true); // Defaults to false

3.2.8. Thread safety

org.joog.Configuration, and by consequence org.joog.DSLContext, make no thread safety guarantees,
but by carefully observing a few rules, they can be shared in a thread safe way. We encourage sharing
Configuration instances, because they contain caches for work not worth repeating, such as reflection
field and method lookups for org.joog.impl.DefaultRecordMapper. If you're using Spring or CDI for
dependency injection, you will want to be able to inject a DSLContext instance everywhere you use it.

The following needs to be considered when attempting to share Configuration and DSLContext among
threads:

© 2009 - 2025 by Data Geekery™ GmbH. Page 80/ 1123

https://www.jooq.org/javadoc/3.15.x/org/jooq/Configuration.html
https://www.jooq.org/javadoc/3.15.x/org/jooq/DSLContext.html
https://www.jooq.org/javadoc/3.15.x/org/jooq/impl/DefaultRecordMapper.html

The jOOQ User Manual 3.3. SQL Statements (DML)

- Configuration is mutable for historic reasons. Calls to various Configuration.set() methods must
be avoided after initialisation, should a Configuration (and by consequence DSLContext) instance
be shared among threads. If you wish to modify some elements of a Configuration for single use,
use the Configuration.derive() methods instead, which create a copy.

- Configuration components, such as org.joog.conf.Settings are mutable as well. The same rules
for modification apply here.

- Configuration allows for supplying user-defined SPI implementations (see above for examples).
All of these must be thread safe as well, for their wrapping Configuration to be thread safe. If you
are using a org.joog.impl.DataSourceConnectionProvider, for instance, you must make sure that
your javax.sgl.DataSource is thread safe as well. This is usually the case when you use a third
party connection pool.

As can be seen above, Configuration was designed to work in a thread safe way, despite it not making
any such guarantee.

3.3. SQL Statements (DML)

jOOQ currently supports 5 types of SQL statements. All of these statements are constructed from a
DSLContext instance with an optional JDBC Connection or DataSource. If supplied with a Connection or
DataSource, they can be executed. Depending on the query type, executed queries can return results.

3.3.1.j00Q's DSL and model AP

jOOQ ships with its own DSL (or Domain Specific Language) that emulates SQL in Java. This means,
that you can write SQL statements almost as if Java natively supported it, just like NET's C# does with
LINQ to SQL.

Here is an example to illustrate what that means:

-- Select all books by authors born after 1920, Resul t <Record> result =
- naned "Paul 0" from a catal ogue: create.select()
SELECT * .fronm AUTHOR as("a"))
FROM aut hor a .join(BOXK. as("b")).on(a.ID.eq(bh. AUTHOR I D))
JO N book b ON a.id = b.author_id . wher e(a. YEAR_OF_BI RTH. gt (1920)
WHERE a.year_of _birth > 1920 .and(a. FI RST_NAME. eq(" Paul 0")))
AND a. first_name = ' Paul o' .orderBy(b. TI TLE)
ORDER BY b.title .fetch();

We'll see how the aliasing works later in the section about aliased tables

jO0Q as an internal domain specific language in Java (a.k.a. the DSL API)

Many other frameworks have similar APIs with similar feature sets. Yet, what makes jOOQ special is its
informal BNF notation modelling a unified SQL dialect suitable for many vendor-specific dialects, and
implementing that BNF notation as a hierarchy of interfaces in Java. This concept is extremely powerful,
when using JOOQ with IDE syntax auto completion. Not only can you code much faster, your SQL code
will be compile-checked to a certain extent. An example of a DSL query equivalent to the previous one
is given here:

© 2009 - 2025 by Data Geekery™ GmbH. Page 81/1123

https://www.jooq.org/javadoc/3.15.x/org/jooq/conf/Settings.html
https://www.jooq.org/javadoc/3.15.x/org/jooq/impl/DataSourceConnectionProvider.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/javax/sql/DataSource.html
https://en.wikipedia.org/wiki/Domain-specific_language
https://msdn.microsoft.com/en-us/library/bb425822.aspx
https://blog.jooq.org/the-java-fluent-api-designer-crash-course/
https://blog.jooq.org/why-you-should-use-jooq-with-code-generation/

The jOOQ User Manual 3.3.1.jO0Q's DSL and model API

DSLCont ext create = DSL.using(connection, dialect);

Resul t<?> result = create. sel ect()
. from(AUTHOR)
.j 0i n(BOXK) . on(BOOK. AUTHOR | D. eq(AUTHOR. | D))
.fetch();

Unlike other, simpler frameworks that use "fluent APIs" or "method chaining", jOOQ's BNF-based
interface hierarchy will not allow bad query syntax. The following will not compile, for instance:

DSLCont ext create = DSL.using(connection, dialect);
Resul t<?> result = create. sel ect()
.j 0i n(BOOK) . on(BOOK. AUTHOR | D. eq(AUTHOR. | D))
/[l A~AMAN Mjoin" is not possible here
. f r om(AUTHOR)
.fetch();

Resul t<?> result = create. sel ect()
. f r om(AUTHOR)
. j oi n(BOOK)
.fetch();
/[AMAAA ton" is missing here

Resul t<?> result = create. sel ect (rowNunmber ())
11/ ANANAANAN Moyer ()" is missing here
. f r om(AUTHOR)
.fetch();

Resul t<?> result = create. sel ect()
. f r om(AUTHOR)

. wher e(AUTHOR. | D. i n(sel ect (BOOK. TI TLE) . f r on{ BOOK)))

// ANANANANANNANANNNNAN

// AUTHOR ID is of type Field<Integer> but subselect returns Recordl<String>
.fetch();

Resul t<?> result = create. sel ect()

. f r om(AUTHOR)
. wher e(AUTHOR. | D. i n(sel ect (BOOK. AUTHOR | D, BOOK. | D). f r om(BOOK)))

// ANANANAANNANANANNNANANANNANANANNN

// AUTHOR ID is of degree 1 but subselect returns Record2<lnteger, |nteger>
.fetch();

History of SQL building and incremental query building (a.k.a. the model
API)

Historically, jJOOQ started out as an object-oriented SQL builder library like any other. This meant that
all gueries and their syntactic components were modeled as so-called QueryParts, which delegate SQL
rendering and variable binding to child components. This part of the APl will be referred to as the
model API (or non-DSL API), which is still maintained and used internally by jOOQ for incremental query
building. An example of incremental query building is given here:

DSLCont ext create = DSL. using(connection, dialect);
Sel ect Quer y<Record> query = create. sel ect Query();
query. addFr on{ AUTHOR) ;
/1 Join books only under certain circunstances
if (join) {

query. addJoi n(BOOK, BOOK. AUTHOR | D. eq(AUTHOR. I D)) ;
}

Resul t<?> result = query.fetch();

This query is equivalent to the one shown before using the DSL syntax. In fact, internally, the DSL AP
constructs precisely this SelectQuery object. Note, that you can always access the SelectQuery object
to switch between DSL and model APIs:

DSLCont ext create = DSL.using(connection, dialect);
Sel ect Fi nal St ep<?> sel ect = create. sel ect().fron(AUTHOR);

/1 Add the JON clause on the internal QueryChject representation

Sel ect Query<?> query = sel ect.get Query();
query. addJoi n(BOOK, BOOK. AUTHOR | D. eq(AUTHOR. I D)) ;

© 2009 - 2025 by Data Geekery™ GmbH. Page 82/1123

https://en.wikipedia.org/wiki/Fluent_interface
https://en.wikipedia.org/wiki/Method_chaining

The jOOQ User Manual 3.3.2. The WITH clause

Mutability

Note, that for historic reasons, the DSL APl mixes mutable and immutable behaviour with respect to
the internal representation of the QueryPart being constructed. While creating conditional expressions,
column expressions (such as functions) assumes immutable behaviour, creating SOL statements does
not. In other words, the following can be said:

/1 Conditional expressions (inmutable)

L e
Condition a = BOOK. TI TLE. eq("1984");
Condition b = BOOK. TI TLE. eq(" Ani mal Farni');

/1 The follow ng can be said

a = a.or(b); // or() does not nodify a

a.or(b) !'= a.or(b); // or() always creates new objects
I/ Statements (nutable)

R L

Sel ect Fronft ep<?> s1 = select();

Sel ect Joi nSt ep<?> s2 = s1. from BOXK);

Sel ect Joi nSt ep<?> s3 = sl. fronm AUTHOR) ;

/1 The follow ng can be said

sl == s2; // The internal object is always the sane
s2 == s3; // The internal object is always the sane

On the other hand, beware that you can always extract and modify bind values from any QueryPart.

3.3.2. The WITH clause

The SQL:1999 standard specifies the WITH clause to be an optional clause for the SELECT statement, in
order to specify common table expressions (also: CTE). Many other databases (such as PostgreSQL, SQL
Server) also allow for using common table expressions also in other DML clauses, such as the INSERT
statement, UPDATE statement, DELETE statement, or MERGE statement.

When using common table expressions with jOOQ, there are essentially two approaches:

- Declaring and assigning common table expressions explicitly to names
- Inlining common table expressions into a SELECT statement

Explicit common table expressions

The following example makes use of names to construct common table expressions, which can then
be supplied to a WITH clause or a FROM clause of a SELECT statement:

- Pseudo-SQL for a common tabl e expression specification /'l Code for creating a ConmpbnTabl eExpression instance
"t1v ("f1, "f2") AS (SELECT 1, 'a') name("t1").fields("f1", "f2").as(select(val (1), val("a")));

The above expression can be assigned to a variable in Java and then be used to create a full SELECT
statement:

© 2009 - 2025 by Data Geekery™ GmbH. Page 83/1123

The jOOQ User Manual 3.3.3. The WITH RECURSIVE clause

CommonTabl eExpr essi on<Recor d2<I nteger, String>> tl1 =
name("t1").fields("f1", "f2").as(select(val (1), val("a")));

CommonTabl eExpr essi on<Recor d2<I nteger, String>> t2 =
name("t2").fields("f3", "f4").as(select(val(2), val("b")));

Resul t<?> result2 =
create.w th(t1)

WTH "t1" ("f1", "f2") AS (SELECT 1, 'a'), Wi th(t2)
"t2" ("f3", "f4") AS (SELECT 2, 'b") .sel ect (

SELECT tl.field("f1").add(t2.field("f3")).as("add"),
"t1v."f1" o+ "t2"."f3" AS "add", tl.field("f2").concat(t2.field("f4")).as("concat"))
"t1"."f2" || "t2"."f4" AS "concat" from(tl, t2)

FROM "t 1", "t2" .fetch();

Note that the org.joog.CommonTableExpression type extends the commonly used org.joog.Table type,
and can thus be used wherever a table can be used.

Inlined common table expressions

If you're just operating on plain SQL, you may not need to keep intermediate references to such
common table expressions. An example of such usage would be this:

create.with("a").as(sel ect (

WTH "a" AS (SELECT val (1).as("x"),
1 AS "x", val ("a"). as("y")
“at AS "y")
.select()
SELECT .fron(tabl e(name("a")))

FROM " a" .fetch();

3.3.3. The WITH RECURSIVE clause

The various SQL dialects do not agree on the use of RECURSIVE when writing recursive common
table expressions. When using jOOQ, always use the DSLContext.withRecursive() or DSL.withRecursive()
methods, and jOOQ will render the RECURSIVE keyword, if needed.

Assuming a table like this:

CREATE TABLE directory (
id I NT NOT NULL,
parent _id | NT,

- In PostgreSQ., use TEXT instead, to work around https://github.conm jOOQ jOOQ i ssues/ 12067
| abel VARCHAR(50) ,

CONSTRAI NT pk_directory PRI MARY KEY (id),
CONSTRAI NT fk_directory FOREIGN KEY (parent_id) REFERENCES directory (id)
)

I NSERT INTO directory VALUES (1, null, "'C");

I NSERT I NTO directory VALUES (2 1, 'eclipse');

I NSERT I NTO directory VALUES (3 2, 'configuration');

I NSERT I NTO directory VALUES (4, 2, 'dropins');

I NSERT I NTO directory VALUES (5, 2, 'features');

I NSERT I NTO directory VALUES (7 2, 'plugins');

I NSERT I NTO directory VALUES (8 2, 'readne');

I NSERT I NTO directory VALUES (9, 8, 'readne_eclipse.htm');
I NSERT | NTO directory VALUES (10, 2, 'src');

I NSERT | NTO directory VALUES (11, 2, 'eclipse.exe');

Using WITH RECURSIVE, you can now query the structure of this directory as follows:

© 2009 - 2025 by Data Geekery™ GmbH. Page 84/1123

https://www.jooq.org/javadoc/3.15.x/org/jooq/CommonTableExpression.html
https://www.jooq.org/javadoc/3.15.x/org/jooq/Table.html
https://www.jooq.org/javadoc/3.15.x/org/jooq/DSLContext.html#withRecursive(org.jooq.CommonTableExpression...)
https://www.jooq.org/javadoc/3.15.x/org/jooq/impl/DSL.html#withRecursive(org.jooq.CommonTableExpression...)

The jOOQ User Manual

W TH RECURSI VE t (

id,
name,
pat h
AS (
SELECT
DI RECTORY. | D,
DI RECTORY. LABEL,
DI RECTORY. LABEL
FROM
DI RECTORY
VWHERE
DI RECTORY. PARENT_I D | S NULL
UNI ON ALL
SELECT
DI RECTORY. | D,
DI RECTORY. LABEL,
t.path
|\
|| DI RECTORY. LABEL
FROM
t
JON
DI RECTORY
ON t.id = DI RECTORY. PARENT | D

)
SELECT *
FROM

t;

The output would look like this:

+ +
| id | name | path
B e B T L
|1 | C | C
| 2 | eclipse | C\eclipse
| 3 | configuration | C:\eclipse\configuration
| 4 | dropins | C:\eclipse\dropins
| 11 | eclipse.exe | C\eclipse\eclipse.exe
| 5 | features | C\eclipse\features
| 7 | plugins | C:\eclipse\plugins
| 8 | readne | C\eclipse\readme
| 9 | readne_eclipse.htnl | C\eclipse\readne\readne_eclipse. htni
| 10 | src | C\eclipse\src
B e B T L +
Caveats

3.3.4. The SELECT statement

CommonTabl eExpressi on<?> cte = nanme("t").fiel ds(
tid,
"name",
" pat h"
). as(
sel ect (
DI RECTCRY. | D,
DI RECTORY. LABEL,
DI RECTORY. LABEL)
. fron(DI RECTCRY)
. wher e(DI RECTORY. PARENT _I D. i sNul | ())
.uni onAl'l (
sel ect (
DI RECTCRY. | D,
DI RECTORY. LABEL,
field(name("t",
.concat ("\\")
. concat (DI RECTORY. LABEL))
.fron(tabl e(name("t")))
.j oi n(DI RECTORY)
.on(field(name("t", "id"), |NTEGER)
. eq(DI RECTORY. PARENT_I D)))

"path"), VARCHAR)

)i

System out. println(
create.w t hRecursive(cte)
.sel ectFron{cte)
.fetch()

The SQL language expresses the recursion syntactically, meaning the table t in the above example is
being referenced from within the declaration of t. This isn't possible in a language like Java. Hence, we
must use the identifier AP| to construct identifier references for tables and columns. This technique
usually appears a bit more verbose than ordinary jOOQ API usage that is based on generated code
for your schema.

3.3.4. The SELECT statement

When you don't just perform CRUD (i.e. SELECT * FROM your_table WHERE ID = ?), you're usually
generating new record types using custom projections. With jOOQ, this is as intuitive, as if using SQL
directly. A more or less complete example of the "standard" SQL syntax, plus some extensions, is
provided by a query like this:

© 2009 - 2025 by Data Geekery™ GmbH.

Page 85/ 1123

The jOOQ User Manual 3.3.4.1. SELECT clause

SELECT from a complex table expression

- get all authors' first and |ast nanes, and the nunber /1 And with jOOQ ..
- of books they've witten in Gernan, if they have witten

- nore than five books in German in the |ast three years

- (from 2011), and sort those authors by |ast nanes

- limting results to the second and third row, | ocking DSLCont ext create = DSL.using(connection, dialect);
- the rows for a subsequent update... whew
create. sel ect (AUTHOR FI RST_NAME, AUTHOR. LAST_NAME, count())
SELECT AUTHOR. FI RST_NAME, AUTHOR LAST_NAME, COUNT(*) . f ron{ AUTHOR)
FROM AUTHOR . j 0i n(BOOK) . on(BOOK. AUTHOR | D. eq(AUTHOR. | D))
JO N BOOK ON AUTHOR. | D = BOOK. AUTHOR_I D . wher e(BOOK. LANGUAGE. eq(" DE"))
WHERE BOOK. LANGUAGE = ' DE' . and(BOOK. PUBLI SHED | N. gt (2008))
AND BOOK. PUBLI SHED | N > 2008 . groupBy (AUTHOR. FI RST_NAME, AUTHOR. LAST_NANE)
GROUP BY AUTHOR. FI RST_NAME, AUTHOR. LAST_NAME . havi ng(count (). gt (5))
HAVI NG COUNT(*) > 5 . order By(AUTHOR. LAST_NAME. asc(). nul | sFirst())
ORDER BY AUTHOR. LAST_NAME ASC NULLS FI RST dimt(2)
LIMT 2 .of fset(1)
OFFSET 1 . forUpdat e()
FOR UPDATE .fetch();

Details about the various clauses of this query will be provided in subsequent sections.

SELECT from single tables

A very similar, but limited APl is available, if you want to select from single tables in order to retrieve
TableRecords or even UpdatableRecords. The decision, which type of select to create is already made
at the very first step, when you create the SELECT statement with the DSL or DSLContext types:

public <R extends Record> Sel ect Wier eSt ep<R> sel ect Fr on(Tabl e<R> t abl e) ;

As you can see, there is no way to further restrict/project the selected fields. This just selects all known
TableFields in the supplied Table, and it also binds <R extends Record> to your Table's associated
Record. An example of such a Query would then be:

BookRecord book = create. sel ect Fr om(BOOK)
. wher e(BOOK. LANGUAGE. eq(" DE"))
. or der By(BOOK. Tl TLE)
.fetchAny();

The "reduced" SELECT APl is limited in the way that it skips DSL access to any of these clauses:

- SELECT clause
- OIN operator

In most parts of this manual, it is assumed that you do not use the "reduced" SELECT API. For more
information about the simple SELECT API, see the manual's section about fetching strongly or weakly

typed records.

3.3.4.1. SELECT clause

The SELECT clause lets you project your own record types, referencing table fields, functions, arithmetic
expressions, etc. The DSL type provides several methods for expressing a SELECT clause:

© 2009 - 2025 by Data Geekery™ GmbH. Page 86/1123

The jOOQ User Manual 3.3.4.1.1. Projection type safety

- The SELECT cl ause /1 Provide a varargs Fields list to the SELECT cl ause:
SELECT BOOK. | D, BOX. TI TLE Sel ect <?> s1 = create. sel ect (BOOK. | D, BOXK. TITLE);
SELECT BOOK. | D, TRI M BOOK. Tl TLE) Sel ect<?> s2 = create. sel ect (BOOK. I D, trinm{BOOK. TITLE));

The following sections illustrate various features and subclauses of the SELECT clause.

3.3.4.1.7. Projection type safety

Since jOOQ 3.0, records and row value expressions up to degree 22 are now generically typesafe. This is
reflected by an overloaded SELECT (and SELECT DISTINCT) APl in both DSL and DSLContext. An extract
from the DSL type:

/1 Non-typesafe sel ect nethods:
public static SelectSel ect St ep<Record> sel ect (Col | ecti on<? extends Sel ectFi el d<?>> fields);
public static SelectSel ect Step<Record> sel ect (Sel ectField<?>... fields);

/1 Typesafe sel ect methods:
public static <T1> Sel ect Sel ect St ep<Recor d1<T1>> sel ect (Sel ect Fi el d<T1> fiel dl);

public static <T1, T2> Sel ect Sel ect St ep<Recor d2<T1, T2>> sel ect (Sel ect Fi el d<T1> fiel dl, SelectField<T2> field2);
...

The type that is being projected is the org.joog.SelectField, see also the next section about SelectField.
Since the generic R type is bound to some Record[N], the associated T type information can be used in
various other contexts, e.g. the IN predicate. Such a SELECT statement can be assigned typesafely:

Sel ect <Record2<Integer, String>> sl = create. sel ect(BOXK.|D, BOXK. TITLE);
Sel ect <Record2<Integer, String>> s2 = create.select(BOOK.ID, trin(BOOX TITLE));

/1 Alternatively, just use var to infer the type:
var s3 = create.select(BOOK. ID, trin(BOOXK. TITLE));

For more information about typesafe record types with degree up to 22, see the manual's section about
Record1 to Record22.

3.3.4.1.2. SelectField

The orgjoog.SelectField type is used by any projection of the SELECT clause and the INSERT ..
RETURNING clause. It has numerous subtypes, which are allowed as projections in jJOOQ:

- org.jooq.Field: Every column expression can automatically be projected in SELECT as you would
expect.

- org.joog.Row: nested records can be projected in SELECT

- MULTISET and other means of projecting nested collections can be projected as well

3.3.4.1.3. SELECT *

jOOQ supports the asterisk operator in projections both as a qualified asterisk (through Table.asterisk())
and as an unqualified asterisk (through DSL.asterisk()). It is also possible to omit the projection entirely,
in case of which an asterisk may appear in generated SQL, if not all column names are known to jOOQ.

© 2009 - 2025 by Data Geekery™ GmbH. Page 87/1123

https://www.jooq.org/javadoc/3.15.x/org/jooq/SelectField.html
https://www.jooq.org/javadoc/3.15.x/org/jooq/SelectField.html
https://www.jooq.org/javadoc/3.15.x/org/jooq/Field.html
https://www.jooq.org/javadoc/3.15.x/org/jooq/Row.html
https://www.jooq.org/javadoc/3.15.x/org/jooq/Table.html#asterisk()
https://www.jooq.org/javadoc/3.15.x/org/jooq/impl/DSL.html#asterisk()

The jOOQ User Manual 3.3.4.1.4. SELECT * EXCEPT (...)

Whenever jOOQ generates an asterisk (explicitly, or because jOOQ doesn't know the exact projection),
the column order, and the column set are defined by the database server, not jJOOQ. If you're using
generated code, this may lead to problems as there might be a different column order than expected,
as well as too many or too few columns might be projected.

/1l Explicitly selects all colums available fromBOXK - No asterisk
create.select().fron(BOX).fetch();

/1l Explicitly selects all colums available fromBOXK and AUTHOR - No asterisk
create.sel ect().fron(BOOXK, AUTHOR).fetch();
create. sel ect (). from BOOK). crossJoi n(AUTHOR) . fetch();

I/ Renders a SELECT * statenment, as colums are unknown to jOOQ - Inplicit unqualified asterisk
create.select().fron(tabl e(name("BOOK"))).fetch();

/1 Renders a SELECT * statement - Explicit unqualified asterisk
create. sel ect(asterisk()).from BOX).fetch();

/1 Renders a SELECT BOOK.* statenment - Explicit qualified asterisk

create. sel ect (BOOK. asterisk()).from BOX).fetch();
create. sel ect (BOOK. asterisk(), AUTHOR asterisk()).fron(BOXK, AUTHOR).fetch();

With all of the above syntaxes, the row type (as discussed below) is unknown to jOOQ and to the Java
compiler.

(1) Unlike the Nesting tables syntax, the asterisk is expanded by the SQL engine (or by jOOQ, if
necessary) by flattening the table's fields into the surrounding projection. It does not nest tables.

It is worth mentioning that in many cases, using an asterisk is a sign of an inefficient query because if
not all columns are needed, too much data is transferred between client and server, plus some joins
that could be eliminated otherwise, cannot. For more information check out this section.

3.3.4.1.4. SELECT * EXCEPT (...)

A useful extension to the previously mentioned standard SQL SELECT * syntax is the BigQuery inspired
* EXCEPT (columns) syntax, which takes all of a projection's columns, except some columns. Just like
the asterisk itself, this is mainly useful for ad-hoc querying, but it can also be useful for an occasional
jOOQ query.

/'l Renders a SELECT * statenment - Explicit unqualified asterisk
create. sel ect (asterisk().except(BOXK.ID)).from(BOX).fetch();

/'l Renders a SELECT BOOK. * statement - Explicit qualified asterisk
create. sel ect (BOXK. ast eri sk().except (BOX. D))
. f r om(BOOK)
.fetch();
create. sel ect (BOOK. asterisk().except(BOXK. D), AUTHOR. asterisk().except(AUTHOR. | D))

. from(BOOK, AUTHOR)
.fetch();

If a dialect doesn't support this syntax natively, JOOQ will just expand the syntax for you, explicitly, given
the knowledge about meta data in generated code.

Dialect support
This example using jOOQ:

sel ect (asterisk().except (LANGUAGE. | D)) . f r om(LANGUAGE)

Translates to the following dialect specific expressions:

© 2009 - 2025 by Data Geekery™ GmbH. Page 88/1123

The jOOQ User Manual 3.3.4.1.5. SELECT DISTINCT

ASE, Access, Aurora MySQL, Aurora Postgres, ClickHouse, CockroachDB, DB2, Derby,
DuckDB, Exasol, Firebird, HSQLDB, Hana, Informix, MariaDB, MemSQL, MySQL, Oracle,
Postgres, SQLDataWarehouse, SQLServer, SQLite, Sybase, Teradata, Trino, Vertica,
YugabyteDB

SELECT LANGUAGE. CD, LANGUAGE. DESCRI PTI ON
FROVI LANGUAGE

BigQuery

SELECT * EXCEPT (ID)
FROM LANGUAGE

Databricks, H2

SELECT * EXCEPT (LANGUAGE. | D)
FROM LANGUAGE

Redshift

SELECT * EXCLUDE (LANGUAGE. | D)
FROVI LANGUAGE

Snowflake

SELECT * EXCLUDE (I D)
FROM LANGUAGE

(1) Generated with JOOQ 3.21. Support in older jOOQ versions may differ. Translate your own SQL
on our website

3.3.4.1.5. SELECT DISTINCT

The DISTINCT keyword can be included in the method name, when constructing a SELECT clause, to
remove duplicate tuples from the projection.

SELECT DI STI NCT BOOK. TI TLE FROM BOOK create.sel ect Di stinct(BOOK. TI TLE). from(BOXK) . fetch();

© 2009 - 2025 by Data Geekery™ GmbH. Page 89/1123

https://www.jooq.org/translate
https://www.jooq.org/translate

The jOOQ User Manual 3.3.4.1.6. SELECT DISTINCT ON

Dialect support
This example using jOOQ:

sel ect Di sti nct (BOOK. TI TLE) . f r om(BOOK)

Translates to the following dialect specific expressions:

All dialects

SELECT DI STI NCT BOX. Tl TLE
FROM BOOK

(1) Generated with JOOQ 3.21. Support in older jOOQ versions may differ. Translate your own SQL
on our website

3.3.4.1.6. SELECT DISTINCT ON

A useful, though perhaps a bit esoteric PostgreSQL specific extension to SELECT DISTINCT is the ON
clause. Using this clause, PostgreSQL users can specify a distinctness criteria, but then produce other
columns per distinct group from one of the group's tuples. This is normally not possible in SQL, but
with ON, the first tuple in the group according to the ORDER BY clause can be accessed nonetheless.
An example:

SELECT DI STI NCT ON (BOOK. LANGUAGE | D) Sel ect <?> sel ect1 = create. sel ect (BOOK. LANGUAGE | D, BOXK. TI TLE)
BOOK. LANGUAGE | D, BOOK. TI TLE . di stinct On(BOOK. LANGUAGE | D)

FROM BOOK . f r on{ BOOK)

ORDER BY BOCOK. LANGUAGE | D, BOCK. TI TLE . or der By(BOOK. LANGUAGE_|I D, BOOK. TI TLE) . fetch();

For syntactic reasons, the order of keywords had to be inversed as the PostgreSQL syntax cannot
be easily reproduced in jOOQ's internal DSL. Quite likely, you might find jOOQ's syntax a bit more
intuitive, though, as it more clearly separates the SELECT parts and the DISTINCT ON parts. Arguably,
the DISTINCT ON clause should be positioned after ORDER BY, where it logically belongs.

Standard SQL equivalence

The PostgreSQL extension isn't really necessary as there is a standard SQL equivalence using
ROW_NUMBER filtering. In the below example, we're using an extension to the standard, the QUALIFY
clause, to illustrate:

SELECT BOOK. LANGUAGE_| D, BOOK. TI TLE Sel ect <?> sel ect1 = create. sel ect (BOOK. LANGUAGE_| D, BOCK. Tl TLE)
FROM BOOK . f rom(BOOK)
QUALI FY ROW NUMBER() OVER (PARTI TI ON BY BOOK. LANGUAGE | D ORDER BY
BOX TITLE) =1 .qual i fy(rowNunber ().over(partitionBy(BOOK LANGUAGE_| D). order By(BOOK. TI TLE)) . eq(
ORDER BY BOOK. LANGUAGE_| D, BOCK. TI TLE . or der By(BOOK. LANGUAGE_| D, BOOK. TI TLE) . fetch();

© 2009 - 2025 by Data Geekery™ GmbH. Page90/1123

https://www.jooq.org/translate
https://www.jooq.org/translate
https://blog.jooq.org/a-beginners-guide-to-the-true-order-of-sql-operations/

The jOOQ User Manual 3.3.4.1.7. Convenience methods

Dialect support
This example using jOOQ:

sel ect (BOOK. LANGUAGE | D, BOCK. Tl TLE) . di sti nct On(BOOK. LANGUAGE_| D) . f r om{ BOOK) . or der By (BOOK. LANGUAGE_| D, BOOK. TI TLE)

Translates to the following dialect specific expressions:

Aurora Postgres, ClickHouse, CockroachDB, DuckDB, H2, Postgres, YugabyteDB

SELECT DI STI NCT ON (BOOK. LANGUAGE | D) BOOK. LANGUAGE | D, BOOX. TI TLE
FROM BOOK
ORDER BY BOOK. LANGUAGE | D, BOCK. TI TLE

BigQuery, DB2, Databricks, Exasol, Firebird, Hana, Informix, MariaDB, MemSQL, MySQL,
Oracle, Redshift, SQLDataWarehouse, SQLServer, SQLite, Snowflake, Sybase, Teradata,
Trino, Vertica

SELECT t.LANGUAGE_ID, t.TITLE
FROM (
SELECT
BOOK. LANGUAGE_| D,
BOOK. TI TLE,
row_nunber () OVER (
PARTI TI ON BY BOOK. LANGUAGE_| D
ORDER BY BOOK. LANGUAGE_| D, BOCK. TI TLE
) rn
FROM BOOK
)t
WHERE rn = 1
ORDER BY LANGUAGE_I D, TITLE

ASE, Access, Aurora MySQL, Derby, HSQLDB

/* UNSUPPORTED */

(1) Generated with JOOQ 3.21. Support in older jOOQ versions may differ. Translate your own SQL
on our website

3.3.4.1.7. Convenience methods

Some commonly used projections can be easily created using convenience methods:

- Sinple SELECTs /1 Sel ect conmonly used val ues

SELECT COUNT(*) Resul t<?> resultl = create.sel ectCount().fetch();
SELECT 0 -- Not a bind variable Resul t<?> result2 = create. sel ect Zero().fetch();
SELECT 1 -- Not a bind variable Resul t<?> result3 = create. sel ectOne().fetch();

Which are short forms for creating Column expressions from the org.jooqg.impl.DSL API

© 2009 - 2025 by Data Geekery™ GmbH. Page91/1123

https://www.jooq.org/translate
https://www.jooq.org/translate
https://www.jooq.org/javadoc/3.15.x/org/jooq/impl/DSL.html

The jOOQ User Manual 3.3.4.2. FROM clause

- Sinple SELECTs /'l Sel ect comonly used val ues
SELECT COUNT(*) Resul t<?> result1l = create. sel ect(count()).fetch();
SELECT 0 -- Not a bind variable Resul t<?> result2 = create.select(inline(0)).fetch();
SELECT ? -- A bind variable Resul t<?> result3 = create.select(val (1)).fetch();

3.3.4.2. FROM clause

The SQL FROM clause allows for specifying any number of table expressions to select data from. The
following are examples of how to form normal FROM clauses:

SELECT 1 FROM BOOK create. sel ectOne().fron(BOXK).fetch();
SELECT 1 FROM BOOK, AUTHOR create. sel ect One().fron(BOOK, AUTHOR).fetch();
SELECT 1 FROM BOOK "b", AUTHOR "a" create.sel ectOne().fron(BOXK as("b"), AUTHOR as("a")).fetch();

Read more about aliasing in the manual's section about aliased tables.

More advanced table expressions

Apart from simple tables, you can pass any arbitrary table expression to the jOOQ FROM clause. This
may include unnested cursors in Oracle:

SELECT * create. sel ect ()
FROM TABLE(.fron(tabl e(
DBMS_XPLAN. DI SPLAY_CURSOR(nul |, null, " ALLSTATS') DbnsXpl an. di spl ayCursor (null, null, "ALLSTATS")

):).fetch();

Note, in order to access the DbmsXplan package, you can use the code generator to generate Oracle's
SYS schema.

Selecting FROM DUAL with jJO0Q

In many SQL dialects, FROM is a mandatory clause, in some it isn't. JOOQ allows you to omit the FROM
clause, returning just one record. An example:

SELECT 1 FROM DUAL DSL. usi ng(SQLDi al ect. ORACLE) . sel ect One().fetch();
SELECT 1 DSL. usi ng(SQLDi al ect . POSTGRES) . sel ect One().fetch();

Read more about dual or dummy tables in the manual's section about the DUAL table. The following
are examples of how to form normal FROM clauses:

3.3.4.2.1. JOIN operator

jOOQ supports many different types of standard and non-standard SQL JOIN operations. All of these
JOIN methods can be called on org.joog.Table types the (more info in joined tables section), or directly
after the FROM clause for convenience. The following example joins AUTHOR and BOOK

© 2009 - 2025 by Data Geekery™ GmbH. Page92/1123

https://www.jooq.org/javadoc/3.15.x/org/jooq/Table.html

The jOOQ User Manual 3.3.4.2.2. Implicit path JOIN

DSLCont ext create = DSL.using(connection, dialect);

/1l Call "join" directly on the AUTHOR tabl e
Resul t<?> result = create. sel ect()
. from(AUTHOR. j oi n(BOOK)
. on(BOOK. AUTHOR I D. eq(AUTHOR. 1 D)))
.fetch();

// Call "join" on the type returned by "front
Resul t<?> result = create. sel ect()
. f rom(AUTHOR)
. j oi n(BOOK)
. on(BOOK. AUTHOR | D. eq(AUTHOR. | D))
.fetch();

The two syntaxes will produce the same SQL statement. However, calling "join" on org.joog.Table objects
allows for more powerful, nested JOIN expressions (if you can handle the parentheses):

SELECT * /1 Nest joins and provide JON conditions only at the end
FROM AUTHOR create.select()
LEFT QUTER JO N (. from(AUTHOR
BOOK JO N BOOK_TO_BOOK_STORE .| ef t Qut er Joi n(BOOK
ON BOOK_TO_BOOK_STORE. BOOK_| D = BOXK. | D .j 0i n(BOOK_TO_BOOK_STORE)
) . on(BOOK_TO_BOOK_STORE. BOOK_| D. eq(BOXK. I D)))
ON BOOK. AUTHOR | D = AUTHOR. | D . on(BOOK. AUTHOR I D. eq(AUTHOR. I D)))

.fetch();

- See the section about conditional expressions to learn more about the many ways to create
org.joog.Condition objects in jOOQ.

- See the section about table expressions to learn about the various ways of referencing
org.joog.Table objects in jOOQ

For more information about the different types of join, please refer to the joined tables section.

3.3.4.2.2. Implicit path JOIN

In SQL, a lot of explicit JOIN clauses are written simply to retrieve a parent table's column from a given
child table. For example, we'll write:

- Get all books, their authors, and their respective |anguage
SELECT
a.first_nane,
a. |l ast _nane,

b.title,
| .cd AS | anguage
FROM book b
JO N author a ON b.author_id = a.id
JO N | anguage | ON b.language_id = |.id;

- Count the nunber of books by author and | anguage
SELECT
a.first_nane,
a. |l ast _nane,
| .cd AS | anguage,

COUNT(*)
FROM book
JON author a ON b.author_id = a.id
JO N | anguage | ON b.language_id = |.id
GROUP BY a.id, a.first_nanme, a.last_nane, |.cd
ORDER BY a.first_nane, a.last_nane, |.cd

There is quite a bit of syntactic ceremony (or we could even call it "noise") to get a relatively simple job
done. A much simpler notation would be using implicit joins:

© 2009 - 2025 by Data Geekery™ GmbH. Page93/1123

https://www.jooq.org/javadoc/3.15.x/org/jooq/Table.html
https://www.jooq.org/javadoc/3.15.x/org/jooq/Condition.html
https://www.jooq.org/javadoc/3.15.x/org/jooq/Table.html

The jOOQ User Manual 3.3.4.2.2. Implicit path JOIN

- Get all books, their authors, and their respective |anguage
SELECT
b. aut hor. first_nane,
b. aut hor. | ast _nane,
b.title,
b. | anguage. cd AS | anguage
FROM book b;

- Count the nunber of books by author and | anguage
SELECT
b. aut hor. first_nane,
b. aut hor. | ast _nane,
b. | anguage. cd AS | anguage,
COUNT(*)
FROM book b
GROUP BY
b. aut hor _i d,
b. aut hor. first_nane,
b. aut hor. | ast _nane,
b. | anguage. cd
ORDER BY
b. aut hor. first_nane,
b. aut hor. | ast _nane,
b. | anguage. cd

Notice how this alternative notation (depending on your taste) may look more tidy and straightforward,
as the semantics of accessing a table's parent table (or an entity's parent entity) is straightforward.

From jOOQ 3.11 onwards, this syntax is supported for to-one relationship navigation, and from
jOOQ 3.19 also for to-many relationship navigation. The code generator produces relevant navigation
methods on generated tables, which can be used in a type safe way. The navigation method names are:

- The parent table name, if there is only one foreign key between child table and parent table
- The foreign key name, if there are more than one foreign keys between child table and parent
table

This default behaviour can be overridden by using a Code Generator Strategy.
The jOOQ version of the previous queries looks like this:

/'l Get all books, their authors, and their respective |anguage
create. sel ect (
BOCK. aut hor () . FI RST_NAME,
BOCK. aut hor () . LAST_NAME,
BOOK. TI TLE,
BOCK. | anguage() . CD. as("l anguage"))
. f r om(BOOK)
.fetch();

/'l Count the nunber of books by author and | anguage
create. sel ect (
BOCK. aut hor () . FI RST_NAME,
BOCK. aut hor () . LAST_NAME,
BOXK. | anguage() . CD. as("| anguage"),
count ())
. f rom(BOOK)
. groupBy/(
BOOK. AUTHOR I D,
BOCK. aut hor () . FI RST_NAME,
BOCK. aut hor () . LAST_NAME,
BOCXK. | anguage() . CD)
. order By(
BOCK. aut hor () . FI RST_NAME,
BOCK. aut hor () . LAST_NAME,
BOCK. | anguage() . CD)
.fetch();

The generated SQL is almost identical to the original one - there is no performance penalty to this
syntax.

Default JOIN type

The default type of join that is generated is:

© 2009 - 2025 by Data Geekery™ GmbH. Page 94 /1123

The jOOQ User Manual 3.3.4.3. WHERE clause

- INNER JOIN for to-one path segments with non-nullable parent
- LEFTJOIN for to-one path segments with nullable parent

These defaults can be overridden with Settings.renderImplicitjoinType

How it works

During the SQL generation phase, implicit join paths are replaced by generated aliases for the path's
last table. The paths are translated to a join graph, which is always LEFT JOINed to the path's "root table".
If two paths share a common prefix, that prefix is also shared in the join graph.

Known limitations

- UntiljOOQ 3.17, implicit JOINs were only supported in SELECT statements (including any type
of subquery), but not in the WHERE clause of UPDATE statements or DELETE statements, for
instance.

- Implicit JOINs can currently only be used to access columns, not to produce joins. l.e. it is not
possible to write things like FROM book IMPLICIT JOIN book.author

- Implicit JOINs are added to the SQL string after the entire SQL statement is available, for
performance reasons. This means, that VisitListener SPI implementations cannot observe
implicitly joined tables

3.3.4.3. WHERE clause

The WHERE clause can be used for JOIN or filter predicates, in order to restrict the data returned by the
table expressions supplied to the previously specified from clause and join clause. Here is an example:

SELECT * create. sel ect ()

FROM BOOK . r on(BOCK)
VHERE AUTHOR ID = 1 . wher e(BOOK. AUTHOR | D. eq(1))
AND TITLE = ' 1984’ . and(BOOK. TI TLE. eq(" 1984"))

.fetch();

The above syntax is convenience provided by jOOQ, allowing you to connect the org.joog.Condition
supplied in the WHERE clause with another condition using an AND operator. You can of course also
Create a more complex condition and supply that to the WHERE clause directly (observe the different
placing of parentheses). The results will be the same:

SELECT * create.sel ect()

FROM BOOK . f r on(BOOK)

WHERE AUTHOR ID = 1 . wher e(BOOK. AUTHOR | D. eq(1) . and(
AND TI TLE = ' 1984’ BOOK. TI TLE. eq("1984")))

.fetch();

You will find more information about creating conditional expressions later in the manual.

© 2009 - 2025 by Data Geekery™ GmbH. Page 95/1123

https://www.jooq.org/javadoc/3.15.x/org/jooq/Condition.html

The jOOQ User Manual 3.3.4.4. CONNECT BY clause

3.3.4.4. CONNECT BY clause

The Oracle database knows a very succinct syntax for creating hierarchical queries: the CONNECT BY
clause, which is fully supported by jOOQ, including all related functions and pseudo-columns. A more
or less formal definition of this clause is given here:

SELECT ..
FROM . .
VWHERE . .
CONNECT BY [NOCYCLE] condition [AND condition, ...] [START WTH condition]
- GROUP BY ..
- ORDER [SIBLINGS] BY ..

An example for an iterative query, iterating through values between 1 and 5 is this:

SELECT LEVEL Il Get a table with elenents 1, 2, 3, 4, 5
FROM DUAL create.sel ect(level())
CONNECT BY LEVEL <= 5 .connect By(l evel ().le(5))

.fetch();

Here's a more complex example where you can recursively fetch directories in your database, and
concatenate them to a path:

SELECT .sel ect (

SUBSTR(SYS_CONNECT_BY_PATH(DI RECTORY. NAME, ‘' /'), 2) substring(sysConnect ByPat h(DIl RECTORY. NAME, "/"), 2))
FROM DI RECTORY . fron(DI RECTCRY)
CONNECT BY . connect By/(
PRI OR DI RECTORY. | D = DI RECTORY. PARENT_| D pri or (DI RECTORY. | D). eq(DI RECTORY. PARENT_I D))
START W TH DI RECTORY. PARENT_I D |I'S NULL .start Wt h(DI RECTORY. PARENT_I D. i sNul I ())
ORDER BY 1 .orderBy(1)
.fetch();

The output might then look like this

s +
| substring |
s +
| C

| C:/eclipse

| C:/ eclipse/ dropi ns

|
|
| C:/eclipsel/configuration |
|
| C:/eclipseleclipse. exe |

|...21 record(s) truncated...

Some of the supported functions, operators, and pseudo-columns are these (available from the DSL):

- CONNECT BY ISCYCLE function
- CONNECT BY ISLEAF function

- CONNECT BY ROQT operator

- LEVEL pseudo-column

- PRIOR operator

- SYS CONNECT BY PATH function

© 2009 - 2025 by Data Geekery™ GmbH. Page 96/1123

The jOOQ User Manual 3.3.4.5. GROUP BY clause

ORDER SIBLINGS

The Oracle database allows for specifying a SIBLINGS keyword in the ORDER BY clause. Instead of
ordering the overall result, this will only order siblings among each other, keeping the hierarchy intact.
An example is given here:

SELECT DI RECTORY. NAVE . sel ect (DI RECTORY. NAME)
FROM DI RECTORY . f ron(DI RECTORY)
CONNECT BY . connect By(
PRI OR DI RECTORY. | D = DI RECTORY. PARENT_I D prior (DI RECTORY. | D) . eq(DI RECTORY. PARENT_I D))
START W TH DI RECTORY. PARENT_I D IS NULL .start Wt h(DI RECTORY. PARENT_I D.i sNul | ())
ORDER SI BLI NGS BY 1 . order Si bl i ngsBy(1)
.fetch();

3.3.4.5. GROUP BY clause

GROUP BY can be used to create unique groups of data, to form aggregations, to remove duplicates
and for other reasons. It will transform your previously defined set of table expressions, and return only
one record per unigue group as specified in this clause.

3.3.4.5.1. GROUP BY columns

The GROUP BY columns list specifies the columns whose values are used to form groups. The group
columns can then be projected, whereas all the non-group columns can be aggregated. An example of
such a grouped aggregation is this query:

SELECT AUTHOR | D, COUNT(*) create. sel ect (BOOK. AUTHOR | D, count())

FROM BOOK . f rom(BOOK)

GROUP BY AUTHOR | D . gr oupBy (BOOK. AUTHOR | D)
.fetch();

The above example counts all books per author.

(") Note: a different and more powerful way of grouping data is to use the WINDOW clause and
window functions.

Dialect support
This example using jOOQ:

sel ect (BOOK. AUTHOR | D, count ()). fron{ BOOK) . gr oupBy(BOOK. AUTHOR | D)

Translates to the following dialect specific expressions:

© 2009 - 2025 by Data Geekery™ GmbH. Page 97/1123

The jOOQ User Manual 3.3.4.5.2. GROUP BY ROLLUP

All dialects

SELECT
BOOK. AUTHOR_I D,
count (*)
FROM BOOK
GROUP BY BOOK. AUTHOR I D

(1) Generated with JOOQ 3.21. Support in older jOOQ versions may differ. Translate your own SQL
on our website

3.3.4.5.2. GROUP BY ROLLUP

In reports, it may be useful to run multiple aggregations across multiple dimensions of the data in one
g0. ROLLUP is one way to do this.

SELECT AUTHOR_I D, PUBLI SHED_I N, COUNT(*) create. sel ect (BOOK. AUTHOR | D, BOOK. PUBLI SHED_I N, count())

FROM BOOK . f rom(BOOK)

GROUP BY ROLLUP (AUTHOR I D, PUBLI SHED_I N) . groupBy(rol | up(BOOK. AUTHOR | D, BOOK. PUBLI SHED | N))
.fetch();

The above is a more concise (and possibly more performant) form of writing the following UNION ALL
query:

SELECT AUTHCR I D, PUBLI SHED I N, COUNT(*)
FROM BOOK

GROUP BY AUTHCR I D, PUBLI SHED I N
UNI ON ALL

SELECT AUTHOR I D, NULL, COUNT(*)
FROM BOOK

GROUP BY AUTHCR I D

UNI ON ALL

SELECT NULL, NULL, COUNT(*)

FROM BOOK

GROUP BY ()

The ROLLUP function is just syntax sugar for a more complex GROUPING SETS specification. In general:

- This
ROLLUP (A, B, ©O)

- Is just short for this
GROUPI NG SETS ((A, B, O, (A B), (A, ()

An example result set might look like this:

fecococoooon fecococcosoooe s fecococcooo +
| AUTHOR ID | PUBLISHED I N | COUNT(*) |

fecococoooon fecococoosoooes fecococcooo +

| 1] 1945 | 1| < GROUP BY (AUTHOR I D, PUBLISHED I N)
| 1| 1948 | 1| < GROUP BY (AUTHOR I D, PUBLI SHED | N)
| 1| NULL | 2| <- GROUP BY (AUTHCR I D)

| 2| 1988 | 1| < GROUP BY (AUTHOR I D, PUBLISHED I N)
| 2| 1990 | 1| < GROUP BY (AUTHOR | D, PUBLI SHED I N)
| 2| NULL | 2| < GROUP BY (AUTHCR I D)

| NULL | NULL | 4| <- GROUP BY ()

fecococoooon fecococoosoooes fecococcooo +

© 2009 - 2025 by Data Geekery™ GmbH. Page 98/1123

https://www.jooq.org/translate
https://www.jooq.org/translate

The jOOQ User Manual 3.3.4.5.3. GROUP BY CUBE

Dialect support
This example using jOOQ:

sel ect (BOOK. AUTHCR | D, BOOK. LANGUAGE I D, count ()). fron{ BOOK) . gr oupBy(r ol | up(BOOK. AUTHCR | D, BOOK. LANGUAGE | D))

Translates to the following dialect specific expressions:

Aurora MySQL, MariaDB, MySQL

SELECT
BOOK. AUTHOR | D,
BOOK. LANGUAGE_|I D,
count (*)
FROM BOOK
GROUP BY BOOK. AUTHOR | D, BOOK. LANGUAGE_| D
W TH ROLLUP

Aurora Postgres, ClickHouse, DB2, Databricks, DuckDB, Hana, MemSQL, Oracle,

Postgres, Redshift, SQLDataWarehouse, SQLServer, Snowflake, Sybase, Teradata, Trino,

Vertica

SELECT
BOOK. AUTHOR_I D,
BOOK. LANGUAGE_| D,
count (*)
FROM BOOK
GROUP BY ROLLUP (BOOK. AUTHOR | D, BOOK. LANGUAGE_ I D)

ASE, Access, BigQuery, CockroachDB, Derby, Exasol, Firebird, H2, HSQLDB, Informix,
SQLite, YugabyteDB

/* UNSUPPORTED */

(1) Generated with JOOQ 3.21. Support in older jOOQ versions may differ. Translate your own SQL

on our website

3.3.4.5.3. GROUP BY CUBE

In reports, it may be useful to run multiple aggregations across multiple dimensions of the data in one

go. CUBE is one way to do this.

SELECT AUTHOR_I D, PUBLI SHED_I N, COUNT(*) create. sel ect (BOOK. AUTHOR | D, BOOK. PUBLI SHED_I N, count ())

FROM BOOK . f rom(BOOK)

GROUP BY CUBE (AUTHOR I D, PUBLI SHED_I N) . groupBy(cube(BOOK. AUTHOR | D, BOOK. PUBLI SHED_I N))
.fetch();

© 2009 - 2025 by Data Geekery™ GmbH. Page 99/1123

https://www.jooq.org/translate
https://www.jooq.org/translate

The jOOQ User Manual 3.3.4.5.3. GROUP BY CUBE

The above is a more concise (and possibly more performant) form of writing the following UNION ALL

query:

SELECT AUTHOR I D, PUBLISHED I N, COUNT(*)
FROM BOCK

GROUP BY AUTHOR I D, PUBLI SHED_IN
UNION' ALL

SELECT AUTHOR I D, NULL, COUNT(*)
FROM BOCK

GROUP BY AUTHOR I D

SELECT NULL, PUBLISHED_IN, COUNT(*)
FROM BOCK

GROUP BY LANGUAGE | D

UNI ON' ALL

SELECT NULL, NULL, COUNT(*)

FROM BOCK

GROUP BY ()

The CUBE function is just syntax sugar for a more complex GROUPING SETS specification. In general:

- This
CUBE (A, B, O

- Is just short for this
GROUPI NG SETS ((A, B, ©, (A B), (A O, (B, O, (A, (B, (O, ()

An example result set might look like this:

fecooooocoon decoooccoooooos fcocoocooo +
| AUTHCR ID | PUBLISHED_IN | COUNT(*) |

fecooooocoon decosocooooooos fecocoocooo +

| NULL | NULL | 4| <- GROUP BY ()

| NULL | 1945 | 1| < GROUP BY (PUBLISHED I N)

| NULL | 1948 | 1| < GROUP BY (PUBLISHED I N)

| NULL | 1988 | 1| < GROUP BY (PUBLISHED I N)

| NULL | 1990 | 1| < GROUP BY (PUBLISHED I N)

| 1] NULL | 2| < GROUP BY (AUTHCR I D)

| 1] 1945 | 1| < GROUP BY (AUTHOR I D, PUBLISHED I N)
| 1] 1948 | 1| < GROUP BY (AUTHOR I D, PUBLISHED I N)
| 2| NULL | 2| < GROUP BY (AUTHCR I D)

| 2| 1988 | 1| < GROUP BY (AUTHOR I D, PUBLISHED I N)
| 2| 1990 | 1| < GROUP BY (AUTHOR I D, PUBLISHED I N)
fecooooocoon decosocooooooos fecocoocooo +

Dialect support
This example using jOOQ:

sel ect (BOOK. AUTHOR | D, BOOK. LANGUAGE | D, count ()). from(BOOK) . gr oupBy(cube(BOOK. AUTHOR | D, BOOK. LANGUAGE | D))

Translates to the following dialect specific expressions:

Aurora Postgres, ClickHouse, DB2, Databricks, DuckDB, Hana, Oracle, Postgres,
Redshift, SQLServer, Snowflake, Sybase, Teradata, Trino, Vertica

SELECT
BOOK. AUTHOR | D,
BOOK. LANGUAGE_|I D,
count (*)
FROM BOOK
GROUP BY CUBE (BOCK. AUTHOR | D, BOCOK. LANGUAGE_| D)

© 2009 - 2025 by Data Geekery™ GmbH.

Page 100/ 1123

The jOOQ User Manual 3.3.4.5.4. GROUP BY GROUPING SETS

ASE, Access, Aurora MySQL, BigQuery, CockroachDB, Derby, Exasol, Firebird,
H2, HSQLDB, Informix, MariaDB, MemSQL, MySQL, SQLDataWarehouse, SQLite,
YugabyteDB

/* UNSUPPORTED */

(1) Generated with JOOQ 3.21. Support in older jOOQ versions may differ. Translate your own SQL
on our website

3.3.4.5.4. GROUP BY GROUPING SETS

In reports, it may be useful to run multiple aggregations across multiple dimensions of the data in one
g0. GROUPING SETS is one way to do this.

SELECT AUTHOR_I D, PUBLI SHED_I N, COUNT(*) create. sel ect (BOOK. AUTHOR | D, BOOK. PUBLI SHED_I N, count())

FROM BOOK . f rom(BOOK)

GROUP BY GROUPI NG SETS ((AUTHOR I D), (PUBLISHED_IN)) . groupBy(gr oupi ngSet s(BOOK. AUTHOR | D, BOOK. PUBLI SHED_| N))
.fetch();

The above is a more concise (and possibly more performant) form of writing the following UNION ALL
query:

SELECT AUTHOR | D, NULL AS PUBLI SHED_I N, COUNT(*)
FROM BOOK

GROUP BY AUTHOR_I D

UNI ON ALL

SELECT NULL, PUBLI SHED_I N, COUNT(*)

FROM BOOK

GROUP BY LANGUAGE_I D

An example result set might look like this:

P cooooooooo P cocooooooooos P oocoooooo +
| AUTHOR ID | PUBLISHED IN | COUNT(*) |

P cooooooooo P cocooooooooos P oocoooooo +

| NULL | 1945 | 1| <- GROUP BY (PUBLISHED I N)
| NULL | 1948 | 1| <- GROUP BY (PUBLISHED I N)
| NULL | 1988 | 1| <- GROUP BY (PUBLISHED I N)
| NULL | 1990 | 1| <- GROUP BY (PUBLISHED I N)
| 1| NULL | 2 | <= GROUP BY (AUTHOR I D)

| 2 | NULL | 2 | <= GROUP BY (AUTHOR I D)

P cooooooooo P cocooooooooos P oocoooooo +

Note that the most common GROUPING SETS specifications have a dedicated, special syntax:

- ROLLUP
- CUBE

Dialect support

This example using jOOQ:

© 2009 - 2025 by Data Geekery™ GmbH. Page 101 /1123

https://www.jooq.org/translate
https://www.jooq.org/translate

The jOOQ User Manual 3.3.4.5.5. GROUP BY empty grouping set

sel ect (BOOK. AUTHOR | D, BOOK. LANGUAGE | D, count ()). from(BOOK) . gr oupBy(groupi ngSet s(BOOK. AUTHOR | D, BOOK. LANGUAGE_|I D))

Translates to the following dialect specific expressions:

Aurora Postgres, ClickHouse, DB2, Databricks, DuckDB, Hana, Oracle, Postgres,
Redshift, SQLServer, Snowflake, Sybase, Teradata, Trino, Vertica

SELECT
BOOK. AUTHOR I D,
BOOK. LANGUAGE_|I D,
count (*)

FROM BOOK

GROUP BY GROUPI NG SETS (
(BOOK. AUTHOR I D) ,
(BOOK. LANGUAGE_| D)

)

ASE, Access, Aurora MySQL, BigQuery, CockroachDB, Derby, Exasol, Firebird,
H2, HSQLDB, Informix, MariaDB, MemSQL, MySQL, SQLDataWarehouse, SQLite,
YugabyteDB

/* UNSUPPORTED */

(1) Generated with JOOQ 3.21. Support in older jOOQ versions may differ. Translate your own SQL
on our website

3.3.4.5.5. GROUP BY empty grouping set

A special kind of GROUPING SET is the empty grouping set, which can be achieved in standard SQL
and many SQL dialects using GROUP BY (). It is implicit, whenever an aggregate function is present in
a query, but not an explicit GROUP BY clause.

SELECT COUNT(*) create. sel ect Count ()

FROM BOOK . f rom(BOOK)

GROUP BY () . groupBy()
.fetch();

Dialect support
This example using jOOQ:
sel ect Count (). f r on{ BOOK) . gr oupBy()

Translates to the following dialect specific expressions:

© 2009 - 2025 by Data Geekery™ GmbH. Page 102 /1123

https://www.jooq.org/translate
https://www.jooq.org/translate

The jOOQ User Manual 3.3.4.5.5. GROUP BY empty grouping set

Access

SELECT count (*)
FROM BOOK, (select count(*) dual from MSysResources) as enpty_groupi ng_dumy_tabl e
GROUP BY enpty_groupi ng_dunmy_t abl e. dual

ASE, SQLDataWarehouse

SELECT count (*)
FROM BOOK, (select 1 as dual) as enpty_groupi ng_dummy_tabl e
GROUP BY enpty_groupi ng_dunmy_t abl e. dual

Aurora MySQL, MemSQL

SELECT count (*)
FROM BOOK

GROUP BY (SELECT 1
FROM DUAL)

Aurora Postgres, BigQuery, DB2, DuckDB, Exasol, H2, Oracle, Postgres, SQLServer,
Sybase, Teradata, Trino

SELECT count (*)
FROM BOOK
GROUP BY ()

ClickHouse, CockroachDB, MariaDB, MySQL, Redshift, SQLite, Vertica, YugabyteDB

SELECT count (*)
FROM BOOK
GROUP BY (SELECT 1)

Databricks, Hana, Snowflake

SELECT count (*)
FROM BOOK
GROUP BY GROUPI NG SETS (())

Derby, HSQLDB

SELECT count (*)
FROM BOOK
GROUP BY 0

© 2009 - 2025 by Data Geekery™ GmbH. Page 10371123

The jOOQ User Manual 3.3.4.6. HAVING clause

Firebird

SELECT count (*)
FROM BOOK

GROUP BY (SELECT 1
FROMV RDB$DATABASE)

Informix

SELECT count (*)
FROM BOOK, (select 1 as dual from systables where tabid = 1) as enpty_groupi ng_dumy_tabl e
GROUP BY enpty_groupi ng_dunmy_t abl e. dual

(1) Generated with JOOQ 3.21. Support in older jOOQ versions may differ. Translate your own SQL
on our website

3.3.4.6. HAVING clause

The HAVING clause is commonly used to further restrict data resulting from a previously issued GROUP
BY clause. An example, selecting only those authors that have written at least two books:

SELECT AUTHOR | D, COUNT(*) create. sel ect (BOOK. AUTHOR | D, count())
FROM BOOK . f rom(BOOK)
GROUP BY AUTHOR | D . groupBy (AUTHOR_| D)
HAVI NG COUNT(*) >= 2 . havi ng(count (). ge(2))
.fetch();

According to the SQL standard, you may omit the GROUP BY clause and still issue a HAVING clause. This
will implicitly GROUP BY (). jJOOQ also supports this syntax. The following example selects one record,
only if there are at least 4 books in the books table:

SELECT COUNT(*) create. sel ect(count(*))

FROM BOOK . f rom(BOOK)

HAVI NG COUNT(*) >= 4 . havi ng(count (). ge(4))
.fetch();

3.3.4.7. WINDOW clause

The SQL:2003 standard supports a WINDOW clause that allows for specifying WINDOW frames for
reuse in SELECT clauses and ORDER BY clauses.

© 2009 - 2025 by Data Geekery™ GmbH. Page 104 /1123

https://www.jooq.org/translate
https://www.jooq.org/translate

The jOOQ User Manual 3.3.4.7. WINDOW clause

W ndowDef i nition w = name("w'). as(
or der By (AUTHOR. FI RST_NAME)) ;

create. sel ect (

SELECT | ag(AUTHOR. FI RST_NAME, 1).over(w).as("prev"),
LAG(first_name, 1) OVER w "prev", AUTHOR. FI RST_NAME,
first_nane, | ead(AUTHOR. FI RST_NAME, 1).over(w).as("next"))
LEAD(first_name, 1) OVER w "next" . fr o AUTHOR)

FROM aut hor . Wi ndow(w)

W NDOW w AS (ORDER first_name) . or der By(AUTHOR. FI RST_NAME. desc())

ORDER BY first_nane DESC .fetch();

Note that in order to create such a window definition, we need to first create a name reference using

DSL.name().

Even if only PostgreSQL and Sybase SQL Anywhere natively support this great feature, jOOQ can
emulate it by expanding any org.joog.WindowDefinition and org.joog.WindowSpecification types that
you pass to the window() method - if the database supports window functions at all.

Some more information about window functions and the WINDOW clause can be found on our blog:
https://blog.joog.org/probably-the-coolest-sgl-feature-window-functions/

Dialect support
This example using jOOQ:

sel ect (rowNunber (). over ("w')). fron{ AUTHOR) . wi ndow(nane("w") . as(or der By(AUTHOR. | D)))

Translates to the following dialect specific expressions:

Aurora Postgres, BigQuery, ClickHouse, CockroachDB, Databricks, DuckDB, Exasol,
Firebird, H2, MySQL, Oracle, Postgres, SQLServer, SQLite, Sybase, Trino, YugabyteDB

SELECT row_nunber () OVER w
FROM AUTHOR
W NDOW w AS (ORDER BY AUTHCR. | D)

DB2, Hana, Informix, MariaDB, MemSQL, SQLDataWarehouse, Snowflake, Teradata,
Vertica

SELECT row_nunber () OVER (ORDER BY AUTHOR. | D)
FROM AUTHOR

ASE, Access, Aurora MySQL, Derby, HSQLDB, Redshift

/* UNSUPPORTED */

(1) Generated with JOOQ 3.21. Support in older jOOQ versions may differ. Translate your own SQL
on our website

© 2009 - 2025 by Data Geekery™ GmbH. Page 10571123

https://www.jooq.org/javadoc/3.15.x/org/jooq/impl/DSL.html#name(java.lang.String...)
https://www.jooq.org/javadoc/3.15.x/org/jooq/WindowDefinition.html
https://www.jooq.org/javadoc/3.15.x/org/jooq/WindowSpecification.html
https://blog.jooq.org/probably-the-coolest-sql-feature-window-functions/
https://www.jooq.org/translate
https://www.jooq.org/translate

The jOOQ User Manual 3.3.4.8. QUALIFY clause

3.3.4.8. QUALIFY clause

A select few dialects support a very useful QUALIFY clause, which can be used to filter using window
functions without having to nest the window function calculation in a derived table.

For example, if you do not have access to the WITH TIES clause, you could easily emulate it like this. The
following query finds the top 5 author WITH TIES counting their books:

SELECT AUTHOR | D, count (*) create. sel ect (BOOK. AUTHOR | D, count())
FROM BOOK . f r on(BOOK)
GROUP BY AUTHOR | D . gr oupBy (BOOK. AUTHOR | D)
QUALI FY rank() OVER (ORDER BY count(*) DESC) <= 5 .qualify(rank().over(orderBy(count().desc())).le(5))
ORDER BY count (*) DESC .orderBy(count().desc())
.fetch();

(1) If your dialect does not support QUALIFY natively, then JOOQ can apply a transformation from
QUALIFY to derived tables.

Dialect support
This example using jO0Q:

sel ect (AUTHOR. I D) . f r om{ AUTHOR) . qual i f y(rank() . over (orderBy(AUTHOR I D)) .| e(10))

Translates to the following dialect specific expressions:

Aurora Postgres, CockroachDB, MemSQL, Postgres, SQLite, Trino, Vertica, YugabyteDB

SELECT t.ID ID
FROM (
SELECT
*

(rank() OVER (ORDER BY AUTHCR I D) <= 10) w0
FROM AUTHOR
)t
VHERE w0

BigQuery

SELECT AUTHOR. | D

FROM AUTHOR

VWHERE TRUE

QUALI FY rank() OVER (ORDER BY AUTHOR. I D) <= 10

© 2009 - 2025 by Data Geekery™ GmbH. Page 106/ 1123

The jOOQ User Manual 3.3.4.8. QUALIFY clause

ClickHouse, Databricks, DuckDB, Exasol, H2, Snowflake, Teradata

SELECT AUTHOR. | D
FROM AUTHOR
QUALI FY rank() OVER (ORDER BY AUTHOR I D) <= 10

DB2, SQLDataWarehouse, SQLServer, Sybase

SELECT t.ID ID
FROM (
SELECT
*v
CASE
VHEN rank() OVER (ORDER BY AUTHOR I D) <= 10 THEN 1
WHEN NOT (rank() OVER (ORDER BY AUTHOR ID) <= 10) THEN 0
END w0
FROM AUTHOR
) t
VHERE w0 = 1

Firebird

SELECT t.ID ID
FROM (
SELECT
AUTHOR | D,
AUTHOR. FI RST_NAME,
AUTHOR. LAST_NANE,
AUTHOR DATE_OF_BI RTH,
AUTHOR YEAR OF_BI RTH,
AUTHOR. DI STI NGUI SHED,
CASE
VHEN rank() OVER (ORDER BY AUTHCR ID) <= 10 THEN 1
WHEN NOT (rank() OVER (ORDER BY AUTHOR I D) <= 10) THEN 0
END w0
FROM AUTHOR

)t
WHERE W0 = 1

Hana

SELECT t.ID I D
FROM (
SELECT
B
CASE
WHEN rank() OVER (ORDER BY AUTHOR I D) <= 10 THEN TRUE
WHEN NOT (rank() OVER (ORDER BY AUTHOR I D) <= 10) THEN FALSE
END w0
FROM AUTHOR
)t
VHERE W0 = TRUE

© 2009 - 2025 by Data Geekery™ GmbH. Page 107/1123

The jOOQ User Manual 3.3.4.9. ORDER BY clause

Informix

SELECT t.ID I D
FROM (
SELECT
B
CASE
WHEN rank() OVER (ORDER BY AUTHOR I D) <= 10 THEN CAST('t' AS bool ean)
WHEN NOT (rank() OVER (ORDER BY AUTHOR I D) <= 10) THEN CAST('f' AS bool ean)
END w0
FROM AUTHOR
)t
VHERE w0

MariaDB, MySQL, Oracle

SELECT t.ID I D
FROM (
SELECT
AUTHOR | D,
AUTHOR. FI RST_NAME,
AUTHOR. LAST_NANE,
AUTHOR DATE_OF_BI RTH,
AUTHOR YEAR OF_BI RTH,
AUTHOR. DI STI NGUI SHED,
(rank() OVER (ORDER BY AUTHCR ID) <= 10) w0
FROM AUTHOR
)t
VHERE WO

Redshift

SELECT AUTHCR. | D

FROM AUTHOR

WHERE 1 = 1

QUALIFY rank() OVER (CORDER BY AUTHOR I D) <= 10

ASE, Access, Aurora MySQL, Derby, HSQLDB

/* UNSUPPORTED */

(1) Generated with JOOQ 3.21. Support in older jOOQ versions may differ. Translate your own SQL
on our website

3.3.4.9. ORDER BY clause

Databases are allowed to return data in any arbitrary order, unless you explicitly declare that order in
the ORDER BY clause.

© 2009 - 2025 by Data Geekery™ GmbH. Page 108/ 1123

https://www.jooq.org/translate
https://www.jooq.org/translate

The jOOQ User Manual 3.3.4.9.1. Ordering by field index

SELECT AUTHOR I D, TITLE create. sel ect (BOOK. AUTHOR | D, BOOK. Tl TLE)

FROM BOOK . f r on(BOOK)

ORDER BY AUTHOR_ I D ASC, TITLE DESC . or der By(BOOK. AUTHOR | D. asc(), BOOK. Tl TLE. desc())
.fetch();

Any jOOQ column expression (or field) can be transformed into an org.joog.SortField by calling the asc()
and desc() methods.

jO0Q's understanding of SELECT .. ORDER BY

The SQL standard defines that a "query expression" can be ordered, and that query expressions can
contain UNION, INTERSECT and EXCEPT clauses, whose subqueries cannot be ordered. While this is
defined as such in the SQL standard, many databases allowing for the LIMIT clause in one way or
another, do not adhere to this part of the SQL standard. Hence, jOOQ allows for ordering all SELECT
statements, regardless whether they are constructed as a part of a UNION or not. Corner-cases are
handled internally by jOOQ, by introducing synthetic subselects to adhere to the correct syntax, where
this is needed.

3.3.4.9.1. Ordering by field index

The SQL standard allows for specifying integer literals (literals, not bind values!) to reference column
indexes from the projection (SELECT clause). This may be useful if you do not want to repeat a lengthy
expression, by which you want to order - although most databases also allow for referencing aliased
column references in the ORDER BY clause.

An example of this is given here:

SELECT AUTHOR I D, TITLE create. sel ect (BOOK. AUTHOR | D, BOOK. Tl TLE)

FROM BOOK . f r om(BOOK)

ORDER BY 1 ASC, 2 DESC .orderBy(inline(l).asc(), inline(2).desc())
.fetch();

(1) This practice is generally discouraged as field indexes may shift in the SELECT clause, and
devel opers might forget to update the indexes in ORDER BY. It is mainly useful for quick-and-dirty
ad-hoc QL. See also the don't do this section about this topic.

Dialect support
This example using jOOQ:

sel ect (BOOK. I D) . f r om(BOOK) . or der By(1)

Translates to the following dialect specific expressions:

© 2009 - 2025 by Data Geekery™ GmbH. Page 109/ 1123

https://www.jooq.org/javadoc/3.15.x/org/jooq/SortField.html
https://www.jooq.org/javadoc/3.15.x/org/jooq/Field.html#asc()
https://www.jooq.org/javadoc/3.15.x/org/jooq/Field.html#desc()

The jOOQ User Manual 3.3.4.9.2. Ordering and NULLS

All dialects

SELECT BOXK. | D
FROVI BOOK
ORDER BY 1

(1) Generated with JOOQ 3.21. Support in older jOOQ versions may differ. Translate your own SQL
on our website

3.3.4.9.2. Ordering and NULLS

A few databases support the SQL standard "null ordering" clause in sort specification lists, to define
whether NULL values should come first or last in an ordered result.

SELECT create. sel ect (
AUTHOR. FI RST_NAME, AUTHOR. FI RST_NAME,
AUTHOR. LAST_NAVE AUTHOR. LAST_NAME)
FROM AUTHOR . f r o AUTHOR)
ORDER BY LAST_NAME ASC, . or der By(AUTHOR. LAST_NAME. asc(),
FI RST_NAME ASC NULLS LAST AUTHOR. FI RST_NAME. asc() . nul | sLast ())
.fetch();

If your database doesn't support this syntax, JOOQ emulates it using a CASE expression

Dialect support
This example using jOOQ:

sel ect (AUTHOR. FI RST_NANE) . f r on{ AUTHOR) . or der By (AUTHOR. FI RST_NAME. asc() . nul | sLast ())

Translates to the following dialect specific expressions:

Access, SQLServer

SELECT AUTHOR. FI RST_NANE
FROM AUTHOR
ORDER BY iif(AUTHOR FI RST_NAME IS NOT NULL, 0, 1), AUTHOR FI RST_NAME ASC

ASE, Aurora MySQL, MemSQL, MySQL, SQLDataWarehouse, Sybase

SELECT AUTHOR. FI RST_NAME

FROVI AUTHOR

ORDER BY CASE
WHEN AUTHOR. FI RST_NAME | S NOT NULL THEN 0
ELSE 1

END, AUTHOR. FI RST_NAME ASC

© 2009 - 2025 by Data Geekery™ GmbH. Page 110/1123

https://www.jooq.org/translate
https://www.jooq.org/translate

The jOOQ User Manual 3.3.4.9.3. Ordering using CASE expressions

Aurora Postgres, BigQuery, ClickHouse, CockroachDB, Databricks, Derby, DuckDB,
Exasol, Firebird, H2, HSQLDB, Hana, Informix, Oracle, Postgres, SQLite, Snowflake,
Teradata, Trino, YugabyteDB

SELECT AUTHOR. FI RST_NAME
FROM AUTHOR
ORDER BY AUTHOR. FI RST_NAME ASC NULLS LAST

DB2, MariaDB, Redshift, Vertica

SELECT AUTHOR. FI RST_NAVE
FROM AUTHOR
ORDER BY nvl 2(AUTHOR. FI RST_NAME, 0, 1), AUTHOR. Fl RST_NAME ASC

(1) Generated with JOOQ 3.21. Support in older jOOQ versions may differ. Translate your own SQL
on our website

3.3.4.9.3. Ordering using CASE expressions

Using CASE expressions in SQL ORDER BY clauses is a common pattern, if you want to introduce
some sort indirection / sort mapping into your queries. As with SQL, you can add any type of column
expression into your ORDER BY clause.

For instance, if you have two favourite books that you always want to appear on top, you could write:

SELECT * create.select()
FROM BOOK . f rom(BOOK)
ORDER BY CASE TI TLE . orderBy(case_(BOOK. TI TLE)
WHEN ' 1984' THEN 0 . when("1984", 0)
WHEN ' Ani mal Farmi THEN 1 .when(" Ani nal Farni', 1)
ELSE 2 END ASC .else_(2).asc())
.fetch();

But writing these things can become quite verbose. jOOQ supports a convenient syntax for specifying
sort mappings. The same query can be written in jJOOQ as such:

create. select()
. from(BOOK)
.order By(BOOK. TI TLE. sort Asc("1984", "Animal Farni))
.fetch();

More complex sort indirections can be provided using a Map:

create. select()
. f r om(BOOK)
. or der By(BOOK. TI TLE. sor t (Map. of (
"1984", 1,
"Ani mal Farni', 13,
"The j OOQ book", 10

)))
.fetch();

© 2009 - 2025 by Data Geekery™ GmbH. Page 111/1123

https://www.jooq.org/translate
https://www.jooq.org/translate

The jOOQ User Manual 3.3.4.9.3. Ordering using CASE expressions

Of course, you can combine this feature with the previously discussed NULLS FIRST / NULLS LAST
feature. So, if in fact these two books are the ones you like least, you can put all NULLS FIRST (all the
other books):

create.select()
. f r om(BOOK)
. order By(BOOK. TI TLE. sort Asc("1984", "Aninmal Farni).nullsFirst())
.fetch();

Dialect support
This example using jOOQ:

sel ect (BOOK. I D). f r on{ BOOK) . or der By(BOOK. Tl TLE. sort Asc("1984", "Animal Farni))

Translates to the following dialect specific expressions:

Access

SELECT BOXXK. | D
FROM BOOK
ORDER BY SW TCH(BOOK. TI TLE = ' 1984', 0, BOOK. TITLE = ' Animal Farmi, 1) ASC

ASE, Aurora MySQL, Aurora Postgres, BigQuery, ClickHouse, CockroachDB, DB2,
Databricks, DuckDB, Exasol, Firebird, H2, HSQLDB, Hana, Informix, MariaDB, MemSQL,
MySQL, Oracle, Postgres, Redshift, SQLDataWarehouse, SQLServer, SQLite, Snowflake,
Sybase, Teradata, Trino, Vertica, YugabyteDB

SELECT BOXK. | D
FROM BOOK
ORDER BY CASE BOCK. TI TLE
WHEN ' 1984' THEN O
WHEN * Ani mal Farmi THEN 1
END ASC

Derby

SELECT BOXK. | D
FROVI BOOK
ORDER BY CASE
WHEN BOOK. TI TLE = ' 1984' THEN 0
WHEN BOOK. TI TLE = " Ani mal Farmi THEN 1
END ASC

(1) Generated with JOOQ 3.21. Support in older jOOQ versions may differ. Translate your own SQL
on our website

© 2009 - 2025 by Data Geekery™ GmbH. Page 112/1123

https://www.jooq.org/translate
https://www.jooq.org/translate

The jOOQ User Manual 3.3.4.9.4. Oracle's ORDER SIBLINGS BY clause

3.3.4.9.4. Oracle's ORDER SIBLINGS BY clause

jOOQ also supports Oracle's SIBLINGS keyword to be used with ORDER BY clauses for hierarchical
queries using CONNECT BY

create. sel ect (sysConnect ByPat h(DI RECTORY. LABEL, "/").as("dir"))

. fronm(DI RECTCRY)

.start Wt h(DI RECTORY. PARENT I D. i sNul | ())

. connect By(pri or (DI RECTCRY. | D). eq(DI RECTORY. PARENT_| D))
.orderSi bl i ngsBy(DI RECTORY. LABEL)

.fetch();

3.3.4.10. LIMIT .. OFFSET clause

While being extremely useful for every application that does pagination, or just to limit result sets
to reasonable sizes, this clause has not been standardised up until SQL:2008. Hence, there exist a
variety of possible implementations in various SQL dialects, concerning this limit clause. jJOOQ chose to
implement the LIMIT .. OFFSET clause as understood and supported by MySQL, H2, HSQLDB, Postgres,
and SQLite. Here is an example of how to apply limits with jOOQ:

create.select().fronBOOK).orderBy(BOOK.ID).limt(1).offset(2).fetch();

This will limit the result to 1 books skipping the first 2 books (offset 2). limit() is supported in all dialects,
offset() in all but Sybase ASE, which has no reasonable means to emulate it. This is how jOOQ trivially
emulates the above query in various SQL dialects with native OFFSET pagination support:

-- MWSQL, H2, HSQLDB, and SQLite
SELECT * FROM BOOK ORDER BY ID LIMT 1 OFFSET 2

-- Derby, SQ Server 2012, Oracle 12c, PostgreSQ., the SQL:2008 standard
SELECT * FROM BOOK ORDER BY | D OFFSET 2 ROAS FETCH NEXT 1 ROAS ONLY

- Informx has SKIP .. FIRST support
SELECT SKIP 2 FIRST 1 * FROM BOOK ORDER BY | D

- Ingres (al nbst the SQL:2008 standard)
SELECT * FROM BOOK ORDER BY | D OFFSET 2 FETCH FIRST 1 ROAS ONLY

-- Firebird
SELECT * FROM BOOK ORDER BY ID ROAS 2 TO 3

-- Sybase SQL Anywhere
SELECT TOP 1 START AT 3 * FROM BOOK ORDER BY I D

- DB2 (al nbst the SQL: 2008 standard, wi thout OFFSET)
SELECT * FROM BOOK ORDER BY | D FETCH FI RST 1 ROAS ONLY

- Sybase ASE, SQL Server 2008 (w thout OFFSET)
SELECT TOP 1 * FROM BOOK ORDER BY | D

Things get a little more tricky in those databases that have no native idiom for OFFSET pagination (actual
queries may vary):

© 2009 - 2025 by Data Geekery™ GmbH. Page 11371123

The jOOQ User Manual 3.3.4.11. WITH TIES clause

-~ DB2 (with OFFSET), SQL Server 2008 (with OFFSET)
SELECT * FROM (

SELECT BOOK. *,

ROW NUVBER() OVER (ORDER BY I D ASC) AS RN

FROM BOOK
) AS X
VHERE RN > 2
AND RN <= 3

-- DB2 (with OFFSET), SQ. Server 2008 (with OFFSET)
SELECT * FROM (
SELECT DI STI NCT BOOK. | D, BOOK. Tl TLE,
DENSE_RANK() OVER (ORDER BY ID ASC, TITLE ASC) AS RN
FROM BOOK
) AS X
WHERE RN > 2
AND RN <= 3
-- Oacle 11g and | ess
SELECT *
FROM (
SELECT b.*, ROMUM RN
FROM (
SELECT *
FROM BOOK
ORDER BY I D ASC
) b
VWHERE ROMNUM <= 3

)
VHERE RN > 2

As you can see, jOOQ will take care of the incredibly painful ROW_NUMBER() OVER() (or ROWNUM for
Oracle) filtering in subselects for you, you'll just have to write limit(1).offset(2) in any dialect.

SQL Server's ORDER BY, TOP and subqueries

As can be seen in the above example, writing correct SQL can be quite tricky, depending on the SQL
dialect. For instance, with SQL Server, you cannot have an ORDER BY clause in a subquery, unless you
also have a TOP clause. This is illustrated by the fact that jOOQ renders a TOP 100 PERCENT clause for
you. The same applies to the fact that ROW_NUMBER() OVER() needs an ORDER BY windowing clause,
even if you don't provide one to the jOOQ query. By default, JOOQ adds ordering by the first column
of your projection.

Keyset pagination

Note, the LIMIT clause can also be used with the SEEK clause for keyset pagination.

3.3.4.11. WITH TIES clause

The previous chapter talked about the LIMIT clause, which limits the result set to a certain number of
rows. The SQL standard specifies the following syntax:

OFFSET m{ ROW| ROAS }
FETCH { FIRST | NEXT } n { ROW| ROAS } { ONLY | WTH TIES }

By default, most users will use the semantics of the ONLY keyword, meaning a LIMIT 5 expression (or
FETCH NEXT 5 ROWS ONLY expression) will result in at most 5 rows. The alternative clause WITH TIES
will return at most 5 rows, except if the 5th row and the 6th row (and so on) are "tied" according to the
ORDER BY clause, meaning that the ORDER BY clause does not deterministically produce a 5th or 6th
row. For example, let's look at our book table:

© 2009 - 2025 by Data Geekery™ GmbH. Page 114/1123

The jOOQ User Manual 3.3.4.11. WITH TIES clause

SELECT * DSL. usi ng(confi guration)

FROM book . sel ect Fr on{ BOOK)

ORDER BY aut hor _id . or der By (BOOK. AUTHOR | D)

FETCH NEXT 1 ROAS W TH TI ES Jlimt(1).withTies()

.fetch();

Resulting in:

oo LR e +

| id| actor_id | title |

oo LR e +

| 1] 1| 1984 |

| 2 1| Animal Farm |

oo LR e +

We're now getting two rows because both rows "tied" when ordering them by ACTOR_ID. The database
cannot really pick the next 1 row, so they're both returned. If we omit the WITH TIES clause, then only
a random one of the rows would be returned.

Dialect support
This example using jO0Q:

sel ect (BOOK. I D) . f r on(BOOK) . or der By(BOOK. AUTHOR ID).limt(1).w thTies()

Translates to the following dialect specific expressions:

Aurora Postgres, CockroachDB, DB2, Firebird, Hana, MySQL, Sybase, Vertica,
YugabyteDB

SELECT vO I D
FROM (
SELECT
BOXK. I D vO,
rank() OVER (ORDER BY BOOK. AUTHOR ID) rn
FROM BOOK
) X
WHERE rn <= (0 + 1)
ORDER BY rn

BigQuery, Databricks, DuckDB, Exasol, Snowflake

SELECT BOCK. | D
FROM BOOK
QUALI FY rank() OVER (ORDER BY BOOK. AUTHOR ID) <= (0 + 1)

ClickHouse, H2, MariaDB, Oracle, Postgres, Trino

SELECT BOXK. | D

FROM BOOK

ORDER BY BOOK. AUTHOR | D
FETCH NEXT 1 ROAS W TH TI ES

© 2009 - 2025 by Data Geekery™ GmbH. Page 11571123

The jOOQ User Manual

Informix

SELECT vO I D
FROM (
SELECT *
FROM (
SELECT
BOXK. | D vO,
rank() OVER (ORDER BY BOOK. AUTHOR ID) rn
FROM BOOK
) X
) X
WHERE rn <= (0 + 1)
ORDER BY rn

Redshift

SELECT BOXXK. | D
FROM BOOK
WHERE 1 = 1

QUALI FY rank() OVER (ORDER BY BOOK. AUTHOR ID) <= (0 + 1)

SQLDataWarehouse, SQLServer, Teradata

SELECT TOP 1 WTH TI ES BOXK. | D
FROM BOOK
ORDER BY BOOK. AUTHOR | D

ASE, Access, Aurora MySQL, Derby, HSQLDB, MemSQL, SQLite

/* UNSUPPORTED */

3.3.4.12. SEEK clause

(1) Generated with JOOQ 3.21. Support in older jOOQ versions may differ. Translate your own SQL

on our website

3.3.4.12. SEEK clause

One of the previous chapters talked about OFFSET pagination using LIMIT .. OFFSET, or OFFSET .. FETCH
or some other vendor-specific variant of the same. This can lead to significant performance issues when
reaching a high page number, as all unneeded records need to be skipped by the database.

A much faster and more stable way to perform pagination is the so-called keyset pagination method
also called seek method. jOOQ supports a synthetic seek() clause, that can be used to perform keyset

pagination (learn about other synthetic sgl syntaxes). Imagine we have these data:

© 2009 - 2025 by Data Geekery™ GmbH.

Page 116/ 1123

https://www.jooq.org/translate
https://www.jooq.org/translate

The jOOQ User Manual 3.3.4.12. SEEK clause

i
¥

VALUE | PAGE_BOUNDARY |

i
¥

<-- Before page 6

<-- Last on page 6

TWWWNNNNNNC
T OO0OPrPOO0OOORr O

450

)
5
o

B e b =

Now, if we want to display page 6 to the user, instead of going to page 6 by using a record OFFSET, we
could just fetch the record strictly after the last record on page 5, which yields the values (533, 2). This
is how you would do it with SQL or with jOOQ:

DSL. usi ng(confi gurati on)
.select(T.1D, T.VALUE)

SELECT id, value .from(T)
FROM t .orderBy(T. VALUE, T.ID)
WHERE (value, id) > (2, 533) .seek(lastValue, lastld) // fromlast page: value = 2, id =
ORDER BY val ue, id 533
LIMT 5 Llimt(5)
.fetch();

As you can see, the jOOQ SEEK clause is a synthetic clause that does not really exist in SQL. However,
the jOOQ syntax is far more intuitive for a variety of reasons:

- ltreplaces OFFSET where you would expect

- It doesn't force you to mix regular predicates with "seek" predicates

- ltis typesafe

- It emulates row value expression predicates for you, in those databases that do not support

them

This query now yields:

Poccoo o oocooo +
| ID| VALUE |
Poccoo o oocooo +
640	2
776	2
815	2
947	2
37	3
Poccoo o oocooo +

Note that you cannot combine the SEEK clause with the OFFSET clause.
More information about this great feature can be found in the jOOQ blog:

- https://blog.joog.org/faster-sgl-paging-with-joog-using-the-seek-method/
- https://blog.joog.org/faster-sgl-pagination-with-keysets-continued/

Further information about offset pagination vs. keyset pagination performance can be found on our
partner page:

© 2009 - 2025 by Data Geekery™ GmbH. Page 117/1123

https://blog.jooq.org/faster-sql-paging-with-jooq-using-the-seek-method/
https://blog.jooq.org/faster-sql-pagination-with-keysets-continued/
https://use-the-index-luke.com/no-offset
https://use-the-index-luke.com/no-offset

The jOOQ User Manual 3.3.4.13. FOR XML clause

3.3.4.13. FOR XML clause

While both XML and JSON usage in SQL has been standardised in more recent versions of the SQL
standard, SQL Server has always had some very convenient utilities at the end of a SELECT statement,
which allow for converting SQL tables into the most common XML or JSON representations.

Starting with jOOQ 3.14, these syntaxes are supported in jJOOQ as well, and if possible, emulated in
other dialects which have native XML or JSON support.

Consider the following query

SELECT id, title create. sel ect (BOOK. | D, BOOK. Tl TLE)

FROV book . f rom(BOOK)

ORDER BY id . or der By(BOOK. | D)

FOR XML PATH (' book'), ROOT (' books') .forXM.() . pat h("book").root ("books")
.fetch();

This query produces a document like this:

<books>
<book><i d>1</id><titl|e>1984</tit|e></book>
<book><i d>2</i d><titl|e>Ani nal Farnx/title></book>
<book><i d>3</id><titl e>0 Al qui m sta</title></book>
<book><i d>4</id><titl|e>Brida</title></book>

</ books>

3.3.4.13.17. AUTO mode

The AUTO mode generates XML content based on automatically generated elements that model the
query structure. This mode doesn't provide much control over the output.

Consider the following query

SELECT id, title create. sel ect (BOOK. | D, BOX. Tl TLE)
FROM book . f r on{ BOOK)
ORDER BY id . or der By(BOXK. | D)
FOR XML AUTO .for XML() . aut o()
.fetch();

This query produces a document fragment like this:

<test.dbo. book I D="1" TI TLE="1984"/>

<t est.dbo. book | D="2" TITLE="Ani mal Farni'/>
<t est . dbo. book I D="3" TITLE="O Al qui mi sta"/>
<t est . dbo. book | D="4" TITLE="Brida"/>

Dialect support
This example using jOOQ:
sel ect (BOOK. I D). f ron{ BOOK) . or der By(BOOK. | D) . f or XML() . aut o()

Translates to the following dialect specific expressions:

© 2009 - 2025 by Data Geekery™ GmbH. Page 118 /1123

The jOOQ User Manual 3.3.4.13.1. AUTO mode

DB2, Oracle, Postgres

SELECT xm agg(xni el enent (
NAVE BOCK,
xm attributes(t.ID AS I D)
)
FROM (
SELECT BOXX. | D
FROM BOOK
ORDER BY BOXK. | D
)t

SQLServer

SELECT (
SELECT BOXK. 1D
FROM BOOK
ORDER BY BOXK. | D
FOR XM AUTO

)

Sybase

SELECT (
SELECT BOOK. | D
FROM BOOK
ORDER BY BOOK. | D
FOR XM. AUTO

)
FROM SYS. DUMWY

Teradata

SELECT xm agg(xni el enent (
NAVE BOCK,
xm attributes(t.ID AS | D)
)
FROM (
SELECT *
FROM (
SELECT TOP 999999999999999999 BOXK. | D
FROM BOOK
ORDER BY BOXK. | D
) X
)t

ASE, Access, Aurora MySQL, Aurora Postgres, BigQuery, ClickHouse, CockroachDB,
Databricks, Derby, DuckDB, Exasol, Firebird, H2, HSQLDB, Hana, Informix, MariaDB,

MemSQL, MySQL, Redshift, SQLDataWarehouse, SQLite, Snowflake, Trino, Vertica,

YugabyteDB

/* UNSUPPORTED */

© 2009 - 2025 by Data Geekery™ GmbH. Page 119/1123

The jOOQ User Manual 3.3.4.13.2. PATH mode

(1) Generated with JOOQ 3.21. Support in older JOOQ versions may differ. Translate your own SQL
on our website

3.3.4.13.2. PATH mode

The PATH mode generates XML content based on the "path" as specified by column aliases.

Consider the following query

SELECT create. sel ect(
id AS [book/id], BOCK. | D. as("book/id"),
title AS [book/title] BOOK. TI TLE. as("book/title"))
FROM book . f r on(BOOK)
ORDER BY id . order By(BOXK. | D)
FOR XM. PATH .forXM.(). pat h()
.fetch();

This query produces a document fragment like this:

<r ow><book><| D>1</ | D><TI TLE>1984</ Tl TLE></ book></ r ow>

<r ow><book><| D>2</ | D><TI TLE>Ani mal Far nx/ Tl TLE></ book></r ow>
<r ow><book><| D>3</ | D><TI TLE>O Al qui m st a</ Tl TLE></ book></r ow>
<r ow><book><| D>4</ | D><TI TLE>Bri da</ Tl TLE></ book></r ow>

Alternatively, provide an explicit element name for rows (the default being row, as above):

SELECT id, title create. sel ect (BOOK. | D, BOOK. Tl TLE)

FROM book . from(BOOK)

ORDER BY id . or der By(BOOK. | D)

FOR XML PATH (' book") .forXM.() . pat h("book™")
.fetch();

This will produce

<book><| D>1</ | D><TI TLE>1984</ Tl TLE></ book>
<book><| D>2</ | D><TI TLE>Ani nal Far nx/ Tl TLE></ book>
<book><| D>3</ | D><TI TLE>O Al qui mi st a</ TI TLE></ book>
<book><| D>4</ | D><TI TLE>Br i da</ TI TLE></ book>

Dialect support
This example using jO0Q:

sel ect (BOOK. | D. as(quot edName(" book/i d"))). from BOXK). order By(BOOK. I D). for XM_() . pat h()

Translates to the following dialect specific expressions:

© 2009 - 2025 by Data Geekery™ GmbH. Page 120/1123

https://www.jooq.org/translate
https://www.jooq.org/translate

The jOOQ User Manual

DB2, Oracle, Postgres

SELECT xm agg(xni el enent (
NAME r ow,
xni el enent (
NAME book,
xni el enent (NAVE id, "book/id")
)
)
FROM (
SELECT BOCK. | D "book/id"
FROM BOOK
ORDER BY BOXK. | D
)t

SQLServer

SELECT (
SELECT BOOK. | D [book/ i d]
FROM BOOK
ORDER BY BOXK. | D
FOR XM. PATH

Teradata

SELECT xni agg(xm el ement (
NANME r ow,
xm el ement (
NANME book,
xm el ement (NAME id, "book/id")
)
)
FROM (
SELECT *
FROM (

SELECT TOP 999999999999999999 BOCK. | D "book/i d"

FROM BOOK
ORDER BY BOXK. | D
) X
)t

3.3.4.13.2. PATH mode

ASE, Access, Aurora MySQL, Aurora Postgres, BigQuery, ClickHouse, CockroachDB,
Databricks, Derby, DuckDB, Exasol, Firebird, H2, HSQLDB, Hana, Informix, MariaDB,
MemSQL, MySQL, Redshift, SQLDataWarehouse, SQLite, Snowflake, Sybase, Trino,

Vertica, YugabyteDB

/* UNSUPPORTED */

(1) Generated with JOOQ 3.21. Support in older jOOQ versions may differ. Translate your own SQL

on our website

© 2009 - 2025 by Data Geekery™ GmbH.

Page 121/1123

https://www.jooq.org/translate
https://www.jooq.org/translate

The jOOQ User Manual 3.3.4.13.3. RAW mode

3.3.4.13.3. RAW mode

The RAW mode generates XML content based on the structure of the result set without any nesting
capabilities. This mode doesn't provide much control over the output.

Consider the following query

SELECT id, title create. sel ect (BOOK. | D, BOOK. Tl TLE)
FROM book . f rom(BOOK)
ORDER BY id . or der By (BOOK. | D)
FOR XM. RAW Lfor XML() . raw()
.fetch();

This query produces a document fragment like this:

1" TITLE="1984"/>

2" TITLE="Ani mal Farni'/>
<row | D="3" TITLE="O Al qui m sta"/>

4" TITLE="Brida"/>

Dialect support
This example using jO0Q:

sel ect (BOOK. | D) . f r om(BOOK) . or der By(BOOK. I D) . f or XM_() . raw()

Translates to the following dialect specific expressions:

DB2, Oracle, Postgres

SELECT xm agg(xni el enent (
NAME r ow,
xm attributes(t.ID AS I D)
)
FROM (
SELECT BOXX. | D
FROM BOOK
ORDER BY BOXK. | D
)t

SQLServer

SELECT (
SELECT BOXK. | D
FROM BOOK
ORDER BY BOXK. | D
FOR XM. RAW

)

© 2009 - 2025 by Data Geekery™ GmbH. Page 122/1123

The jOOQ User Manual 3.3.4.13.4. ROQOT directive

Sybase

SELECT (
SELECT BOOK. | D
FROM BOOK
ORDER BY BOOK. | D
FOR XM. RAW

)
FROM SYS. DUMWY

Teradata

SELECT xm agg(xni el enent (
NAME r ow,
xm attributes(t.ID AS I D)
)
FROM (
SELECT *
FROM (
SELECT TOP 999999999999999999 BOXK. | D
FROM BOOK
ORDER BY BOXK. | D
) X
) t

ASE, Access, Aurora MySQL, Aurora Postgres, BigQuery, ClickHouse, CockroachDB,
Databricks, Derby, DuckDB, Exasol, Firebird, H2, HSQLDB, Hana, Informix, MariaDB,
MemSQL, MySQL, Redshift, SQLDataWarehouse, SQLite, Snowflake, Trino, Vertica,

YugabyteDB

/* UNSUPPORTED */

(1) Generated with JOOQ 3.21. Support in older jOOQ versions may differ. Translate your own SQL
on our website

3.3.4.13.4. ROOT directive

The ROOT directive allows for wrapping the XML document fragment in a root element.

Consider the following query

SELECT id, title create. sel ect (BOOK. | D, BOX. Tl TLE)

FROM book . f r on{ BOOK)

ORDER BY id . or der By(BOXK. | D)

FOR XML RAW ROOT ('result") forXM.().rawm).root ("result")
.fetch();

This query produces a document like this:

© 2009 - 2025 by Data Geekery™ GmbH. Page 123/1123

https://www.jooq.org/translate
https://www.jooq.org/translate

The jOOQ User Manual 3.3.4.13.4.ROOT directive

<resul t>
<row | D="1" TITLE="1984"/>
<row | D="2" TITLE="Ani mal Farni/>
<row | D="3" TITLE="O Al qui m sta"/>
<row | D="4" TITLE="Brida"/>
</resul t>

Dialect support
This example using jOOQ:

sel ect (BOOK. I D). f ron{ BOOK) . or der By(BOOK. I D). for XML().raw().root ("resul t")

Translates to the following dialect specific expressions:

DB2, Oracle, Postgres

SELECT xm el ement (
NAME resul t,
xm agg(xni el ement (
NAME r ow,
xm attributes(t.ID AS I D)
))
)
FROM (
SELECT BOX. | D
FROM BOOK
ORDER BY BOXX. | D
)t

SQLServer

SELECT (

SELECT BOX. | D

FROM BOOK

ORDER BY BOXK. | D

FOR XML RAW ROOT ('result")
)

Teradata

SELECT xm el ement (
NAME resul t,
xml agg(xm el ement (
NAME r ow,
xm attributes(t.ID AS | D)
)
)
FROM (
SELECT *
FROM (
SELECT TOP 999999999999999999 BOXK. | D
FROM BOOK
ORDER BY BOXK. | D
) X
)t

ASE, Access, Aurora MySQL, Aurora Postgres, BigQuery, ClickHouse, CockroachDB,
Databricks, Derby, DuckDB, Exasol, Firebird, H2, HSQLDB, Hana, Informix, MariaDB,

© 2009 - 2025 by Data Geekery™ GmbH. Page 124 /1123

The jOOQ User Manual 3.3.4.13.5. ELEMENTS directive

MemSQL, MySQL, Redshift, SQLDataWarehouse, SQLite, Snowflake, Sybase, Trino,
Vertica, YugabyteDB

/* UNSUPPORTED */

(1) Generated with JOOQ 3.21. Support in older JOOQ versions may differ. Translate your own SQL
on our website

3.3.4.13.5. ELEMENTS directive

The ELEMENTS directive allows for generating XML elements for each column instead of attributes.

Consider the following query

SELECT id, title create. sel ect (BOOK. | D, BOOK. Tl TLE)

FROM book . f r on(BOOK)

ORDER BY id . order By(BOXK. | D)

FOR XM. RAW ELEMENTS forXML().raw() . el enent s()
.fetch();

This query produces a document like this:

<row><| D>1</ | D><TI TLE>1984</ TI TLE></ r ow>

<row><| D>2</ | D><TI TLE>Ani nal Far m</ TI TLE></r ow>
<r ow><| D>3</ | D><TI TLE>O Al qui mi st a</ Tl TLE></ r ow>
<row><| D>4</ | D><TI TLE>Bri da</ Tl TLE></r ow>

Dialect support
This example using jOOQ:

sel ect (BOOK. I D) . f r om(BOOK) . or der By(BOOK. I D). for XML().raw() . el ement s()

Translates to the following dialect specific expressions:

DB2, Oracle, Postgres

SELECT xni agg(xm el ement (
NANME r ow,
xm el ement (NAME | D, | D)
)
FROM (
SELECT BOX. | D
FROM BOOK
ORDER BY BOXX. | D
) t

© 2009 - 2025 by Data Geekery™ GmbH. Page 12571123

https://www.jooq.org/translate
https://www.jooq.org/translate

The jOOQ User Manual 3.3.4.14. FOR JSON clause

SQLServer

SELECT (

SELECT BOOK. | D

FROM BOOK

ORDER BY BOOK. | D

FOR XM. RAW ELEMENTS
)

Sybase

SELECT (
SELECT BOXK. | D
FROM BOOK
ORDER BY BOXK. | D
FOR XML RAW ELEMENTS

)
FROM SYS. DUMWY

Teradata

SELECT xni agg(xm el ement (
NANME r ow,
xm el ement (NAME | D, | D)
)
FROM (
SELECT *
FROM (
SELECT TOP 999999999999999999 BOXK. | D
FROM BOOK
ORDER BY BOXX. | D
) x
) t

ASE, Access, Aurora MySQL, Aurora Postgres, BigQuery, ClickHouse, CockroachDB,
Databricks, Derby, DuckDB, Exasol, Firebird, H2, HSQLDB, Hana, Informix, MariaDB,

MemSQL, MySQL, Redshift, SQLDataWarehouse, SQLite, Snowflake, Trino, Vertica,

YugabyteDB

/* UNSUPPORTED */

(1) Generated with JOOQ 3.21. Support in older jOOQ versions may differ. Translate your own SQL
on our website

3.3.4.14. FOR JSON clause

While both XML and JSON usage in SQL has been standardised in more recent versions of the SQL
standard, SQL Server has always had some very convenient utilities at the end of a SELECT statement,
which allow for converting SQL tables into the most common XML or JSON representations.

© 2009 - 2025 by Data Geekery™ GmbH. Page 126/ 1123

https://www.jooq.org/translate
https://www.jooq.org/translate

The jOOQ User Manual 3.3.4.14.1. AUTO mode

Starting with jJOOQ 3.14, these syntaxes are supported in jJOOQ as well, and if possible, emulated in
other dialects which have native XML or JSON support.

JSON is just XML with less syntax and less features. So the FOR JSON syntax in SQL Server is almost the
same as the above FOR XML syntax from the previous section:

SELECT id, title create. sel ect (BOOK. | D, BOOK. Tl TLE)
FROM book . from(BOOK)
ORDER BY id . or der By(BOOK. | D)
FOR JSON PATH .forJSON() . path()
.fetch();

This query produces a document like this:

"title": "1984"},
"title": "Animal Farni},
"title": "O Alquinmista"},
"title": "Brida"}

ERO

3.3.4.14.7. AUTO mode

The AUTO mode generates JSON content based on automatically generated object keys that model the
query structure.

Consider the following query

SELECT id, title create. sel ect (BOOK. | D, BOX. Tl TLE)
FROM book . f r on{ BOOK)
ORDER BY id . or der By(BOXK. | D)
FOR JSON AUTO .forJSON() . aut o()
.fetch();

This query produces a document like this:

"title": "1984"},
"title": "Animal Farni},
"title": "O Al quinista"},
"title": "Brida"}

S BN E

Dialect support
This example using jOOQ:

sel ect (BOOK. I D). f r on{ BOOK) . or der By(BOOK. | D) . f or JSON() . aut o()

Translates to the following dialect specific expressions:

© 2009 - 2025 by Data Geekery™ GmbH. Page 127/1123

The jOOQ User Manual 3.3.4.14.1. AUTO mode

Aurora Postgres, CockroachDB, Postgres, YugabyteDB

SELECT j son_agg(j son_strip_nulls(json_build_object('ID, 1D)))
FROM (

SELECT BOXX. | D

FROM BOOK

ORDER BY BOXK. | D
)t

DB2

SELECT CAST(('[" || listagg(
j son_obj ect (
KEY 'ID VALUE ID
ABSENT ON NULL

),

) || "1") AS varchar(32672))
FROM (

SELECT BOX. | D

FROM BOOK

ORDER BY BOCK. | D
)t

H2

SELECT j son_arrayagg(j son_obj ect (
KEY 'ID VALUE ID
ABSENT ON NULL
)
FROM (
SELECT BOX. | D
FROM BOOK
ORDER BY BOXK. | D
)t

MariaDB, MySQL

SET @ = @@roup_concat_max_| en;
SET @@roup_concat _nmax_| en = 4294967295;
SELECT j son_ner ge_preserve(
.
concat (
.
group_concat (j son_object('ID, ID) SEPARATOR ','),

)
)
FROM (
SELECT BOX. | D
FROM BOOK
ORDER BY BOXK. | D
)
SET @@roup_concat_nmax_len = @;

© 2009 - 2025 by Data Geekery™ GmbH. Page 128/1123

The jOOQ User Manual 3.3.4.14.1. AUTO mode

Oracle

SELECT j son_arrayagg(j son_obj ect (
KEY 'ID VALLE I D
ABSENT ON NULL
RETURNI NG cl ob
) FORVAT JSON RETURNI NG cl ob)
FROM (
SELECT BOXX. | D
FROM BOOK
ORDER BY BOXK. | D
)t

SQLServer

SELECT (
SELECT BOXK. | D
FROM BOOK
ORDER BY BOXK. | D
FOR JSON AUTO

)

Sybase

SELECT (
SELECT BOOK. | D
FROM BOOK
ORDER BY BOOK. | D
FOR JSON AUTO

)
FROM SYS. DUMWY

Trino

SELECT cast (array_agg(CAST(map_fromentries(filter(
ARRAY[r ow(
1D,
CAST(I D AS j son)
)1,
e ->e[2] IS NOT NULL
)) AS json)) AS json)
FROM (
SELECT BOXX. | D
FROM BOOK
ORDER BY BOXK. | D
)t

ASE, Access, Aurora MySQL, BigQuery, ClickHouse, Databricks, Derby, DuckDB, Exasol,
Firebird, HSQLDB, Hana, Informix, MemSQL, Redshift, SQLDataWarehouse, SQLite,
Snowflake, Teradata, Vertica

/* UNSUPPORTED */

(1) Generated with JOOQ 3.21. Support in older JOOQ versions may differ. Translate your own SQL
on our website

© 2009 - 2025 by Data Geekery™ GmbH. Page 129/1123

https://www.jooq.org/translate
https://www.jooq.org/translate

The jOOQ User Manual 3.3.4.14.2. PATH mode

3.3.4.14.2. PATH mode

The PATH mode generates JSON content based on the "path" as specified by column aliases.

Consider the following query

SELECT create. sel ect(
id AS [book.id], BOOK. | D. as(" book.id"),
title AS [book.title] BOOK. TI TLE. as("book. title"))
FROM book . f rom(BOOK)
ORDER BY id . or der By(BOOK. | D)
FOR JSON PATH .forJSON() . pat h()
.fetch();

This query produces a document like this:

{"book": {"id":1,"title":"1984"}},
{"book": {"id":2,"title":"Animal Farni'}},
{"book": {"id":3,"title":"O Al quimsta"}},
{"book": {"id":4,"title":"Brida"}}

Dialect support
This example using jO0Q:

sel ect (BOXK. | D. as(quot edName(" book. i d"))).fron(BOOXK). orderBy(BOOK. I D). forJSON() . path()

Translates to the following dialect specific expressions:

Aurora Postgres, CockroachDB, Postgres, YugabyteDB

SELECT j son_agg(j son_strip_nulls(json_build_object('book', json_strip_nulls(json_build_object('id, "book.id")))))
FROM (

SELECT BOCK. | D "book. id"

FROM BOOK

ORDER BY BOXK. | D
)t

DB2

SELECT CAST(('[" || listagg(
j son_obj ect (
KEY ' book' VALUE j son_obj ect (
KEY 'id" VALUE "book.id"
ABSENT ON NULL
) FORVAT JSON
ABSENT ON NULL
),

) || "1') AS varchar(32672))
FROM
SELECT BOCK. I D "book.id"
FROM BOOK

ORDER BY BOX. | D
) t

© 2009 - 2025 by Data Geekery™ GmbH. Page 130/1123

The jOOQ User Manual

H2

SELECT j son_arrayagg(j son_obj ect (
KEY ' book' VALUE j son_obj ect (
KEY 'id'" VALUE "book.id"

ABSENT ON NULL

)
ABSENT ON NULL
))
FROM (
SELECT BOOK. I D "book. i d"
FROM BOOK
ORDER BY BOOK. | D

)t

MariaDB, MySQL

SET @ = @m@roup_concat_max_| en;

SET @@r oup_concat _nmax_| en = 4294967295;

SELECT j son_nerge_preserve(
.
concat (

e

group_concat (j son_obj ect (' book', json_object('id, “book.id)) SEPARATOR ', '),

)
)
FROM (
SELECT BOOK. | D " book.id"
FROM BOOK
ORDER BY BOCK. | D
)t
SET @@roup_concat_nmax_len = @;

Oracle

SELECT j son_arrayagg(j son_obj ect (

KEY ' book' VALUE json_obj ect (
KEY "id" VALUE "book.id"
ABSENT ON NULL
RETURNI NG cl ob

) FORVAT JSON

ABSENT ON NULL

RETURNI NG cl ob

) FORVAT JSON RETURNI NG cl ob)
FROM (

SELECT BOOK. | D "book. id"

FROM BOOK

ORDER BY BOXK. | D

)t

SQLServer

SELECT (
SELECT BOOK. I D [book. i d]
FROM BOOK
ORDER BY BOOK. | D
FOR JSON PATH

© 2009 - 2025 by Data Geekery™ GmbH.

3.3.4.14.2. PATH mode

Page 131/1123

The jOOQ User Manual 3.3.4.14.3. ROOT directive

Trino

SELECT cast (array_agg(CAST(map_fromentries(filter(
ARRAY[r ow(
*book' ,
CAST(CAST(map_fromentries(filter(
ARRAY[r ow(
tid,
CAST("book. id" AS json)
)1,
e ->e[2] IS NOT NULL
)) AS json) AS json)
)1,
e ->e[2] IS NOT NULL
)) AS json)) AS json)
FROM (
SELECT BOCK. | D "book. i d"
FROM BOOK
ORDER BY BOXK. | D
)t

ASE, Access, Aurora MySQL, BigQuery, ClickHouse, Databricks, Derby, DuckDB, Exasol,
Firebird, HSQLDB, Hana, Informix, MemSQL, Redshift, SQLDataWarehouse, SQLite,
Snowflake, Sybase, Teradata, Vertica

/* UNSUPPORTED */

(1) Generated with JOOQ 3.21. Support in older jOOQ versions may differ. Translate your own SQL
on our website

3.3.4.14.3. ROOT directive

The ROQT directive allows for wrapping the JSON document in a root object.

Consider the following query

SELECT id, title create. sel ect (BOOK. | D, BOOK. Tl TLE)

FROM book . f r on{ BOOK)

ORDER BY id . or der By(BOK. | D)

FOR JSON AUTO, ROOT ('result') .forJSON().auto().root("result")
.fetch();

This query produces a document like this:

{
“result": [
{"id": 1, "title": "1984"},
{"id": 2, "title": "Animal Farni},
{"id": 3, "title": "O Alquimsta"},
{"id": 4, "title": "Brida"}
I
}

Dialect support

This example using jOOQ:

© 2009 - 2025 by Data Geekery™ GmbH. Page 132/1123

https://www.jooq.org/translate
https://www.jooq.org/translate

The jOOQ User Manual 3.3.4.14.3. ROOT directive

sel ect (BOOK. I D). f ron{ BOOK) . or der By(BOOK. | D) . f or JSON() . aut o() . root ("resul t")

Translates to the following dialect specific expressions:

Aurora Postgres, CockroachDB, Postgres, YugabyteDB

SELECT json_strip_nulls(json_build_object('result', json_agg(json_strip_nulls(json_build_object('ID, 1D)))))
FROM (

SELECT BOX. | D

FROM BOOK

ORDER BY BOXK. | D
)t

DB2

SELECT j son_obj ect (
KEY 'result' VALUE CAST(('[" || listagg(
j son_obj ect (
KEY 'ID VALLE I D
ABSENT ON NULL
B

) |i '1") AS varchar(32672)) FORVAT JSON

ABSENT ON NULL
)
FROM (

SELECT BOOK. | D

FROM BOCK

ORDER BY BOCK. | D
)t

H2

SELECT j son_obj ect (
KEY 'result' VALUE json_arrayagg(j son_obj ect(
KEY 'ID VALUE ID
ABSENT ON NULL

))
ABSENT ON NULL
)
FROM (
SELECT BOOK. | D
FROM BOCK
ORDER BY BOOK. | D
) t

© 2009 - 2025 by Data Geekery™ GmbH. Page 133/1123

The jOOQ User Manual

MariaDB

SET @ = @@roup_concat_nax_| en;

SET @@roup_concat _nmax_| en = 4294967295;
SELECT j son_object('result', json_merge_preserve(

NOAE

j son_nerge_preserve(

concat (

grohp_concat (json_object('ID, ID SEPARATOR','),
e

)

)
)
FROM (

SELECT BOCXK. | D

FROM BOOK

ORDER BY BOCK. | D
)t

SET @m@roup_concat_nmax_len = @;

MySQL

SET @ = @@roup_concat_max_| en;

SET @@r oup_concat _nmax_| en = 4294967295;
SELECT j son_object('result', json_merge_preserve(

.
concat (

e

group_concat (j son_object('ID, ID) SEPARATOR ','),

)
)
FROM (
SELECT BOXK. | D
FROM BOOK
ORDER BY BOXK. | D
Dt

SET @@roup_concat_nmax_len = @;

Oracle

SELECT j son_obj ect (

KEY 'result' VALUE json_arrayagg(json_object (

KEY 'ID VALUE ID
ABSENT ON NULL
RETURNI NG cl ob

) FORMAT JSON RETURNI NG cl ob) FORMAT JSON

ABSENT ON NULL
RETURNI NG cl ob
)
FROM (
SELECT BOX. | D
FROM BOOK
ORDER BY BOXK. | D
)t

SQLServer

SELECT (

SELECT BOOK. | D

FROM BOOK

ORDER BY BOOK. | D

FOR JSON AUTO, ROOT ('result')
)

© 2009 - 2025 by Data Geekery™ GmbH.

3.3.4.14.3. ROOT directive

Page 134 /1123

The jOOQ User Manual 3.3.4.14.4. INCLUDE_NULL_VALUES directive

Trino

SELECT CAST(mep_fromentries(filter(
ARRAY[r ow(
‘result’,
CAST(cast (array_agg(CAST(nap_fromentries(filter(
ARRAY[r ow(
1D,
CAST(I D AS j son)
)1,
e ->e[2] IS NOT NULL
)) AS json)) AS json) AS json)
e ->e[2] IS NOT NULL
)) AS json)
FROM (
SELECT BOXX. | D
FROM BOOK
ORDER BY BOXK. | D
)t

ASE, Access, Aurora MySQL, BigQuery, ClickHouse, Databricks, Derby, DuckDB, Exasol,
Firebird, HSQLDB, Hana, Informix, MemSQL, Redshift, SQLDataWarehouse, SQLite,
Snowflake, Sybase, Teradata, Vertica

/* UNSUPPORTED */

(1) Generated with JOOQ 3.21. Support in older jOOQ versions may differ. Translate your own SQL
on our website

3.3.4.14.4. INCLUDE_NULL_VALUES directive

The INCLUDE_NULL_VALUES directive allows for including NULL values in the output document.
By default, NULL values are omitted from the FOR JSON document output. Consider this query:

SELECT create. sel ect(
id, LANGUAGE. | D,
nullif(cd, "en") AS cd nul |'i f (LANGUAGE. CD, "en").as(LANGUAGE. CD))
FROM | angauge . f r om(LANGUAGE)
ORDER BY id . or der By (LANGUAGE. | D)
FOR JSON AUTO .forJSON() . aut o()
.fetch();

This query produces a document like this:

{"id":1},
{"id":2,"cd":"de"},
{"id":3,"cd":"fr"},
{"id":4,"cd":"pt"}

If you prefer explicit NULL values, write:

© 2009 - 2025 by Data Geekery™ GmbH. Page 135/1123

https://www.jooq.org/translate
https://www.jooq.org/translate

The jOOQ User Manual 3.3.4.14.4. INCLUDE_NULL_VALUES directive

SELECT create. sel ect (
id, LANGUAGE. | D,
nullif(cd, "en') AS cd nul |'i f (LANGUAGE. CD, "en").as(LANGUAGE. CD))
FROM | angauge . f r o LANGUAGE)
ORDER BY id . or der By (LANGUAGE. | D)
FOR JSON AUTO, | NCLUDE_NULL_VALUES .forJSON().auto().includeNull Val ues()
.fetch();

This query produces a document like this: