SQL was never meant to be abstracted. To be confined in the narrow boundaries of heavy mappers, hiding the beauty and simplicity of relational data. SQL was never meant to be object-oriented. SQL was never meant to be anything other than... SQL!
Overview

This manual is divided into six main sections:

- **Getting started with jOOQ**
 This section will get you started with jOOQ quickly. It contains simple explanations about what jOOQ is, what jOOQ isn't and how to set it up for the first time

- **SQL building**
 This section explains all about the jOOQ syntax used for building queries through the query DSL and the query model API. It explains the central factories, the supported SQL statements and various other syntax elements

- **Code generation**
 This section explains how to configure and use the built-in source code generator

- **SQL execution**
 This section will get you through the specifics of what can be done with jOOQ at runtime, in order to execute queries, perform CRUD operations, import and export data, and hook into the jOOQ execution lifecycle for debugging

- **Tools**
 This section is dedicated to tools that ship with jOOQ, such as the jOOQ's JDBC mocking feature

- **Reference**
 This section is a reference for elements in this manual
Table of contents

1. Preface ... 10
2. Copyright, License, and Trademarks .. 12
3. Getting started with jOOQ .. 17
 3.1. How to read this manual ... 17
 3.2. The sample database used in this manual ... 18
3.3. Different use cases for jOOQ ... 19
 3.3.1. jOOQ as a SQL builder without code generation .. 20
 3.3.2. jOOQ as a SQL builder with code generation ... 21
 3.3.3. jOOQ as a SQL executor ... 22
 3.3.4. jOOQ for CRUD ... 22
 3.3.5. jOOQ for PROs ... 23
3.4. Tutorials ... 23
 3.4.1. jOOQ in 7 easy steps ... 24
 3.4.1.1. Step 1: Preparation ... 24
 3.4.1.2. Step 2: Your database .. 24
 3.4.1.3. Step 3: Code generation ... 25
 3.4.1.4. Step 4: Connect to your database ... 26
 3.4.1.5. Step 5: Querying ... 27
 3.4.1.6. Step 6: Iterating .. 27
 3.4.1.7. Step 7: Explore! .. 28
 3.4.2. Using jOOQ in modern IDEs .. 28
 3.4.3. Using jOOQ with Spring and Apache DBCP .. 28
 3.4.4. Using jOOQ with jbang .. 32
3.5. jOOQ and Scala .. 33
3.6. jOOQ and Groovy ... 34
3.7. jOOQ and NoSQL ... 35
3.8. jOOQ and JPA .. 35
3.9. Build your own .. 36
 3.10. jOOQ and backwards-compatibility .. 36
4. SQL building .. 38
 4.1. The query DSL type ... 38
 4.1.1. DSL subclasses ... 39
 4.2. The DSLContext API ... 39
 4.2.1. SQL Dialect .. 41
 4.2.2. SQL Dialect Family ... 42
 4.2.3. Connection vs. DataSource ... 42
 4.2.4. Custom data ... 43
 4.2.5. Custom ExecuteListeners ... 44
 4.2.6. Custom Settings ... 44
 4.2.6.1. Object qualification .. 45
 4.2.6.2. Runtime schema and table mapping ... 46
 4.2.6.3. Identifier style .. 48
 4.2.6.4. Keyword style .. 49
 4.2.6.5. Parameter types .. 49
 4.2.6.6. Statement Type .. 50
 4.2.6.7. Execute Logging ... 50
 4.2.6.8. Optimistic Locking .. 51
 4.2.6.9. Auto-attach Records ... 51
 4.2.6.10. Updatable Primary Keys ... 52
 4.2.6.11. Reflection caching .. 52
| 4.5.8.2. DECODE | 95 |
| 4.5.8.3. NULLIF | 95 |
| 4.5.8.4. NVL | 96 |
| 4.5.8.5. NVL2 | 97 |
| 4.5.9. Numeric functions | 97 |
| 4.5.9.1. ABS | 98 |
| 4.5.9.2. ACOS | 98 |
| 4.5.9.3. ASIN | 99 |
| 4.5.9.4. ATAN | 99 |
| 4.5.9.5. ATAN2 | 100 |
| 4.5.9.6. CEIL | 101 |
| 4.5.9.7. COS | 101 |
| 4.5.9.8. COSH | 102 |
| 4.5.9.9. COT | 103 |
| 4.5.9.10. COTH | 103 |
| 4.5.9.11. DEG | 104 |
| 4.5.9.12. E | 105 |
| 4.5.9.13. EXP | 106 |
| 4.5.9.14. FLOOR | 106 |
| 4.5.9.15. GREATEST | 107 |
| 4.5.9.16. LEAST | 108 |
| 4.5.9.17. LN | 108 |
| 4.5.9.18. LOG | 109 |
| 4.5.9.19. NEG | 110 |
| 4.5.9.20. PI | 110 |
| 4.5.9.21. POWER | 111 |
| 4.5.9.22. RAD | 111 |
| 4.5.9.23. RAND | 112 |
| 4.5.9.24. ROUND | 113 |
| 4.5.9.25. SIGN | 114 |
| 4.5.9.26. SIN | 114 |
| 4.5.9.27. SINVH | 115 |
| 4.5.9.28. SQRT | 116 |
| 4.5.9.29. TAN | 116 |
| 4.5.9.30. TANH | 117 |
| 4.5.9.31. TRUNC | 117 |
| 4.5.10. Bitwise functions | 118 |
| 4.5.10.1. BIT_COUNT | 118 |
| 4.5.10.2. BIT_AND | 119 |
| 4.5.10.3. BIT_NAND | 120 |
| 4.5.10.4. BIT_NOR | 120 |
| 4.5.10.5. BIT_NOT | 121 |
| 4.5.10.6. BIT_OR | 122 |
| 4.5.10.7. SHL | 123 |
| 4.5.10.8. SHR | 123 |
| 4.5.10.9. BIT_XNOR | 124 |
| 4.5.10.10. BIT_XOR | 125 |
| 4.5.11. String functions | 126 |
| 4.5.11.1. ASCII | 126 |
| 4.5.11.2. CONCAT | 127 |
| 4.5.11.3. LEFT | 127 |
| 4.5.11.4. LENGTH | 128 |
| 4.5.11.5. LOWER | 129 |
| 4.5.11.6. LPAD | 129 |
The jOOQ User Manual

4.6. Conditional expressions.. 171
4.6.1. Condition building.. 172
4.6.2. TRUE and FALSE condition... 173
4.6.3. BOOLEAN columns.. 173
4.6.4. AND, OR, NOT boolean operators.. 174
4.6.5. Comparison predicate... 174
4.6.6. Boolean operator precedence... 175
4.6.7. Comparison predicate (degree > 1)... 176
4.6.8. Quantified comparison predicate.. 176
4.6.9. NULL predicate.. 177
4.6.10. NULL predicate (degree > 1).. 177
4.6.11. DISTINCT predicate... 178
4.6.12. BETWEEN predicate... 178
4.6.13. BETWEEN predicate (degree > 1).. 179
4.6.14. LIKE predicate.. 179
4.6.15. IN predicate... 180
4.6.16. IN predicate (degree > 1)... 181
4.6.17. EXISTS predicate.. 181
4.6.18. OVERLAPS predicate... 182
4.7. Synthetic SQL clauses.. 183
4.8. Dynamic SQL... 184
4.9. Plain SQL.. 185
4.10. Plain SQL Templating Language.. 187
4.11. Bind values and parameters... 188
4.11.1. Indexed parameters.. 188
4.11.2. Named parameters.. 189
4.11.3. Inlined parameters.. 190
4.11.4. SQL injection and plain SQL QueryParts.. 190
4.12. QueryParts.. 191
4.12.1. SQL rendering... 191
4.12.2. Pretty printing SQL... 192
4.12.3. Variable binding... 193
4.12.4. Extend jOOQ with custom types.. 194
4.12.5. Plain SQL QueryParts... 195
4.12.6. Serializability.. 196
4.12.7. Custom SQL transformation.. 196
4.12.7.1. Logging abbreviated bind values.. 197
4.13. Zero-based vs one-based APIs.. 198
4.14. SQL building in Scala... 198
5. SQL execution... 201
5.1. Comparison between jOOQ and JDBC.. 201
5.2. Query vs. ResultQuery.. 202
5.3. Fetching... 202
5.3.1. Record vs. TableRecord... 204
5.3.2. Record1 to Record22... 205
5.3.3. Arrays, Maps and Lists... 206
5.3.4. RecordHandler... 206
5.3.5. RecordMapper... 207
5.3.6. POJOS.. 207
5.3.7. POJOS with RecordMappers.. 207
5.3.8. Lazy fetching.. 210
5.3.9. Many fetching... 212
5.3.10. Later fetching.. 212
5.3.11. ResultSet fetching... 214

© 2009 - 2021 by Data Geekery™ GmbH. Page 7 / 289
1. Preface

jOOQ's reason for being - compared to JPA

Java and SQL have come a long way. SQL is an "old", yet established and well-understood technology. Java is a legacy too, although its platform JVM allows for many new and contemporary languages built on top of it. Yet, after all these years, libraries dealing with the interface between SQL and Java have come and gone, leaving JPA to be a standard that is accepted only with doubts, short of any surviving options. So far, there had been only few database abstraction frameworks or libraries, that truly respected SQL as a first class citizen among languages. Most frameworks, including the industry standards JPA, EJB, Hibernate, JDO, Criteria Query, and many others try to hide SQL itself, minimising its scope to things called JPQL, HQL, JDOQL and various other inferior query languages. jOOQ has come to fill this gap.

jOOQ's reason for being - compared to LINQ

Other platforms incorporate ideas such as LINQ (with LINQ-to-SQL), or Scala's SLICK, or also Java's QueryDSL to better integrate querying as a concept into their respective language. By querying, they understand querying of arbitrary targets, such as SQL, XML, Collections and other heterogeneous data stores. jOOQ claims that this is going the wrong way too.

In more advanced querying use-cases (more than simple CRUD and the occasional JOIN), people will want to profit from the expressivity of SQL. Due to the relational nature of SQL, this is quite different from what object-oriented and partially functional languages such as C#, Scala, or Java can offer.

It is very hard to formally express and validate joins and the ad-hoc table expression types they create. It gets even harder when you want support for more advanced table expressions, such as pivot tables, unnested cursors, or just arbitrary projections from derived tables. With a very strong object-oriented typing model, these features will probably stay out of scope.

In essence, the decision of creating an API that looks like SQL or one that looks like C#, Scala, Java is a definite decision in favour of one or the other platform. While it will be easier to evolve SLICK in similar ways as LINQ (or QueryDSL in the Java world), SQL feature scope that clearly communicates its underlying intent will be very hard to add, later on (e.g. how would you model Oracle's partitioned outer join syntax? How would you model ANSI/ISO SQL:1999 grouping sets? How can you support scalar subquery caching? etc...).

jOOQ has come to fill this gap.

jOOQ's reason for being - compared to SQL / JDBC

So why not just use SQL?

SQL can be written as plain text and passed through the JDBC API. Over the years, people have become wary of this approach for many reasons:
- No typesafety
- No syntax safety
- No bind value index safety
- Verbose SQL String concatenation
- Boring bind value indexing techniques
- Verbose resource and exception handling in JDBC
- A very "stateful", not very object-oriented JDBC API, which is hard to use

For these many reasons, other frameworks have tried to abstract JDBC away in the past in one way or another. Unfortunately, many have completely abstracted SQL away as well. jOOQ has come to fill this gap.

jOOQ is different

SQL was never meant to be abstracted. To be confined in the narrow boundaries of heavy mappers, hiding the beauty and simplicity of relational data. SQL was never meant to be object-oriented. SQL was never meant to be anything other than... SQL!
2. Copyright, License, and Trademarks

This section lists the various licenses that apply to different versions of jOOQ. Prior to version 3.2, jOOQ was shipped for free under the terms of the Apache Software License 2.0. With jOOQ 3.2, jOOQ became dual-licensed: Apache Software License 2.0 (for use with Open Source databases) and commercial (for use with commercial databases).

This manual itself (as well as the www.jooq.org public website) is licensed to you under the terms of the CC BY-SA 4.0 license.

Please contact legal@datageekery.com, should you have any questions regarding licensing.

License for jOOQ 3.2 and later

This work is dual-licensed
- under the Apache Software License 2.0 (the "ASL")
- under the jOOQ License and Maintenance Agreement (the "jOOQ License")
===You may choose which license applies to you:
- If you're using this work with Open Source databases, you may choose
either ASL or jOOQ License.
- If you're using this work with at least one commercial database, you must
choose jOOQ License
For more information, please visit https://www.jooq.org/licenses

Apache Software License 2.0:
--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

jOOQ License and Maintenance Agreement:
--
Data Geekery grants the Customer the non-exclusive, timely limited and
non-transferable license to install and use the Software under the terms of
the jOOQ License and Maintenance Agreement.

This library is distributed with a LIMITED WARRANTY. See the jOOQ License
and Maintenance Agreement for more details: https://www.jooq.org/licensing

Historic license for jOOQ 1.x, 2.x, 3.0, 3.1

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Trademarks owned by Data Geekery™ GmbH

- jOOλ™ is a trademark by Data Geekery™ GmbH
- jOOQ™ is a trademark by Data Geekery™ GmbH
- jOOR™ is a trademark by Data Geekery™ GmbH
- jOOU™ is a trademark by Data Geekery™ GmbH
- jOOX™ is a trademark by Data Geekery™ GmbH

Trademarks owned by database vendors with no affiliation to Data Geekery™ GmbH

- Access® is a registered trademark of Microsoft® Inc.
- Adaptive Server® Enterprise is a registered trademark of Sybase®, Inc.
- CUBRID™ is a trademark of NHN® Corp.
- DB2® is a registered trademark of IBM® Corp.
- Derby is a trademark of the Apache™ Software Foundation
- H2 is a trademark of the H2 Group
- HSQLDB is a trademark of The hsql Development Group
- Ingres is a trademark of Actian™ Corp.
- MariaDB is a trademark of Monty Program Ab
- MySQL® is a registered trademark of Oracle® Corp.
- Firebird® is a registered trademark of Firebird Foundation Inc.
- Oracle® database is a registered trademark of Oracle® Corp.
- PostgreSQL® is a registered trademark of The PostgreSQL Global Development Group
- Postgres Plus® is a registered trademark of EnterpriseDB® software
- SQL Anywhere® is a registered trademark of Sybase®, Inc.
- SQL Server® is a registered trademark of Microsoft® Inc.
- SQLite is a trademark of Hipp, Wyrick & Company, Inc.

Other trademarks by vendors with no affiliation to Data Geekery™ GmbH

- Java® is a registered trademark by Oracle® Corp. and/or its affiliates
- Liquibase is a trademark by Datical, Inc
- Flyway is a trademark by Red Gate Software Ltd
- Scala is a trademark of EPFL

Other trademark remarks

Other names may be trademarks of their respective owners.
Throughout the manual, the above trademarks are referenced without a formal ® (R) or ™ (TM) symbol. It is believed that referencing third-party trademarks in this manual or on the jOOQ website constitutes "fair use". Please contact us if you think that your trademark(s) are not properly attributed.
Contributions

The following are authors and contributors of jOOQ or parts of jOOQ in alphabetical order:
See the following website for details about contributing to jOOQ:
https://www.jooq.org/legal/contributions
3. Getting started with jOOQ

These chapters contain a quick overview of how to get started with this manual and with jOOQ. While the subsequent chapters contain a lot of reference information, this chapter here just wraps up the essentials.

3.1. How to read this manual

This section helps you correctly interpret this manual in the context of jOOQ.

Code blocks

The following are code blocks:

```
-- A SQL code block
SELECT 1 FROM DUAL

// A Java code block
for (int i = 0; i < 10; i++);

<!-- An XML code block -->
<hello what="world"></hello>

# A config file code block
org.jooq.property=value
```

These are useful to provide examples in code. Often, with jOOQ, it is even more useful to compare SQL code with its corresponding Java/jOOQ code. When this is done, the blocks are aligned side-by-side, with SQL usually being on the left, and an equivalent jOOQ DSL query in Java usually being on the right:

```
-- In SQL:
SELECT 1 FROM DUAL

// Using jOOQ:
create.selectOne()
```

Code block contents

The contents of code blocks follow conventions, too. If nothing else is mentioned next to any given code block, then the following can be assumed:

```
-- SQL assumptions
-------------------
-- If nothing else is specified, assume that the Oracle syntax is used
SELECT 1 FROM DUAL
```
// Java assumptions
// ----------------
// Whenever you see "standalone functions", assume they were static imported from org.jooq.implDSL
// "DSL" is the entry point of the static query DSL
exists(); max(); min(); val(); inline(); // correspond to DSL.exists(); DSL.max(); DSL.min(); etc...

// Whenever you see BOOK/Book, AUTHOR/Author and similar entities, assume they were (static) imported from the generated schema
BOOK.TITLE, AUTHOR.LAST_NAME // correspond to com.example.generated.Tables.BOOK.TITLE, com.example.generated.Tables.AUTHOR.LAST_NAME
FK_BOOK_AUTHOR // corresponds to com.example.generated.Keys.FK_BOOK_AUTHOR

// Whenever you see "create" being used in Java code, assume that this is an instance of org.jooq.DSLContext.
// The reason why it is called "create" is the fact, that a jOOQ QueryPart is being created from the DSL object.
// "create" is thus the entry point of the non-static query DSL
DSLContext create = DSL.using(connection, SQLDialect.ORACLE);

Your naming may differ, of course. For instance, you could name the "create" instance "db", instead.

Execution

When you’re coding PL/SQL, T-SQL or some other procedural SQL language, SQL statements are always executed immediately at the semi-colon. This is not the case in jOOQ, because as an internal DSL, jOOQ can never be sure that your statement is complete until you call fetch() or execute(). The manual tries to apply fetch() and execute() as thoroughly as possible. If not, it is implied:

```java
SELECT 1 FROM DUAL
create.selectOne().fetch();
create.update(T).set(T.V, 1).execute();
```

Degree (arity)

jOOQ records (and many other API elements) have a degree N between 1 and 22. The variable degree of an API element is denoted as [N], e.g. Row[N] or Record[N]. The term "degree" is preferred over arity, as "degree" is the term used in the SQL standard, whereas "arity" is used more often in mathematics and relational theory.

Settings

jOOQ allows to override runtime behaviour using org.jooq.conf.Settings. If nothing is specified, the default runtime settings are assumed.

Sample database

jOOQ query examples run against the sample database. See the manual’s section about the sample database used in this manual to learn more about the sample database.

3.2. The sample database used in this manual

For the examples in this manual, the same database will always be referred to. It essentially consists of these entities created using the Oracle dialect.
CREATE TABLE language (id NUMBER(7) NOT NULL PRIMARY KEY, cd CHAR(2) NOT NULL, description VARCHAR2(50));

CREATE TABLE author (id NUMBER(7) NOT NULL PRIMARY KEY, first_name VARCHAR2(50), last_name VARCHAR2(50) NOT NULL, date_of_birth DATE, year_of_birth NUMBER(7), distinguished NUMBER(1));

CREATE TABLE book (id NUMBER(7) NOT NULL PRIMARY KEY, author_id NUMBER(7) NOT NULL, title VARCHAR2(400) NOT NULL, published_in NUMBER(7) NOT NULL, language_id NUMBER(7) NOT NULL, CONSTRAINT fk_book_author FOREIGN KEY (author_id) REFERENCES author(id), CONSTRAINT fk_book_language FOREIGN KEY (language_id) REFERENCES language(id));

CREATE TABLE book_store (name VARCHAR2(400) NOT NULL UNIQUE);

CREATE TABLE book_to_book_store (name VARCHAR2(400) NOT NULL, book_id INTEGER NOT NULL, stock INTEGER, PRIMARY KEY(name, book_id), CONSTRAINT fk_b2bs_book_store FOREIGN KEY (name) REFERENCES book_store (name) ON DELETE CASCADE, CONSTRAINT fk_b2bs_book FOREIGN KEY (book_id) REFERENCES book (id) ON DELETE CASCADE);

More entities, types (e.g. UDT’s, ARRAY types, ENUM types, etc), stored procedures and packages are introduced for specific examples

In addition to the above, you may assume the following sample data:

```sql
INSERT INTO language (id, cd, description) VALUES (1, 'en', 'English');
INSERT INTO language (id, cd, description) VALUES (2, 'de', 'Deutsch');
INSERT INTO language (id, cd, description) VALUES (3, 'fr', 'Français');
INSERT INTO language (id, cd, description) VALUES (4, 'pt', 'Português');
INSERT INTO author (id, first_name, last_name, date_of_birth, year_of_birth) VALUES (1, 'George', 'Orwell', DATE '1903-06-26', 1903 );
INSERT INTO author (id, first_name, last_name, date_of_birth, year_of_birth) VALUES (2, 'Paulo', 'Coelho', DATE '1947-08-24', 1947 );
INSERT INTO book (id, author_id, title, published_in, language_id) VALUES (1, 1, '1984', 1948, 1 );
INSERT INTO book (id, author_id, title, published_in, language_id) VALUES (2, 1, 'Animal Farm', 1945, 1 );
INSERT INTO book (id, author_id, title, published_in, language_id) VALUES (3, 2, 'O Alquimista', 1988, 4 );
INSERT INTO book (id, author_id, title, published_in, language_id) VALUES (4, 2, 'Brida', 1990, 2 );
INSERT INTO book_store VALUES ('Orell Füssli');
INSERT INTO book_store VALUES ('Ex Libris');
INSERT INTO book_store VALUES ('Buchhandlung im Volkshaus');
```

3.3. Different use cases for jOOQ

jOOQ has originally been created as a library for complete abstraction of JDBC and all database interaction. Various best practices that are frequently encountered in pre-existing software products are applied to this library. This includes:
- Typesafe database object referencing through generated schema, table, column, record, procedure, type, dao, pojo artefacts (see the chapter about code generation)
- Typesafe SQL construction / SQL building through a complete querying DSL API modelling SQL as a domain specific language in Java (see the chapter about the query DSL API)
- Convenient query execution through an improved API for result fetching (see the chapters about the various types of data fetching)
- SQL dialect abstraction and SQL clause emulation to improve cross-database compatibility and to enable missing features in simpler databases (see the chapter about SQL dialects)
- SQL logging and debugging using jOOQ as an integral part of your development process (see the chapters about logging)

Effectively, jOOQ was originally designed to replace any other database abstraction framework short of the ones handling connection pooling and transaction management (see also the credits for other database abstraction libraries)

Use jOOQ the way you prefer

... but open source is community-driven. And the community has shown various ways of using jOOQ that diverge from its original intent. Some use cases encountered are:

- Using Hibernate for 70% of the queries (i.e. CRUD) and jOOQ for the remaining 30% where SQL is really needed
- Using jOOQ for SQL building and JDBC for SQL execution
- Using jOOQ for SQL building and Spring Data for SQL execution
- Using jOOQ without the source code generator to build the basis of a framework for dynamic SQL execution.

The following sections explain about various use cases for using jOOQ in your application.

3.3.1. jOOQ as a SQL builder without code generation

We strongly recommend to use jOOQ with its code generator to get the most out of jOOQ!

However, if you have a dynamic schema, you don't have to use the code generator. This is the most simple of all use cases, allowing for construction of valid SQL for any database. In this use case, you will not use jOOQ's code generator and maybe not even jOOQ's query execution facilities. Instead, you'll use jOOQ's query DSL API to wrap strings, literals and other user-defined objects into an object-oriented, type-safe AST modelling your SQL statements. An example is given here:

```java
// Fetch a SQL string from a jOOQ Query in order to manually execute it with another tool.
// For simplicity reasons, we're using the API to construct case-insensitive object references, here.
Query query = create.select(field("BOOK.TITLE"), field("AUTHOR.FIRST_NAME"), field("AUTHOR.LAST_NAME"))
    .from(table("BOOK"))
    .join(table("AUTHOR"))
    .on(field("BOOK.AUTHOR_ID").eq(field("AUTHOR.ID")))
    .where(field("BOOK.PUBLISHED_IN").eq(1948));
String sql = query.getSQL();
List<Object> bindValues = query.getBindValues();
```

The SQL string built with the jOOQ query DSL can then be executed using JDBC directly, using Spring's JdbcTemplate, using Apache DbUtils and many other tools (note that since jOOQ uses
PreparedStatement by default, this will generate a bind variable for "1948". Read more about bind variables here.

You can also avoid getting the SQL string and bind values separately:

```java
String sql = query.getSQL(ParamType.INLINED);
```

If you wish to use jOOQ only as a SQL builder, the following sections of the manual will be of interest to you:

- **SQL building**: This section contains a lot of information about creating SQL statements using the jOOQ API
- **Plain SQL**: This section contains information useful in particular to those that want to supply table expressions, column expressions, etc. as plain SQL to jOOQ, rather than through generated artefacts
- **Bind values**: This section explains how bind values are managed and/or inlined in jOOQ.

3.3.2. jOOQ as a SQL builder with code generation

In addition to using jOOQ as a standalone SQL builder, you can also use jOOQ's code generation features in order to compile your SQL statements using a Java compiler against an actual database schema. This adds a lot of power and expressiveness to just simply constructing SQL using the query DSL and custom strings and literals, as you can be sure that all database artefacts actually exist in the database, and that their type is correct. We strongly recommend using this approach. An example is given here:

```java
// Fetch a SQL string from a jOOQ Query in order to manually execute it with another tool.
Query query = create.select(BOOK.TITLE, AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME)
  .from(BOOK)
  .join(AUTHOR)
  .on(BOOK.AUTHOR_ID.eq(AUTHOR.ID))
  .where(BOOK.PUBLISHED_IN.eq(1948));
String sql = query.getSQL();
List<Object> bindValues = query.getBindValues();
```

The SQL string built with the jOOQ query DSL can then be executed using JDBC directly, using Spring's JdbcTemplate, using Apache DbUtils and many other tools (note that since jOOQ uses PreparedStatement by default, this will generate a bind variable for "1948". Read more about bind variables here).

You can also avoid getting the SQL string and bind values separately:

```java
String sql = query.getSQL(ParamType.INLINED);
```

If you wish to use jOOQ only as a SQL builder with code generation, the following sections of the manual will be of interest to you:

- **SQL building**: This section contains a lot of information about creating SQL statements using the jOOQ API
- **Code generation**: This section contains the necessary information to run jOOQ's code generator against your developer database
- **Bind values**: This section explains how bind values are managed and/or inlined in jOOQ.
3.3.3. jOOQ as a SQL executor

Instead of any tool mentioned in the previous chapters, you can also use jOOQ directly to execute your jOOQ-generated SQL statements. This will add a lot of convenience on top of the previously discussed API for typesafe SQL construction, when you can re-use the information from generated classes to fetch records and custom data types. An example is given here:

```java
// Typesafely execute the SQL statement directly with jOOQ
Result<Record3<String, String, String>> result =
    create.select(BOOK.TITLE, AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME)
    .from(BOOK)
    .join(AUTHOR)
    .on(BOOK.AUTHOR_ID.eq(AUTHOR.ID))
    .where(BOOK.PUBLISHED_IN.eq(1948))
    .fetch();
```

By having jOOQ execute your SQL, the jOOQ query DSL becomes truly embedded SQL. jOOQ doesn't stop here, though! You can execute any SQL with jOOQ. In other words, you can use any other SQL building tool and run the SQL statements with jOOQ. An example is given here:

```java
// Use your favourite tool to construct SQL strings:
String sql = "SELECT title, first_name, last_name FROM book JOIN author ON book.author_id = author.id " +
    "WHERE book.published_in = 1984";

// Fetch results using jOOQ
Result<Record> result = create.fetch(sql);
```

If you wish to use jOOQ as a SQL executor with (or without) code generation, the following sections of the manual will be of interest to you:

- **SQL building**: This section contains a lot of information about creating SQL statements using the jOOQ API
- **Code generation**: This section contains the necessary information to run jOOQ's code generator against your developer database
- **SQL execution**: This section contains a lot of information about executing SQL statements using the jOOQ API
- **Fetching**: This section contains some useful information about the various ways of fetching data with jOOQ

3.3.4. jOOQ for CRUD

Apart from jOOQ's fluent API for query construction, jOOQ can also help you execute everyday CRUD operations. An example is given here:
If you wish to use all of jOOQ's features, the following sections of the manual will be of interest to you (including all sub-sections):

- **SQL building**: This section contains a lot of information about creating SQL statements using the jOOQ API
- **Code generation**: This section contains the necessary information to run jOOQ's code generator against your developer database
- **SQL execution**: This section contains a lot of information about executing SQL statements using the jOOQ API

3.3.5. jOOQ for PROs

jOOQ isn't just a library that helps you build and execute SQL against your generated, compilable schema. jOOQ ships with a lot of tools. Here are some of the most important tools shipped with jOOQ:

- **jOOQ's Execute Listeners**: jOOQ allows you to hook your custom execute listeners into jOOQ's SQL statement execution lifecycle in order to centrally coordinate any arbitrary operation performed on SQL being executed. Use this for logging, identity generation, SQL tracing, performance measurements, etc.
- **Logging**: jOOQ has a standard DEBUG logger built-in, for logging and tracing all your executed SQL statements and fetched result sets
- **Stored Procedures**: jOOQ supports stored procedures and functions of your favourite database. All routines and user-defined types are generated and can be included in jOOQ's SQL building API as function references.
- **Batch execution**: Batch execution is important when executing a big load of SQL statements. jOOQ simplifies these operations compared to JDBC
- **Exporting** and **Importing**: jOOQ ships with an API to easily export/import data in various formats

If you're a power user of your favourite, feature-rich database, jOOQ will help you access all of your database's vendor-specific features, such as OLAP features, stored procedures, user-defined types, vendor-specific SQL, functions, etc. Examples are given throughout this manual.

3.4. Tutorials

Don't have time to read the full manual? Here are a couple of tutorials that will get you into the most essential parts of jOOQ as quick as possible.

```java
// Fetch an author
AuthorRecord author = create.fetchOne(AUTHOR, AUTHOR.ID.eq(1));

// Create a new author, if it doesn't exist yet
if (author == null) {
    author = create.newRecord(AUTHOR);
    author.setId(1);
    author.setFirstName("Dan");
    author.setLastName("Brown");
}

// Mark the author as a "distinguished" author and store it
author.setDistinguished(1);

// Executes an update on existing authors, or insert on new ones
author.store();
```
3.4.1. jOOQ in 7 easy steps

This manual section is intended for new users, to help them get a running application with jOOQ, quickly.

3.4.1.1. Step 1: Preparation

If you haven't already downloaded it, download jOOQ: https://www.jooq.org/download

Alternatively, you can create a Maven dependency to download jOOQ artefacts:

```xml
<dependency>
  <groupId>org.jooq</groupId>
  <artifactId>jooq</artifactId>
  <version>3.3.4</version>
</dependency>
<dependency>
  <groupId>org.jooq</groupId>
  <artifactId>jooq-meta</artifactId>
  <version>3.3.4</version>
</dependency>
<dependency>
  <groupId>org.jooq</groupId>
  <artifactId>jooq-codegen</artifactId>
  <version>3.3.4</version>
</dependency>
```

Note that only the jOOQ Open Source Edition is available from Maven Central. If you're using the jOOQ Professional Edition or the jOOQ Enterprise Edition, you will have to manually install jOOQ in your local Nexus, or in your local Maven cache. For more information, please refer to the licensing pages.

Please refer to the manual's section about Code generation configuration to learn how to use jOOQ's code generator with Maven.

For this example, we'll be using MySQL. If you haven't already downloaded MySQL Connector/J, download it here: http://dev.mysql.com/downloads/connector/j/

If you don't have a MySQL instance up and running yet, get it from https://www.mysql.com or https://hub.docker.com/_/mysql now!

3.4.1.2. Step 2: Your database

We're going to create a database called "library" and a corresponding "author" table. Connect to MySQL via your command line client and type the following:

```sql
CREATE DATABASE 'library';
USE 'library';
CREATE TABLE 'author' (
  'id' int NOT NULL,
  'first_name' varchar(255) DEFAULT NULL,
  'last_name' varchar(255) DEFAULT NULL,
  PRIMARY KEY ('id')
);```
3.4.1.3. Step 3: Code generation

In this step, we're going to use jOOQ's command line tools to generate classes that map to the Author table we just created. More detailed information about how to set up the jOOQ code generator can be found here:

jOOQ manual pages about setting up the code generator

The easiest way to generate a schema is to copy the jOOQ jar files (there should be 3) and the MySQL Connector jar file to a temporary directory. Then, create a library.xml that looks like this:

```xml
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<configuration xmlns="http://www.jooq.org/xsd/jooq-codegen-3.3.0.xsd">
 <!-- Configure the database connection here -->
 <jdbc>
 <driver>com.mysql.cj.jdbc.Driver</driver>
 <url>jdbc:mysql://localhost:3306/library</url>
 <user>root</user>
 <password></password>
 </jdbc>
 <generator>
 <!-- The default code generator. You can override this one, to generate your own code style.
 Defaults to org.jooq.util.JavaGenerator
 Note the classes have been moved to org.jooq.codegen or org.jooq.meta in jOOQ 3.11 -->
 <name>org.jooq.util.JavaGenerator</name>
 <database>
 <!-- The database type. The format here is:
 org.jooq.util.[database].[database]Database
 Note the classes have been moved to org.jooq.codegen or org.jooq.meta in jOOQ 3.11 -->
 <name>org.jooq.util.mysql.MySQLDatabase</name>
 <!-- The database schema (or in the absence of schema support, in your RDBMS this
 can be the owner, user, database name) to be generated -->
 <inputSchema>library</inputSchema>
 <!-- All elements that are generated from your schema
 (A Java regular expression. Use the pipe to separate several expressions)
 Watch out for case-sensitivity. Depending on your database, this might be important! -->
 <includes>.*</includes>
 <!-- All elements that are excluded from your schema
 (A Java regular expression. Use the pipe to separate several expressions).
 Excludes match before includes, i.e. excludes have a higher priority -->
 <excludes></excludes>
 </database>
 <target>
 <!-- The destination package of your generated classes (within the destination directory) -->
 <packageName>test.generated</packageName>
 <!-- The destination directory of your generated classes. Using Maven directory layout here -->
 <directory>C:/workspace/MySQLTest/src/main/java</directory>
 </target>
 </generator>
</configuration>
```

Replace the username (<username/> or <user/>) with whatever user has the appropriate privileges to query the database meta data. You'll also want to look at the other values and replace as necessary. Here are the two interesting properties:

<packageName/> - set this to the parent package you want to create for the generated classes. Setting the value to test.generated will cause the test.generated.tables.Author and test.generated.tables.records.AuthorRecord classes to be created

<directory/> - the directory to output the generated classes to.

Once you have the JAR files and library.xml in your temp directory, type this on a Windows machine:

```
javac -classpath jooq-3.3.4.jar;jooq-meta-3.3.4.jar;jooq-codegen-3.3.4.jar;mysql-connector-java-5.1.18-bin.jar
org.jooq.util.GenerationTool /library.xml
```

... or type this on a UNIX / Linux / Mac system (colons instead of semi-colons):
There are two things to note:

- The prefix slash before the /library.xml. Even though it's in our working directory, we need to prepend a slash, as the configuration file is loaded from the classpath.
- The "trailing" period in the classpath: .. We need this because we want the current directory on the classpath in order to find the above /library.xml file at the root of your classpath.

Replace the filenames with your actual filenames. In this example, jOOQ 3.3.4 is being used. If everything has worked, you should see this in your console output:

```
Nov 1, 2011 7:25:06 PM org.jooq.impl.JooqLogger info
INFO: Initialising properties : /library.xml
Nov 1, 2011 7:25:07 PM org.jooq.impl.JooqLogger info
INFO: Database parameters
Nov 1, 2011 7:25:07 PM org.jooq.impl.JooqLogger info
INFO: dialect : MYSQL
Nov 1, 2011 7:25:07 PM org.jooq.impl.JooqLogger info
INFO: schema : library
Nov 1, 2011 7:25:07 PM org.jooq.impl.JooqLogger info
INFO: target dir : C:/workspace/MySQLTest/src
Nov 1, 2011 7:25:07 PM org.jooq.impl.JooqLogger info
INFO: target package : test.generated
Nov 1, 2011 7:25:07 PM org.jooq.impl.JooqLogger info
INFO: Emptying : C:/workspace/MySQLTest/src/test/generated
Nov 1, 2011 7:25:07 PM org.jooq.impl.JooqLogger info
INFO: Generating classes in : C:/workspace/MySQLTest/src/test/generated
Nov 1, 2011 7:25:07 PM org.jooq.impl.JooqLogger info
INFO: Generating schema : Library.java
Nov 1, 2011 7:25:07 PM org.jooq.impl.JooqLogger info
INFO: Tables fetched : 5 (5 included, 0 excluded)
Nov 1, 2011 7:25:07 PM org.jooq.impl.JooqLogger info
INFO: Generating tables : C:/workspace/MySQLTest/src/test/generated/tables
Nov 1, 2011 7:25:07 PM org.jooq.impl.JooqLogger info
INFO: Generating Keys : C:/workspace/MySQLTest/src/test/generated/tables
Nov 1, 2011 7:25:07 PM org.jooq.impl.JooqLogger info
INFO: Generating records : C:/workspace/MySQLTest/src/test/generated/tables/records
Nov 1, 2011 7:25:08 PM org.jooq.impl.JooqLogger info
INFO: Keys generated : Total: 718.621ms, +38.157ms
Nov 1, 2011 7:25:08 PM org.jooq.impl.JooqLogger info
INFO: Table records generated : Total: 782.545ms, +63.924ms
Nov 1, 2011 7:25:08 PM org.jooq.impl.JooqLogger info
INFO: Routines fetched : 0 (0 included, 0 excluded)
Nov 1, 2011 7:25:08 PM org.jooq.impl.JooqLogger info
INFO: Packages fetched : 0 (0 included, 0 excluded)
Nov 1, 2011 7:25:08 PM org.jooq.impl.JooqLogger info
INFO: GENERATION FINISHED! : Total: 791.688ms, +9.143ms
```

3.4.1.4. Step 4: Connect to your database

Let's just write a vanilla main class in the project containing the generated classes:
// For convenience, always static import your generated tables and jOOQ functions to decrease verbosity:
import static test.generated.Tables.*;
import static org.jooq.impl.DSL.*;
import java.sql.*;

public class Main {
    public static void main(String[] args) {
        String userName = "root";
        String password = "";
        String url = "jdbc:mysql://localhost:3306/library";

        // Connection is the only JDBC resource that we need
        // PreparedStatement and ResultSet are handled by jOOQ, internally
        try (Connection conn = DriverManager.getConnection(url, userName, password)) {
            // ...}
            // For the sake of this tutorial, let's keep exception handling simple
            catch (Exception e) {
                e.printStackTrace();
            }
        }
    }
}

This is pretty standard code for establishing a MySQL connection.

### 3.4.1.5. Step 5: Querying

Let's add a simple query constructed with jOOQ's query DSL:

```java
DSLContext create = DSL.using(conn, SQLDialect.MYSQL);
Result<Record> result = create.select().from(AUTHOR).fetch();
```

First get an instance of DSLContext so we can write a simple SELECT query. We pass an instance of the MySQL connection to DSL. Note that the DSLContext doesn't close the connection. We'll have to do that ourselves.

We then use jOOQ's query DSL to return an instance of Result. We'll be using this result in the next step.

### 3.4.1.6. Step 6: Iterating

After the line where we retrieve the results, let's iterate over the results and print out the data:

```java
for (Record r : result) {
 Integer id = r.getValue(AUTHOR.ID);
 String firstName = r.getValue(AUTHOR.FIRST_NAME);
 String lastName = r.getValue(AUTHOR.LAST_NAME);
 System.out.println("ID: " + id + " first name: " + firstName + " last name: " + lastName);
}
```

The full program should now look like this:
package test;
// For convenience, always static import your generated tables and
// jOOQ functions to decrease verbosity:
import static test.generated.Tables.*;
import static org.jooq.impl.DSL.*;
import java.sql.*;
import org.jooq.*;
import org.jooq.impl.*;

public class Main {
    /**
     * @param args
     */
    public static void main(String[] args) {
        String userName = "root";
        String password = "";
        String url = "jdbc:mysql://localhost:3306/library";

        // Connection is the only JDBC resource that we need
        // PreparedStatement and ResultSet are handled by jOOQ, internally
        try (Connection conn = DriverManager.getConnection(url, userName, password)) {
            DSLContext create = DSL.using(conn, SQLDialect.MYSQL);
            Result<Record> result = create.select().from(AUTHOR).fetch();
            for (Record r : result) {
                Integer id = r.getValue(AUTHOR.ID);
                String firstName = r.getValue(AUTHOR.FIRST_NAME);
                String lastName = r.getValue(AUTHOR.LAST_NAME);
                System.out.println("ID: " + id + " first name: " + firstName + " last name: " + lastName);
            }
        }
        // For the sake of this tutorial, let's keep exception handling simple
        catch (Exception e) {
            e.printStackTrace();
        }
    }
}

3.4.1.7. Step 7: Explore!

jOOQ has grown to be a comprehensive SQL library. For more information, please consider the documentation:
https://www.jooq.org/learn
... explore the Javadoc:
https://www.jooq.org/javadoc/latest/
... or join the news group:
https://groups.google.com/forum/#!forum/jooq-user

This tutorial is the courtesy of Ikai Lan. See the original source here:

3.4.2. Using jOOQ in modern IDEs

Feel free to contribute a tutorial!

3.4.3. Using jOOQ with Spring and Apache DBCP

jOOQ and Spring are easy to integrate. In this example, we shall integrate:
- Apache DBCP (but you may as well use some other connection pool, like BoneCP, C3P0, HikariCP, and various others).
- Spring TX as the transaction management library.
- jOOQ as the SQL building and execution library.

Before you copy the manual examples, consider also these further resources:

- The complete example can also be downloaded from GitHub.
- Another example using Spring and Guice for transaction management can be downloaded from GitHub.
- Another, excellent tutorial by Petri Kainulainen can be found here.

Add the required Maven dependencies

For this example, we'll create the following Maven dependencies

```xml
<!-- Use this or the latest Spring RELEASE version -->
<properties>
 <org.springframework.version>3.2.3.RELEASE</org.springframework.version>
</properties>

<dependencies>
 <!-- Database access -->
 <dependency>
 <groupId>org.jooq</groupId>
 <artifactId>jooq</artifactId>
 <version>3.3.4</version>
 </dependency>
 <dependency>
 <groupId>org.apache.commons</groupId>
 <artifactId>commons-dbcp2</artifactId>
 <version>2.0</version>
 </dependency>
 <dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <version>1.3.168</version>
 </dependency>
 <!-- Logging -->
 <dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>1.2.16</version>
 </dependency>
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-log4j12</artifactId>
 <version>1.7.5</version>
 </dependency>
 <!-- Spring (transitive dependencies are not listed explicitly) -->
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>${org.springframework.version}</version>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-jdbc</artifactId>
 <version>${org.springframework.version}</version>
 </dependency>
 <!-- Testing -->
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.11</version>
 <type>jar</type>
 <scope>test</scope>
 </dependency>
</dependencies>
```
Create a minimal Spring configuration file

The above dependencies are configured together using a Spring Beans configuration:

```xml
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:tx="http://www.springframework.org/schema/tx"
 <!-- This is needed if you want to use the @Transactional annotation -->
 <tx:annotation-driven transaction-manager="transactionManager"/>

 <bean id="dataSource" class="org.apache.commons.dbcp2.BasicDataSource" destroy-method="close">
 <!-- These properties are replaced by Maven "resources" -->
 <property name="url" value="${db.url}" />
 <property name="driverClassName" value="${db.driver}" />
 <property name="username" value="${db.username}" />
 <property name="password" value="${db.password}" />
 </bean>

 <!-- Configure Spring's transaction manager to use a DataSource -->
 <bean id="transactionManager" class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
 <property name="dataSource" ref="dataSource" />
 </bean>

 <!-- Configure jOOQ's ConnectionProvider to use Spring's TransactionAwareDataSourceProxy, which can dynamically discover the transaction context -->
 <bean id="transactionAwareDataSource" class="org.springframework.jdbc.datasource.TransactionAwareDataSourceProxy">
 <constructor-arg ref="dataSource" />
 </bean>

 <!-- Configure the DSL object, optionally overriding jOOQ Exceptions with Spring Exceptions -->
 <bean id="dsl" class="org.jooq.impl.DefaultDSLContext">
 <constructor-arg ref="config" />
 </bean>

 <bean id="exceptionTranslator" class="org.jooq.example.spring.ExceptionTranslator" />
 <bean id="books" class="org.jooq.example.spring.impl.DefaultBookService"/>
</beans>
```

Run a query using the above configuration:

With the above configuration, you should be ready to run queries pretty quickly. For instance, in an integration-test, you could use Spring to run JUnit:
@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(locations = {"/jooq-spring.xml"})
public class QueryTest {
    @Autowired
    DSLContext create;

    @Test
    public void testJoin() throws Exception {
        // All of these tables were generated by jOOQ's Maven plugin
        Book b = BOOK.as("b");
        Author a = AUTHOR.as("a");
        BookStore s = BOOK_STORE.as("s");
        BookToBookStore t = BOOK_TO_BOOK_STORE.as("t");

        Result<Record3<String, String, Integer>> result =
            create.select(a.FIRST_NAME, a.LAST_NAME, countDistinct(s.NAME))
                .from(a)
                .join(b).on(b.AUTHOR_ID.eq(a.ID))
                .join(t).on(t.BOOK_ID.eq(b.ID))
                .join(s).on(t.BOOK_STORE_NAME.eq(s.NAME))
                .groupBy(a.FIRST_NAME, a.LAST_NAME)
                .orderBy(countDistinct(s.NAME).desc())
                .fetch();

        assertEquals(2, result.size());
        assertEquals("Paulo", result.getValue(0, a.FIRST_NAME));
        assertEquals("George", result.getValue(1, a.FIRST_NAME));
        assertEquals("Coelho", result.getValue(0, a.LAST_NAME));
        assertEquals("Orwell", result.getValue(1, a.LAST_NAME));
        assertEquals(Integer.valueOf(3), result.getValue(0, countDistinct(s.NAME)));
        assertEquals(Integer.valueOf(2), result.getValue(1, countDistinct(s.NAME)));
    }
}

Run a queries in an explicit transaction:

The following example shows how you can use Spring's TransactionManager to explicitly handle transactions:

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(locations = {"/jooq-spring.xml"})
@TransactionConfiguration(transactionManager="transactionManager")
public class TransactionTest {
    @Autowired
    DSLContext dsl;
    @Autowired
    DataSourceTransactionManager txMgr;
    @Autowired
    BookService books;

    @After
    public void teardown() {
        // Delete all books that were created in any test
        dsl.delete(BOOK).where(BOOK.ID.gt(4)).execute();
    }

    @Test
    public void testExplicitTransactions() {
        boolean rollback = false;
        TransactionStatus tx = txMgr.getTransaction(new DefaultTransactionDefinition());
        try {
            // This is a "bug". The same book is created twice, resulting in a
            // constraint violation exception
            for (int i = 0; i < 2; i++)
                dsl.insertInto(BOOK)
                    .set(BOOK.ID, 5)
                    .set(BOOK.AUTHOR_ID, 1)
                    .set(BOOK.TITLE, "Book 5")
                    .execute();
            Assert.fail();
        } catch (DataAccessException e) {
            txMgr.rollback(tx);
            rollback = true;
        }
        assertEquals(4, dsl.fetchCount(BOOK));
        assertTrue(rollback);
    }
}
Run queries using declarative transactions

Spring-TX has very powerful means to handle transactions declaratively, using the `@Transactional` annotation. The BookService that we had defined in the previous Spring configuration can be seen here:

```java
public interface BookService {

/**
 * Create a new book.
 * @param id
 * @param authorId
 * @param title
 */
@Transactional
void create(int id, int authorId, String title);
}
```

And here is how we interact with it:

```java
@Test
public void testDeclarativeTransactions() {
 boolean rollback = false;
 try {
 // The service has a "bug", resulting in a constraint violation exception
 books.create(5, 1, "Book 5");
 Assert.fail();
 } catch (DataAccessException ignore) {
 rollback = true;
 }
 assertEquals(4, dsl.fetchCount(BOOK));
 assertTrue(rollback);
}
```

You can try the above example yourself by downloading it from GitHub.

### 3.4.4. Using jOOQ with jbang

jbang allows for quickly working with all sorts of Java libraries without the hassle of setting up environments, dependencies, etc. This catalog allows for using jOOQ's code generator right away on an existing database.

For more information on jbang, see:

- Installation
- Usage

### An example

In a shell, type

```bash
git clone https://github.com/jOOQ/jbang-example
cd jbang-example
jbang Example.java
```

In order to re-generate the example code, e.g. when your schema changes, just type:
If you prefer working with a pre-existing database, just edit the db.xml file and point it to your database. Add the JDBC driver dependency like this:

```
jbang --deps org.postgresql:postgresql:RELEASE codegen@jooq db.xml
```

---

### 3.5. jOOQ and Scala

As any other library, jOOQ can be easily used in Scala, taking advantage of the many Scala language features such as for example:

- Optional "." to dereference methods from expressions
- Optional "(" and ")" to delimit method argument lists
- Optional "," at the end of a Scala statement
- Type inference using "var" and "val" keywords
- Lambda expressions and for-comprehension syntax for record iteration and data type conversion

But jOOQ also leverages other useful Scala features, such as

- implicit defs for operator overloading
- Scala Macros (soon to come)

All of the above heavily improve jOOQ's querying DSL API experience for Scala developers.

A short example jOOQ application in Scala might look like this:
For more details about jOOQ's Scala integration, please refer to the manual's section about SQL building with Scala.

3.6. jOOQ and Groovy

As any other library, jOOQ can be easily used in Groovy, taking advantage of the many Groovy language features such as for example:

- Optional ";" at the end of a Groovy statement
- Type inference for local variables

While this is less impressive than the features available from a Scala integration, it is still useful for those of you using jOOQ's querying DSL with Groovy.

A short example jOOQ application in Groovy might look like this:

Note that while Groovy supports some means of operator overloading, we think that these means should be avoided in a jOOQ integration. For instance, a + b in Groovy maps to a formal a.plus(b) method invocation, and jOOQ provides the required synonyms in its API to help you write such expressions. Nonetheless, Groovy only offers little typesafety, and as such, operator overloading can lead to many runtime issues.

Another caveat of Groovy operator overloading is the fact that operators such as == or >= map to a.equals(b), a.compareTo(b) == 0, a.compareTo(b) >= 0 respectively. This behaviour does not make sense in a fluent API such as jOOQ.
3.7. jOOQ and NoSQL

jOOQ users often get excited about jOOQ's intuitive API and would then wish for NoSQL support. There are a variety of NoSQL databases that implement some sort of proprietary query language. Some of these query languages even look like SQL. Examples are JCR-SQL2, CQL (Cassandra Query Language), Cypher (Neo4j's Query Language), SOQL (Salesforce Query Language) and many more.

Mapping the jOOQ API onto these alternative query languages would be a very poor fit and a leaky abstraction. We believe in the power and expressivity of the SQL standard and its various dialects. Databases that extend this standard too much, or implement it not thoroughly enough are often not suitable targets for jOOQ. It would be better to build a new, dedicated API for just that one particular query language.

jOOQ is about SQL, and about SQL alone. Read more about our visions in the manual's preface.

3.8. jOOQ and JPA

Just because you're using jOOQ doesn't mean you have to use it for everything!

When introducing jOOQ into an existing application that uses JPA, the common question is always: "Should we replace JPA by jOOQ?" and "How do we proceed doing that?"

Beware that jOOQ is not a replacement for JPA. Think of jOOQ as a complement. JPA (and ORMs in general) try to solve the object graph persistence problem. In short, this problem is about

- Loading an entity graph into client memory from a database
- Manipulating that graph in the client
- Storing the modification back to the database

As the above graph gets more complex, a lot of tricky questions arise like:

- What's the optimal order of SQL DML operations for loading and storing entities?
- How can we batch the commands more efficiently?
- How can we keep the transaction footprint as low as possible without compromising on ACID?
- How can we implement optimistic locking?

jOOQ only has some of the answers.

While jOOQ does offer updatable records that help running simple CRUD, a batch API, optimistic locking capabilities, jOOQ mainly focuses on executing actual SQL statements.

SQL is the preferred language of database interaction, when any of the following are given:

- You run reports and analytics on large data sets directly in the database
- You import / export data using ETL
- You run complex business logic as SQL queries
Whenever SQL is a good fit, jOOQ is a good fit. Whenever you're operating and persisting the object graph, JPA is a good fit.

3.9. Build your own

In order to build jOOQ (Open Source Edition) yourself, please download the sources from https://github.com/jOOQ/jOOQ and use Maven to build jOOQ, preferably in Eclipse. jOOQ requires Java 6+ to compile and run.

Some useful hints to build jOOQ yourself:

- Get the latest version of Git or EGit
- Get the latest version of Maven or M2E
- Check out the jOOQ sources from https://github.com/jOOQ/jOOQ
- Optionally, import Maven artefacts into an Eclipse workspace using the following command (see the maven-eclipse-plugin documentation for details):
  
  * mvn eclipse:eclipse

- Build the jooq-parent artefact by using any of these commands:
  
  * mvn clean package
  create .jar files in ${project.build.directory}
  *
  * mvn clean install
  install the .jar files in your local repository (e.g. ~/.m2)
  *
  * mvn clean {goal} -Dmaven.test.skip=true
  don't run unit tests when building artefacts

3.10. jOOQ and backwards-compatibility

Semantic versioning

jOOQ's understanding of backwards compatibility is inspired by the rules of semantic versioning according to http://semver.org. Those rules impose a versioning scheme [X].[Y].[Z] that can be summarised as follows:

- If a patch release includes bugfixes, performance improvements and API-irrelevant new features, [Z] is incremented by one.
- If a minor release includes backwards-compatible, API-relevant new features, [Y] is incremented by one and [Z] is reset to zero.
- If a major release includes backwards-incompatible, API-relevant new features, [X] is incremented by one and [Y], [Z] are reset to zero.
jOOQ's understanding of backwards-compatibility

Backwards-compatibility is important to jOOQ. You've chosen jOOQ as a strategic SQL engine and you don't want your SQL to break.

However, there are some elements of API evolution that would be considered backwards-incompatible in other APIs, but not in jOOQ. As discussed later on in the section about jOOQ's query DSL API, much of jOOQ's API is indeed an internal domain-specific language implemented mostly using Java interfaces. Adding language elements to these interfaces means any of these actions:

- Adding methods to the interface
- Overloading methods for convenience
- Changing the type hierarchy of interfaces (including raw type or binary compatibility implications)

It becomes obvious that it would be impossible to add new language elements (e.g. new SQL functions, new SELECT clauses) to the API without breaking any client code that actually implements those interfaces. Hence, the following rules should be observed:

- jOOQ's DSL interfaces should not be implemented by client code! Extend only those extension points that are explicitly documented as "extendable" (e.g. custom QueryParts).
- Generated code implements such interfaces and extends internal classes, and as such is recommended to be re-generated with a matching code generator version every time the runtime library is upgraded.
- Binary compatibility can be expected from patch releases, but not from minor releases as it is not practical to maintain binary compatibility in an internal DSL.
- Source compatibility can be expected from patch and minor releases, the exception being raw type compatibility (see #11879), and rare exceptions where API design is clearly lacking.
- Behavioural compatibility can be expected from patch and minor releases.
- Any jOOQ SPI XYZ that is meant to be implemented ships with a DefaultXYZ or AbstractXYZ, which can be used safely as a default implementation.

jOOQ-codegen and jOOQ-meta

While a reasonable amount of care is spent to maintain these two modules under the rules of semantic versioning, it may well be that minor releases introduce backwards-incompatible changes. This will be announced in the respective release notes and should be the exception.
4. SQL building

SQL is a declarative language that is hard to integrate into procedural, object-oriented, functional or any other type of programming languages. jOOQ's philosophy is to give SQL the credit it deserves and integrate SQL itself as an "internal domain specific language" directly into Java.

With this philosophy in mind, SQL building is the main feature of jOOQ. All other features (such as SQL execution and code generation) are mere convenience built on top of jOOQ's SQL building capabilities.

This section explains all about the various syntax elements involved with jOOQ's SQL building capabilities. For a complete overview of all syntax elements, please refer to the manual's sections about SQL to DSL mapping rules.

4.1. The query DSL type

jOOQ exposes a lot of interfaces and hides most implementation facts from client code. The reasons for this are:

- Interface-driven design. This allows for modelling queries in a fluent API most efficiently
- Reduction of complexity for client code.
- API guarantee. You only depend on the exposed interfaces, not concrete (potentially dialect-specific) implementations.

The org.jooq.impl.DSL class is the main class from where you will create all jOOQ objects. It serves as a static factory for table expressions, column expressions (or "fields"), conditional expressions and many other QueryParts.

The static query DSL API

With jOOQ 2.0, static factory methods have been introduced in order to make client code look more like SQL. Ideally, when working with jOOQ, you will simply static import all methods from the DSL class:

```java
import static org.jooq.impl.DSL.*;
```

Note, that when working with Eclipse, you could also add the DSL to your favourites. This will allow to access functions even more fluently:

```java
concat(trim(FIRST_NAME), trim(LAST_NAME));
// ... which is in fact the same as:
DSL.concat(DSL.trim(FIRST_NAME), DSL.trim(LAST_NAME));
```
4.1.1. DSL subclasses

There are a couple of subclasses for the general query DSL. Each SQL dialect has its own dialect-specific DSL. For instance, if you're only using the MySQL dialect, you can choose to reference the MySQLDSL instead of the standard DSL:

The advantage of referencing a dialect-specific DSL lies in the fact that you have access to more proprietary RDMBS functionality. This may include:

- MySQL's encryption functions
- PL/SQL constructs, pgplsql, or any other dialect's ROUTINE-language (maybe in the future)

4.2. The DSLContext API

DSLContext references a `org.jooq.Configuration`, an object that configures jOOQ's behaviour when executing queries (see SQL execution for more details). Unlike the static DSL, the DSLContext allow for creating SQL statements that are already "configured" and ready for execution.

Fluent creation of a DSLContext object

The DSLContext object can be created fluently from the DSL type:

```java
// Create it from a pre-existing configuration
DSLContext create = DSL.using(configuration);

// Create it from ad-hoc arguments
DSLContext create = DSL.using(connection, dialect);
```

If you do not have a reference to a pre-existing Configuration object (e.g. created from `org.jooq.impl.DefaultConfiguration`), the various overloaded DSL.using() methods will create one for you.

Contents of a Configuration object

A Configuration can be supplied with these objects:
- **org.jooq.SQLDialect**: The dialect of your database. This may be any of the currently supported database types (see [SQL Dialect](#) for more details)
- **org.jooq.conf.Settings**: An optional runtime configuration (see [Custom Settings](#) for more details)
- **org.jooq.ExecuteListenerProvider**: An optional reference to a provider class that can provide execute listeners to jOOQ (see [ExecuteListeners](#) for more details)
- **org.jooq.RecordListenerProvider**: An optional reference to a provider class that can provide record listeners to jOOQ (see [CRUD SPI: RecordListener](#) for more details)
- **org.jooq.RecordMapperProvider**: An optional reference to a provider class that can provide record mappers to jOOQ (see [POJOs with RecordMappers](#) for more details)
- Any of these:
  * **java.sql.Connection**: An optional JDBC Connection that will be re-used for the whole lifecycle of your Configuration (see [Connection vs. DataSource](#) for more details). For simplicity, this is the use-case referenced from this manual, most of the time.
  * **java.sql.DataSource**: An optional JDBC DataSource that will be re-used for the whole lifecycle of your Configuration. If you prefer using DataSources over Connections, jOOQ will internally fetch new Connections from your DataSource, conveniently closing them again after query execution. This is particularly useful in Java EE or Spring contexts (see [Connection vs. DataSource](#) for more details)
  * **org.jooq.ConnectionProvider**: A custom abstraction that is used by jOOQ to "acquire" and "release" connections. jOOQ will internally "acquire" new Connections from your ConnectionProvider, conveniently "releasing" them again after query execution. (see [Connection vs. DataSource](#) for more details)

### Usage of DSLContext

Wrapping a Configuration object, a DSLContext can construct statements, for later execution. An example is given here:

```java
DSLContext create = DSL.using(connection, dialect);
Select<?> select = create.selectOne();
Result<?> result = select.fetch();
```

Note that you do not need to keep a reference to a DSLContext. You may as well inline your local variable, and fluently execute a SQL statement as such:

```java
DSL.using(connection, dialect)
 .select()
 .from(BOOK)
 .where(BOOK.TITLE.like("Animal%"))
 .fetch();
```
4.2.1. SQL Dialect

While jOOQ tries to represent the SQL standard as much as possible, many features are vendor-specific to a given database and to its "SQL dialect". jOOQ models this using the org.jooq.SQLDialect enum type.

The SQL dialect is one of the main attributes of a Configuration. Queries created from DSLContexts will assume dialect-specific behaviour when rendering SQL and binding bind values.

Some parts of the jOOQ API are officially supported only by a given subset of the supported SQL dialects. For instance, the Oracle CONNECT BY clause, which is supported by the Oracle and CUBRID databases, is annotated with a org.jooq.Support annotation, as such:

```java
/**
 * Add an Oracle-specific <code>CONNECT BY</code> clause to the query
 */
@Support({ SQLDialect.CUBRID, SQLDialect.ORACLE })
SelectConnectByConditionStep<R> connectBy(Condition condition);
```

jOOQ API methods which are not annotated with the org.jooq.Support annotation, or which are annotated with the Support annotation, but without any SQL dialects can be safely used in all SQL dialects. An example for this is the SELECT statement factory method:

```java
/**
 * Create a new DSL select statement.
 */
@Support
SelectSelectStep<R> select(Field<?>... fields);
```

jOOQ's SQL clause emulation capabilities

The aforementioned Support annotation does not only designate, which databases natively support a feature. It also indicates that a feature is emulated by jOOQ for some databases lacking this feature. An example of this is the DISTINCT predicate, a predicate syntax defined by SQL:1999 and implemented only by H2, HSQLDB, and Postgres:

```sql
A IS DISTINCT FROM B
```

Nevertheless, the IS DISTINCT FROM predicate is supported by jOOQ in all dialects, as its semantics can be expressed with an equivalent CASE expression. For more details, see the manual's section about the DISTINCT predicate.

jOOQ and the Oracle SQL dialect

Oracle SQL is much more expressive than many other SQL dialects. It features many unique keywords, clauses and functions that are out of scope for the SQL standard. Some examples for this are

- The CONNECT BY clause, for hierarchical queries
- The PIVOT keyword for creating PIVOT tables
- Packages, object-oriented user-defined types, member procedures as described in the section about stored procedures and functions
- Advanced analytical functions as described in the section about window functions
jOOQ has a historic affinity to Oracle's SQL extensions. If something is supported in Oracle SQL, it has a high probability of making it into the jOOQ API.

4.2.2. SQL Dialect Family

In jOOQ 3.1, the notion of a SQLDialect.family() was introduced, in order to group several similar SQL dialects into a common family. An example for this is SQL Server, which is supported by jOOQ in various versions:

- **SQL Server**: The "version-less" SQL Server version. This always maps to the latest supported version of SQL Server
- **SQL Server 2012**: The SQL Server version 2012
- **SQL Server 2008**: The SQL Server version 2008

In the above list, SQLSERVER is both a dialect and a family of three dialects. This distinction is used internally by jOOQ to distinguish whether to use the OFFSET .. FETCH clause (SQL Server 2012), or whether to emulate it using ROW_NUMBER() OVER() (SQL Server 2008).

4.2.3. Connection vs. DataSource

Interact with JDBC Connections

While you can use jOOQ for SQL building only, you can also run queries against a JDBC java.sql.Connection. Internally, jOOQ creates java.sql.Statement or java.sql.PreparedStatement objects from such a Connection, in order to execute statements. The normal operation mode is to provide a Configuration with a JDBC Connection, whose lifecycle you will control yourself. This means that jOOQ will not actively close connections, rollback or commit transactions.

Note, in this case, jOOQ will internally use a org.jooq.impl.DefaultConnectionProvider, which you can reference directly if you prefer that. The DefaultConnectionProvider exposes various transaction-control methods, such as commit(), rollback(), etc.

Interact with JDBC DataSources

If you're in a Java EE or Spring context, however, you may wish to use a javax.sql.DataSource instead. Connections obtained from such a DataSource will be closed after query execution by jOOQ. The semantics of such a close operation should be the returning of the connection into a connection pool, not the actual closing of the underlying connection. Typically, this makes sense in an environment using distributed JTA transactions. An example of using DataSources with jOOQ can be seen in the tutorial section about using jOOQ with Spring.

Note, in this case, jOOQ will internally use a org.jooq.impl.DataSourceConnectionProvider, which you can reference directly if you prefer that.
Inject custom behaviour

If your specific environment works differently from any of the above approaches, you can inject your own custom implementation of a ConnectionProvider into jOOQ. This is the API contract you have to fulfil:

```java
public interface ConnectionProvider {
 // Provide jOOQ with a connection
 Connection acquire() throws DataAccessException;

 // Get a connection back from jOOQ
 void release(Connection connection) throws DataAccessException;
}
```

4.2.4. Custom data

In advanced use cases of integrating your application with jOOQ, you may want to put custom data into your Configuration, which you can then access from your...

- Custom ExecuteListeners
- Custom QueryParts

Here is an example of how to use the custom data API. Let's assume that you have written an ExecuteListener, that prevents INSERT statements, when a given flag is set to true:

```java
// Implement an ExecuteListener
public class NoInsertListener extends DefaultExecuteListener {

 @Override
 public void start(ExecuteContext ctx) {
 // This listener is active only, when your custom flag is set to true
 if (Boolean.TRUE.equals(ctx.configuration().data("com.example.my-namespace.no-inserts"))) {
 // If active, fail this execution, if an INSERT statement is being executed
 if (ctx.query() instanceof Insert) {
 throw new DataAccessException("No INSERT statements allowed");
 }
 }
 }
}
```

See the manual's section about ExecuteListeners to learn more about how to implement an ExecuteListener.

Now, the above listener can be added to your Configuration, but you will also need to pass the flag to the Configuration, in order for the listener to work:
Using the data() methods, you can store and retrieve custom data in your Configurations.

### 4.2.5. Custom ExecuteListeners

ExecuteListeners are a useful tool to...

- implement custom logging
- apply triggers written in Java
- collect query execution statistics

ExecuteListeners are hooked into your Configuration by returning them from an [org.jooq.ExecuteListenerProvider](http://jooq.org/doc/api/org/jooq/ExecuteListenerProvider.html):

```java
// Create your Configuration
Configuration configuration = new DefaultConfiguration().set(connection).set(dialect);

// Hook your listener providers into the configuration:
configuration.set(
 new DefaultExecuteListenerProvider(new MyFirstListener()),
 new DefaultExecuteListenerProvider(new PerformanceLoggingListener()),
 new DefaultExecuteListenerProvider(new NoInsertListener())
);
```

See the manual's section about [ExecuteListeners](http://jooq.org/doc/api/org/jooq/ExecuteListenerProvider.html) to see examples of such listener implementations.

### 4.2.6. Custom Settings

The jOOQ Configuration allows for some optional configuration elements to be used by advanced users. The [org.jooq.conf.Settings](http://jooq.org/doc/api/org/jooq/conf/Settings.html) class is a JAXB-annotated type, that can be provided to a Configuration in several ways:
- In the DSLContext constructor (DSL.using()). This will override default settings below
- in the org.jooq.impl.DefaultConfiguration constructor. This will override default settings below
- From a location specified by a JVM parameter: -Dorg.jooq.settings
- From the classpath at /jooq-settings.xml
- From the settings defaults, as specified in http://www.jooq.org/xsd/jooq-runtime-3.3.0.xsd

The most specific settings for a given context will apply.

If you wish to configure your settings through XML, but explicitly load them for a given Configuration, you can do so as well, using JAXB:

```java
Settings settings = JAXB.unmarshal(new File("/path/to/settings.xml"), Settings.class);
```

**Example**

For example, if you want to indicate to jOOQ, that it should inline all bind variables, and execute static java.sql.Statement instead of binding its variables to java.sql.PreparedStatement, you can do so by creating the following DSLContext:

```java
Settings settings = new Settings();
settings.setStatementType(StatementType.STATIC_STATEMENT);
DSLContext create = DSL.using(connection, dialect, settings);
```

**More details**

Please refer to the jOOQ runtime configuration XSD for more details:
http://www.jooq.org/xsd/jooq-runtime-3.3.0.xsd

### 4.2.6.1. Object qualification

By default, jOOQ fully qualifies all objects with their catalog and schema names, if such qualification is made available by the code generator. For instance, the following SQL statement containing full qualification may be produced by jOOQ code with seemingly no qualification:

```sql
-- Full qualification on columns and tables
SELECT schema.table.column
FROM schema.table
```

While the jOOQ code is also implicitly fully qualified (see implied imports), it may not be desireable to use fully qualified object names in SQL. The renderSchema setting is used for this.

**Programmatic configuration**

```java
new Settings()
 .withRenderSchema(false) // Defaults to true
```

**XML configuration**
By turning off the rendering of full qualification as can be seen above, it will be possible to use code generated from one schema on an entirely different schema of the same structure, e.g. for multitenancy purposes.

More sophisticated multitenancy approaches are available through the render mapping feature.

4.2.6.2. Runtime schema and table mapping

Mapping your DEV schema to a productive environment

You may wish to design your database in a way that you have several instances of your schema. This is useful when you want to cleanly separate data belonging to several customers / organisation units / branches / users and put each of those entities' data in a separate database or schema.

In our AUTHOR example this would mean that you provide a book reference database to several companies, such as My Book World and Books R Us. In that case, you'll probably have a schema setup like this:

- DEV: Your development schema. This will be the schema that you base code generation upon, with jOOQ
- MY_BOOK_WORLD: The schema instance for My Book World
- BOOKS_R_US: The schema instance for Books R Us

Mapping DEV to MY_BOOK_WORLD with jOOQ

When a user from My Book World logs in, you want them to access the MY_BOOK_WORLD schema using classes generated from DEV. This can be achieved with the org.jooq.conf.RenderMapping class, that you can equip your Configuration's settings with. Take the following example:

Programmatic configuration

```
Settings settings = new Settings()
 .withRenderMapping(new RenderMapping()
 .withSchemata(
 new MappedSchema().withInput("DEV")
 .withOutput("MY_BOOK_WORLD"),
 new MappedSchema().withInput("LOG")
 .withOutput("MY_BOOK_WORLD_LOG")));
```

XML configuration
The query executed with a Configuration equipped with the above mapping will in fact produce this SQL statement:

```sql
SELECT *
FROM MY_BOOK_WORLD.AUTHOR
```

This works because AUTHOR was generated from the DEV schema, which is mapped to the MY_BOOK_WORLD schema by the above settings.

Mapping of tables

Not only schemata can be mapped, but also tables. If you are not the owner of the database your application connects to, you might need to install your schema with some sort of prefix to every table. In our examples, this might mean that you will have to map DEV.AUTHOR to something MY_BOOK_WORLD.MY_APP__AUTHOR, where MY_APP__ is a prefix applied to all of your tables. This can be achieved by creating the following mapping:

Programmatic configuration

```java
Settings settings = new Settings()
 .withRenderMapping(new RenderMapping()
 .withSchemata(
 new MappedSchema().withInput("DEV")
 .withTables(
 new MappedTable().withInput("AUTHOR")
 .withOutput("MY_APP__AUTHOR"))));
```

XML configuration

```xml
<settings xmlns="http://www.jooq.org/xsd/jooq-runtime-3.3.0.xsd">
 <renderMapping>
 <schemata>
 <schema>
 <input>DEV</input>
 <tables>
 <table>
 <input>AUTHOR</input>
 <output>MY_APP__AUTHOR</output>
 </table>
 </tables>
 </schema>
 </schemata>
 </renderMapping>
</settings>
```

The query executed with a Configuration equipped with the above mapping will in fact produce this SQL statement:

```sql
SELECT * FROM DEV.MY_APP__AUTHOR
```

Table mapping and schema mapping can be applied independently, by specifying several MappedSchema entries in the above configuration. jOOQ will process them in order of appearance and
map at first match. Note that you can always omit a MappedSchema's output value, in case of which, only the table mapping is applied. If you omit a MappedSchema's input value, the table mapping is applied to all schemata!

**Hard-wiring mappings at code-generation time**

Note that the manual's section about code generation schema mapping explains how you can hard-wire your schema mappings at code generation time

### 4.2.6.3. Identifier style

By default, jOOQ will always generate quoted names for all identifiers (even if this manual omits this for readability). For instance:

```sql
SELECT "TABLE"."COLUMN" FROM "TABLE" -- SQL standard style
SELECT `TABLE`.`COLUMN` FROM `TABLE` -- MySQL style
SELECT [TABLE].[COLUMN] FROM [TABLE] -- SQL Server style
```

Quoting has the following effect on identifiers in most (but not all) databases:

- It allows for using reserved names as object names, e.g. a table called "FROM" is usually possible only when quoted.
- It allows for using special characters in object names, e.g. a column called "FIRST NAME" can be achieved only with quoting.
- It turns what are mostly case-insensitive identifiers into case-sensitive ones, e.g. "name" and "NAME" are different identifiers, whereas name and NAME are not. Please consider your database manual to learn what the proper default case and default case sensitivity is.

The renderNameStyle setting allows for overriding the name of all identifiers in jOOQ to a consistent style. Possible options are:

- **QUOTED** (the default): This will generate all names in their proper case with quotes around them.
- **AS_IS**: This will generate all names in their proper case without quotes.
- **LOWER**: This will transform all names to lower case.
- **UPPER**: This will transform all names to upper case.

**Programmatic configuration**

```java
Settings settings = new Settings()
 .withRenderNameStyle(RenderNameStyle.AS_IS); // Defaults to QUOTED
```

**XML configuration**

```xml
<settings xmlns="http://www.jooq.org/xsd/jooq-runtime-3.3.0.xsd">
 <renderNameStyle>AS_IS</renderNameStyle>
</settings>
```
4.2.6.4. Keyword style

In all SQL dialects, keywords are case insensitive, and this is also the default in jOOQ, which mostly generates lower-case keywords.

Users may wish to adapt this and they have these options for the renderKeywordStyle setting:

- LOWER (the default): Generate keywords in lower case.
- UPPER: Generate keywords in upper case.

Programmatic configuration

```java
Settings settings = new Settings() .withRenderKeywordStyle(RenderKeywordStyle.UPPER); // Defaults to LOWER
```

XML configuration

```xml
<settings xmlns="http://www.jooq.org/xsd/jooq-runtime-3.3.0.xsd">
 <renderKeywordStyle>UPPER</renderKeywordStyle>
</settings>
```

4.2.6.5. Parameter types

Bind values or bind parameters come in different flavours in different SQL databases. JDBC standardises on their syntax by allowing only ? (question mark) characters as placeholders for bind variables. Thus, jOOQ, by default, generates ? placeholders for JDBC consumptions.

Users who wish to use jOOQ with a different backend than JDBC can specify that all jOOQ bind values, including indexed parameters and named parameters generate alternative strings, other than ?. These are the current options:

- INDEXED (the default): Generates indexed parameter placeholders using ?.
- NAMED: Generates named parameter placeholders, such as :param for parameters that are named explicitly or :1 for unnamed, indexed parameters.
- INLINED: Inlines all parameters.

An example:

```sql
-- INDEXED
SELECT FIRST_NAME || ? FROM AUTHOR WHERE ID = ?
-- NAMED
SELECT FIRST_NAME || :1 FROM AUTHOR WHERE ID = :x
-- INLINED
SELECT FIRST_NAME || 'x' FROM AUTHOR WHERE ID = 42
```

```java
Param<String> x = val("x");
Param<Integer> i = param("x", 42);
DSL.using(configuration) .select(FIRST_NAME.concat(x)) .from(AUTHOR) .where(ID.eq(i)) .fetch();
```

Programmatic configuration
4.2.6.6. Statement Type

JDBC knows two types of statements:

- **java.sql.PreparedStatement**: This allows for sending bind variables to the server. jOOQ uses prepared statements by default.
- **java.sql.Statement**: Also "static statement". These do not support bind variables and may be useful for one-shot commands like DDL statements.

The `statementType` setting allows for overriding the default of using prepared statements internally. There are two possible options for this setting:

- **PREPARED_STATEMENT** (the default): Use prepared statements.
- **STATIC_STATEMENT**: Use static statements. This enforces the `paramType` == INLINED. See [parameter types](#).

**Programmatic configuration**

```java
Settings settings = new Settings()
 .withStatementType(StatementType.STATIC_STATEMENT); // Defaults to PREPARED_STATEMENT
```

**XML configuration**

```xml
<settings xmlns="http://www.jooq.org/xsd/jooq-runtime-3.3.0.xsd">
 <statementType>STATIC_STATEMENT</statementType>
</settings>
```

### 4.2.6.7. Execute Logging

The `executeLogging` setting turns off the default logging implemented through `org.jooq.tools.LoggerListener`.

**Programmatic configuration**

```java
Settings settings = new Settings()
 .withExecuteLogging(false); // Defaults to true
```

**XML configuration**

```xml
<settings xmlns="http://www.jooq.org/xsd/jooq-runtime-3.3.0.xsd">
 <executeLogging>false</executeLogging>
</settings>
```
The executeWithOptimisticLocking setting governs the behaviour of the jOOQ optimistic locking feature:

Programmatic configuration

```java
Settings settings = new Settings()
 .withExecuteWithOptimisticLocking(true); // Defaults to false
```

XML configuration

```xml
<settings xmlns="http://www.jooq.org/xsd/jooq-runtime-3.3.0.xsd">
 <executeWithOptimisticLocking>true</executeWithOptimisticLocking>
</settings>
```

For more details, please refer to the manual’s section about the optimistic locking feature.

4.2.6.9. Auto-attach Records

By default, all records fetched through jOOQ are "attached" to the configuration that created them. This allows for features like updatable records as can be seen here:

```java
AuthorRecord author =
 DSL.using(configuration) // This configuration will be attached to any record produced by the below query.
 .selectFrom(AUTHOR)
 .where(AUTHOR.ID.eq(1))
 .fetchOne();
author.setLastName("Smith");
author.store(); // This store call operates on the "attached" configuration.
```

In some cases (e.g. when serialising records), it may be desirable not to attach the Configuration that created a record to the record. This can be achieved with the attachRecords setting:

Programmatic configuration

```java
Settings settings = new Settings()
 .withAttachRecords(false); // Defaults to true
```

XML configuration

```xml
<settings xmlns="http://www.jooq.org/xsd/jooq-runtime-3.3.0.xsd">
 <attachRecords>false</attachRecords>
</settings>
```
4.2.6.10. Updatable Primary Keys

In most database design guidelines, primary key values are expected to never change - an assumption that is essential to a normalised database.

As always, there are exceptions to these rules, and users may wish to allow for updatable primary key values in the updatable records feature (note: any value can always be updated through ordinary update statements). An example:

```java
AuthorRecord author = DSL.using(configuration) // This configuration will be attached to any record produced by the below query.
 .selectFrom(AUTHOR)
 .where(AUTHOR.ID.eq(1))
 .fetchOne();
author.setId(2);
author.store(); // The behaviour of this store call is governed by the updatablePrimaryKeys flag
```

The above store call depends on the value of the updatablePrimaryKeys flag:

- false (the default): Since immutability of primary keys is assumed, the store call will create a new record (a copy) with the new primary key value.
- true: Since mutablity of primary keys is allowed, the store call will change the primary key value from 1 to 2.

Programmatic configuration

```java
Settings settings = new Settings() .withUpdatablePrimaryKeys(true); // Defaults to false
```

XML configuration

```xml
<settings xmlns="http://www.jooq.org/xsd/jooq-runtime-3.3.0.xsd">
 <updatablePrimaryKeys>true</updatablePrimaryKeys>
</settings>
```

4.2.6.11. Reflection caching

All operations of the DefaultRecordMapper are cached in the Configuration by default for improved mapping and reflection speed. Users who prefer to override this cache, or work with their own custom record mapper provider may wish to turn off the out-of-the-box caching feature.

Programmatic configuration

```java
Settings settings = new Settings() .withReflectionCaching(false); // Defaults to true
```

XML configuration

```xml
<settings xmlns="http://www.jooq.org/xsd/jooq-runtime-3.3.0.xsd">
 <reflectionCaching>false</reflectionCaching>
</settings>
```
4.2.7. Thread safety

org.jooq.Configuration, and by consequence org.jooq.DSLContext, make no thread safety guarantees, but by carefully observing a few rules, they can be shared in a thread safe way. We encourage sharing Configuration instances, because they contain caches for work not worth repeating, such as reflection field and method lookups for org.jooq.impl.DefaultRecordMapper. If you’re using Spring or CDI for dependency injection, you will want to be able to inject a DSLContext instance everywhere you use it.

The following needs to be considered when attempting to share Configuration and DSLContext among threads:

- Configuration is mutable for historic reasons. Calls to various Configuration.set() methods must be avoided after initialisation, should a Configuration (and by consequence DSLContext) instance be shared among threads. If you wish to modify some elements of a Configuration for single use, use the Configuration.derive() methods instead, which create a copy.
- Configuration components, such as org.jooq.conf.Settings are mutable as well. The same rules for modification apply here.
- Configuration allows for supplying user-defined SPI implementations (see above for examples). All of these must be thread safe as well, for their wrapping Configuration to be thread safe. If you are using a org.jooq.impl.DataSourceConnectionProvider, for instance, you must make sure that your javax.sql.DataSource is thread safe as well. This is usually the case when you use a third party connection pool.

As can be seen above, Configuration was designed to work in a thread safe way, despite it not making any such guarantee.

4.3. SQL Statements

jOOQ currently supports 6 types of SQL statements. All of these statements are constructed from a DSLContext instance with an optional JDBC Connection or DataSource. If supplied with a Connection or DataSource, they can be executed. Depending on the query type, executed queries can return results.

4.3.1. jOOQ’s DSL and model API

jOOQ ships with its own DSL (or Domain Specific Language) that emulates SQL in Java. This means, that you can write SQL statements almost as if Java natively supported it, just like .NET’s C# does with LINQ to SQL.

Here is an example to illustrate what that means:

```sql
-- Select all books by authors born after 1920, -- named "Paulo" from a catalogue:
SELECT *
 FROM author a
 JOIN book b ON a.id = b.author_id
 WHERE a.year_of_birth > 1920
 AND a.first_name = 'Paulo'
 ORDER BY b.title

-- jOOQ example:

Result<Record> result =
 create.select()
 .from(AUTHOR.as("a"))
 .join(BOOK.as("b"), on(a.ID.eq(b.AUTHOR_ID))
 .where(a.YEAR_OF_BIRTH.gt(1920))
 .and(a.FIRST_NAME.eq("Paulo")))
 .orderBy(b.TITLE)
 .fetch();
```
We'll see how the aliasing works later in the section about aliased tables.

jOOQ as an internal domain specific language in Java (a.k.a. the DSL API)

Many other frameworks have similar APIs with similar feature sets. Yet, what makes jOOQ special is its informal BNF notation, modelling a unified SQL dialect suitable for many vendor-specific dialects, and implementing that BNF notation as a hierarchy of interfaces in Java. This concept is extremely powerful, when using jOOQ in modern IDEs with syntax completion. Not only can you code much faster, your SQL code will be compile-checked to a certain extent. An example of a DSL query equivalent to the previous one is given here:

```java
DSLContext create = DSL.using(connection, dialect);
Result<?> result = create.select()
 .from(AUTHOR)
 .join(BOOK).on(BOOK.AUTHOR_ID.eq(AUTHOR.ID))
 .fetch();
```

Unlike other, simpler frameworks that use "fluent APIs" or "method chaining", jOOQ's BNF-based interface hierarchy will not allow bad query syntax. The following will not compile, for instance:

```java
DSLContext create = DSL.using(connection, dialect);
Result<?> result = create.select()
 .from(AUTHOR)
 .join(BOOK).on(BOOK.AUTHOR_ID.eq(AUTHOR.ID))
 .fetch();
```

```java
DSLContext create = DSL.using(connection, dialect);
Result<?> result = create.select()
 .from(AUTHOR)
 .join(BOOK)
 .fetch();
```

```java
DSLContext create = DSL.using(connection, dialect);
Result<?> result = create.select()
 .from(AUTHOR)
 .where(AUTHOR.ID.in(select(BOOK.TITLE).from(BOOK)))
 .fetch();
```

```java
DSLContext create = DSL.using(connection, dialect);
Result<?> result = create.select()
 .from(AUTHOR)
 .where(AUTHOR.ID.in(select(BOOK.AUTHOR_ID, BOOK.ID).from(BOOK)))
 .fetch();
```

History of SQL building and incremental query building (a.k.a. the model API)

Historically, jOOQ started out as an object-oriented SQL builder library like any other. This meant that all queries and their syntactic components were modeled as so-called QueryParts, which delegate SQL rendering and variable binding to child components. This part of the API will be referred to as the model API (or non-DSL API), which is still maintained and used internally by jOOQ for incremental query building. An example of incremental query building is given here:
This query is equivalent to the one shown before using the DSL syntax. In fact, internally, the DSL API constructs precisely this SelectQuery object. Note, that you can always access the SelectQuery object to switch between DSL and model APIs:

```java
DSLContext create = DSL.using(connection, dialect);
SelectQuery<Record> query = create.selectQuery();
query.addFrom(AUTHOR);
// Join books only under certain circumstances
if (join) {
 query.addJoin(BOOK, BOOK.AUTHOR_ID.eq(AUTHOR.ID));
}
Result<?> result = query.fetch();
```

### Mutability

Note, that for historic reasons, the DSL API mixes mutable and immutable behaviour with respect to the internal representation of the QueryPart being constructed. While creating conditional expressions, column expressions (such as functions) assumes immutable behaviour, creating SQL statements does not. In other words, the following can be said:

```java
// Conditional expressions (immutable)
// -----------------------------------
Condition a = BOOK.TITLE.eq("1984");
Condition b = BOOK.TITLE.eq("Animal Farm");
// The following can be said
a != a.or(b); // or() does not modify a
a.or(b) != a.or(b); // or() always creates new objects

// Statements (mutable)
// --------------------
SelectFromStep<?> s1 = select();
SelectJoinStep<?> s2 = s1.from(BOOK);
SelectJoinStep<?> s3 = s1.from(AUTHOR);
// The following can be said
s1 == s2; // The internal object is always the same
s2 == s3; // The internal object is always the same
```

On the other hand, beware that you can always extract and modify bind values from any QueryPart.

### 4.3.2. The SELECT statement

When you don't just perform CRUD (i.e. SELECT * FROM your_table WHERE ID = ?), you're usually generating new record types using custom projections. With jOOQ, this is as intuitive, as if using SQL directly. A more or less complete example of the "standard" SQL syntax, plus some extensions, is provided by a query like this:
SELECT from a complex table expression

```sql
-- get all authors' first and last names, and the number -
-- of books they've written in German, if they have written -
-- more than five books in German in the last three years -
-- (from 2011), and sort those authors by last names -
-- limiting results to the second and third row, locking -
-- the rows for a subsequent update... whew!
SELECT AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME, COUNT(*)
FROM AUTHOR
JOIN BOOK ON AUTHOR.ID = BOOK.AUTHOR_ID
WHERE BOOK.LANGUAGE = 'DE'
AND BOOK.PUBLISHED > '2008-01-01'
GROUP BY AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME
HAVING COUNT(*) > 5
ORDER BY AUTHOR.LAST_NAME ASC NULLS FIRST
LIMIT 2
OFFSET 1
FOR UPDATE
```

// And with jOOQ...

```java
DSLContext create = DSL.using(connection, dialect);
create.select(AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME, count())
.from(AUTHOR)
.join(BOOK).on(BOOK.AUTHOR_ID.eq(AUTHOR.ID))
.where(BOOK.LANGUAGE.eq("DE"))
.and(BOOK.PUBLISHED.gt("2008-01-01"))
.groupBy(AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME)
.having(count().gt(5))
.orderBy(AUTHOR.LAST_NAME.asc().nullsFirst())
.limit(2)
.offset(1)
.forUpdate();
```

Details about the various clauses of this query will be provided in subsequent sections.

SELECT from single tables

A very similar, but limited API is available, if you want to select from single tables in order to retrieve TableRecords or even UpdatableRecords. The decision, which type of select to create is already made at the very first step, when you create the SELECT statement with the DSL or DSLContext types:

```java
public <R extends Record> SelectWhereStep<R> selectFrom(Table<R> table);
```

As you can see, there is no way to further restrict/project the selected fields. This just selects all known TableFields in the supplied Table, and it also binds <R extends Record> to your Table's associated Record. An example of such a Query would then be:

```java
BookRecord book = create.selectFrom(BOOK)
.where(BOOK.LANGUAGE.eq("DE"))
.orderBy(BOOK.TITLE)
.fetchAny();
```

The "reduced" SELECT API is limited in the way that it skips DSL access to any of these clauses:

- SELECT clause
- JOIN operator

In most parts of this manual, it is assumed that you do not use the "reduced" SELECT API. For more information about the simple SELECT API, see the manual's section about fetching strongly or weakly typed records.

4.3.2.1. SELECT clause

The SELECT clause lets you project your own record types, referencing table fields, functions, arithmetic expressions, etc. The DSL type provides several methods for expressing a SELECT clause:
-- The SELECT clause
SELECT BOOK.ID, BOOK.TITLE

// Provide a varargs Fields list to the SELECT clause:
Select<?> s1 = create.select(BOOK.ID, BOOK.TITLE);
Select<?> s2 = create.select(BOOK.ID, trim(BOOK.TITLE));

Some commonly used projections can be easily created using convenience methods:

-- Simple SELECTs
SELECT COUNT(*)
SELECT 0 -- Not a bind variable
SELECT 1 -- Not a bind variable

// Provide commonly used values
Result<?> result1 = create.selectCount().fetch();
Result<?> result2 = create.selectZero().fetch();
Result<?> result3 = create.selectOne().fetch();

Which are short forms for creating Column expressions from the org.jooq.impl.DSL API

See more details about functions and expressions in the manual's section about Column expressions

The SELECT DISTINCT clause

The DISTINCT keyword can be included in the method name, constructing a SELECT clause

SELECT DISTINCT BOOK.TITLE

Select<?> select1 = create.selectDistinct(BOOK.TITLE);

SELECT *

jOOQ does not explicitly support the asterisk operator in projections. However, you can omit the projection as in these examples:

// Explicitly selects all columns available from BOOK
create.select().from(BOOK);

// Explicitly selects all columns available from BOOK and AUTHOR
create.select().from(BOOK, AUTHOR);

create.select().from(BOOK).crossJoin(AUTHOR);

// Renders a SELECT * statement, as columns are unknown to jOOQ
create.select().from(tableByName("BOOK"));

Typesafe projections with degree up to 22

Since jOOQ 3.0, records and row value expressions up to degree 22 are now generically typesafe. This is reflected by an overloaded SELECT (and SELECT DISTINCT) API in both DSL and DSLContext. An extract from the DSL type:

// Non-typesafe select methods:
public static SelectSelectStep<Record> select(Collection<? extends Field<?>> fields);
public static SelectSelectStep<Record> select(Field<?>... fields);

// Typesafe select methods:
public static <T1> SelectSelectStep<Record1<T1>> select(Field<T1> field);
public static <T1, T2> SelectSelectStep<Record2<T1, T2>> select(Field<T1> field1, Field<T2> field2);
public static <T1, T2, T3> SelectSelectStep<Record3<T1, T2, T3>> select(Field<T1> field1, Field<T2> field2, Field<T3> field3);

// [...]
Since the generic R type is bound to some `Record[N]`, the associated T type information can be used in various other contexts, e.g. the IN predicate. Such a SELECT statement can be assigned typesafely:

```java
Select<Record2<Integer, String>> s1 = create.select(BOOK.ID, BOOK.TITLE);
Select<Record2<Integer, String>> s2 = create.select(BOOK.ID, trim(BOOK.TITLE));
```

For more information about typesafe record types with degree up to 22, see the manual's section about Record1 to Record22.

### 4.3.2.2. FROM clause

The SQL FROM clause allows for specifying any number of table expressions to select data from. The following are examples of how to form normal FROM clauses:

```sql
SELECT 1 FROM BOOK
SELECT 1 FROM BOOK, AUTHOR
SELECT 1 FROM BOOK "b", AUTHOR "a"
```

create.selectOne().from(BOOK);
create.selectOne().from(BOOK, AUTHOR);
create.selectOne().from(BOOK.as("b"), AUTHOR.as("a"));

Read more about aliasing in the manual's section about aliased tables.

**More advanced table expressions**

Apart from simple tables, you can pass any arbitrary table expression to the jOOQ FROM clause. This may include unnested cursors in Oracle:

```sql
SELECT * FROM TABLE(DbmsXplan.DISPLAY_CURSOR(null, null, 'ALLSTATS'))
```

create.select().from(table(DbmsXplan.displayCursor(null, null, "ALLSTATS"));

Note, in order to access the DbmsXplan package, you can use the code generator to generate Oracle's SYS schema.

**Selecting FROM DUAL with jOOQ**

In many SQL dialects, FROM is a mandatory clause, in some it isn't. jOOQ allows you to omit the FROM clause, returning just one record. An example:

```java
SELECT 1 FROM DUAL
SELECT 1
```

DSL.using(SQLDialect.ORACLE).selectOne().getSQL();
DSL.using(SQLDialect.POSTGRES).selectOne().getSQL();

Read more about dual or dummy tables in the manual's section about the DUAL table. The following are examples of how to form normal FROM clauses:

### 4.3.2.3. JOIN operator

jOOQ supports many different types of standard SQL JOIN operations. All of these JOIN methods can be called on `org.jooq.Table` types the (more info in joined tables section), or directly after the FROM clause for convenience. The following example joins AUTHOR and BOOK
The two syntaxes will produce the same SQL statement. However, calling "join" on org.jooq.Table objects allows for more powerful, nested JOIN expressions (if you can handle the parentheses):

```java
DSLContext create = DSL.using(connection, dialect);
// Call "join" directly on the AUTHOR table
Result<?> result = create.select()
 .from(AUTHOR.join(BOOK)
 .on(BOOK.AUTHOR_ID.eq(AUTHOR.ID)))
 .fetch();
// Call "join" on the type returned by "from"
Result<?> result = create.select()
 .from(AUTHOR)
 .join(BOOK)
 .on(BOOK.AUTHOR_ID.eq(AUTHOR.ID))
 .fetch();
```

The WHERE clause can be used for JOIN or filter predicates, in order to restrict the data returned by the table expressions supplied to the previously specified from clause and join clause. Here is an example:

```java
create.select()
 .from(BOOK)
 .where(BOOK.AUTHOR_ID.eq(1))
 .and(BOOK.TITLE.eq("1984"));
```

The above syntax is convenience provided by jOOQ, allowing you to connect the org.jooq.Condition supplied in the WHERE clause with another condition using an AND operator. You can of course also create a more complex condition and supply that to the WHERE clause directly (observe the different placing of parentheses). The results will be the same:

```java
create.select()
 .from(BOOK)
 .where(BOOK.AUTHOR_ID.eq(1)
 .and(BOOK.TITLE.eq("1984")));
```

You will find more information about creating conditional expressions later in the manual.

- See the section about conditional expressions to learn more about the many ways to create org.jooq.Condition objects in jOOQ.
- See the section about table expressions to learn about the various ways of referencing org.jooq.Table objects in jOOQ

For more information about the different types of join, please refer to the joined tables section.

4.3.2.4. WHERE clause

The WHERE clause can be used for JOIN or filter predicates, in order to restrict the data returned by the table expressions supplied to the previously specified from clause and join clause. Here is an example:

```java
SELECT *
FROM AUTHOR
LEFT OUTER JOIN (
 BOOK JOIN BOOK_TO_BOOK_STORE
 ON BOOK_TO_BOOK_STORE.BOOK_ID = BOOK.ID
)
ON BOOK.AUTHOR_ID = AUTHOR.ID
```

```java
// Nest joins and provide JOIN conditions only at the end
create.select()
 .from(AUTHOR)
 .leftJoin(BOOK
 .join(BOOK_TO_BOOK_STORE)
 .on(BOOK_TO_BOOK_STORE.BOOK_ID.eq(BOOK.ID)))
 .on(BOOK.AUTHOR_ID.eq(AUTHOR.ID));
```
4.3.2.5. CONNECT BY clause

The Oracle database knows a very succinct syntax for creating hierarchical queries: the CONNECT BY clause, which is fully supported by jOOQ, including all related functions and pseudo-columns. A more or less formal definition of this clause is given here:

```
-- SELECT ..
-- FROM ..
-- WHERE ..
CONNECT BY [NOCYCLE] condition [AND condition, ...] [START WITH condition]
-- GROUP BY ...
-- ORDER [SIBLINGS] BY ..
```

An example for an iterative query, iterating through values between 1 and 5 is this:

```
SELECT LEVEL
FROM DUAL
CONNECT BY LEVEL <= 5
```

Here's a more complex example where you can recursively fetch directories in your database, and concatenate them to a path:

```
SELECT
 SUBSTR(SYS_CONNECT_BY_PATH(DIRECTORY.NAME, '/'), 2)
FROM DIRECTORY
CONNECT BY
 PRIOR DIRECTORY.ID = DIRECTORY.PARENT_ID
START WITH DIRECTORY.PARENT_ID IS NULL
ORDER BY 1
```

The output might then look like this

```
<table>
<thead>
<tr>
<th>substring</th>
</tr>
</thead>
<tbody>
<tr>
<td>C:</td>
</tr>
<tr>
<td>C:/eclipse</td>
</tr>
<tr>
<td>C:/eclipse/configuration</td>
</tr>
<tr>
<td>C:/eclipse/dropins</td>
</tr>
<tr>
<td>C:/eclipse/eclipse.exe</td>
</tr>
<tr>
<td>...21 record(s) truncated...</td>
</tr>
</tbody>
</table>
```

Some of the supported functions and pseudo-columns are these (available from the DSL):

- LEVEL
- CONNECT_BY_IS_CYCLE
- CONNECT_BY_IS_LEAF
- CONNECT_BY_ROOT
- SYS_CONNECT_BY_PATH
- PRIOR

Note that this syntax is also supported in the CUBRID database and might be emulated in other dialects supporting common table expressions in the future.
ORDER SIBLINGS

The Oracle database allows for specifying a SIBLINGS keyword in the ORDER BY clause. Instead of ordering the overall result, this will only order siblings among each other, keeping the hierarchy intact. An example is given here:

```
SELECT DIRECTORY.NAME
FROM DIRECTORY
CONNECT BY
PRIOR DIRECTORY.ID = DIRECTORY.PARENT_ID
START WITH DIRECTORY.PARENT_ID IS NULL
ORDER SIBLINGS BY 1
```

4.3.2.6. GROUP BY clause

GROUP BY can be used to create unique groups of data, to form aggregations, to remove duplicates and for other reasons. It will transform your previously defined set of table expressions, and return only one record per unique group as specified in this clause. For instance, you can group books by BOOK.AUTHOR_ID:

```
SELECT AUTHOR_ID, COUNT(*)
FROM BOOK
GROUP BY AUTHOR_ID
```

The above example counts all books per author.

Note, as defined in the SQL standard, when grouping, you may no longer project any columns that are not a formal part of the GROUP BY clause, or aggregate functions.

Empty GROUP BY clauses

jOOQ supports empty GROUP BY () clause as well. This will result in SELECT statements that return only one record.

```
SELECT COUNT(*)
FROM BOOK
GROUP BY ()
```

ROLLUP(), CUBE() and GROUPING SETS()

Some databases support the SQL standard grouping functions and some extensions thereof. See the manual's section about grouping functions for more details.

4.3.2.7. HAVING clause

The HAVING clause is commonly used to further restrict data resulting from a previously issued GROUP BY clause. An example, selecting only those authors that have written at least two books:
SELECT AUTHOR_ID, COUNT(*)
FROM BOOK
GROUP BY AUTHOR_ID
HAVING COUNT(*) >= 2

According to the SQL standard, you may omit the GROUP BY clause and still issue a HAVING clause. This will implicitly GROUP BY (). jOOQ also supports this syntax. The following example selects one record, only if there are at least 4 books in the books table:

SELECT COUNT(*)
FROM BOOK
HAVING COUNT(*) >= 4

4.3.2.8. WINDOW clause

The SQL:2003 standard supports a WINDOW clause that allows for specifying WINDOW frames for reuse in SELECT clauses and ORDER BY clauses.

Even if only PostgreSQL and Sybase SQL Anywhere natively support this great feature, jOOQ can emulate it by expanding any `org.jooq.WindowDefinition` and `org.jooq.WindowSpecification` types that you pass to the window() method - if the database supports window functions at all.

Some more information about window functions and the WINDOW clause can be found on our blog: [http://blog.jooq.org/2013/11/03/probably-the-coolest-sql-feature-window-functions/](http://blog.jooq.org/2013/11/03/probably-the-coolest-sql-feature-window-functions/)

4.3.2.9. ORDER BY clause

Databases are allowed to return data in any arbitrary order, unless you explicitly declare that order in the ORDER BY clause. In jOOQ, this is straight-forward:

Any jOOQ column expression (or field) can be transformed into an `org.jooq.SortField` by calling the asc() and desc() methods.

Ordering by field index

The SQL standard allows for specifying integer literals (literals, not bind values!) to reference column indexes from the projection (SELECT clause). This may be useful if you do not want to repeat a lengthy
expression, by which you want to order - although most databases also allow for referencing aliased column references in the ORDER BY clause. An example of this is given here:

```java
SELECT AUTHOR_ID, TITLE
FROM BOOK
ORDER BY 1 ASC, 2 DESC
```

Note, how one() is used as a convenience short-cut for inline(1)

### Ordering and NULLS

A few databases support the SQL standard "null ordering" clause in sort specification lists, to define whether NULL values should come first or last in an ordered result.

```java
SELECT AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME
FROM AUTHOR
ORDER BY LAST_NAME ASC, FIRST_NAME ASC NULLS LAST
```

If your database doesn't support this syntax, jOOQ emulates it using a **CASE expression** as follows

```java
SELECT AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME
FROM AUTHOR
ORDER BY LAST_NAME ASC,
CASE WHEN FIRST_NAME IS NULL THEN 1 ELSE 0 END ASC,
FIRST_NAME ASC
```

### Ordering using CASE expressions

Using **CASE expressions** in SQL ORDER BY clauses is a common pattern, if you want to introduce some sort indirection / sort mapping into your queries. As with SQL, you can add any type of **column expression** into your ORDER BY clause. For instance, if you have two favourite books that you always want to appear on top, you could write:

```java
SELECT *
FROM BOOK
ORDER BY CASE TITLE
WHEN '1984' THEN 0
WHEN 'Animal Farm' THEN 1
ELSE 2 END ASC
```

But writing these things can become quite verbose. jOOQ supports a convenient syntax for specifying sort mappings. The same query can be written in jOOQ as such:

```java
create.select()
.from(BOOK)
.orderBy(BOOK.TITLE.sortAsc("1984", "Animal Farm"));
```

More complex sort indirections can be provided using a Map:
Of course, you can combine this feature with the previously discussed NULLS FIRST / NULLS LAST feature. So, if in fact these two books are the ones you like least, you can put all NULLS FIRST (all the other books):

```java
create.select()
 .from(BOOK)
 .orderBy(BOOK.TITLE.sortAsc("1984", "Animal Farm").nullsFirst());
```

### jOOQ's understanding of SELECT .. ORDER BY

The SQL standard defines that a "query expression" can be ordered, and that query expressions can contain **UNION, INTERSECT and EXCEPT clauses**, whose subqueries cannot be ordered. While this is defined as such in the SQL standard, many databases allowing for the non-standard **LIMIT clause** in one way or another, do not adhere to this part of the SQL standard. Hence, jOOQ allows for ordering all SELECT statements, regardless whether they are constructed as a part of a UNION or not. Corner-cases are handled internally by jOOQ, by introducing synthetic subselects to adhere to the correct syntax, where this is needed.

### Oracle's ORDER SIBLINGS BY clause

jOOQ also supports Oracle's SIBLINGS keyword to be used with ORDER BY clauses for [hierarchical queries using CONNECT BY](https://www.jooq.org/doc/)

### 4.3.2.10. LIMIT .. OFFSET clause

While being extremely useful for every application that does pagination, or just to limit result sets to reasonable sizes, this clause is not yet part of any SQL standard (up until SQL:2008). Hence, there exist a variety of possible implementations in various SQL dialects, concerning this limit clause. jOOQ chose to implement the **LIMIT .. OFFSET clause** as understood and supported by MySQL, H2, HSQLDB, Postgres, and SQLite. Here is an example of how to apply limits with jOOQ:

```java
create.select().from(BOOK).limit(1).offset(2);
```

This will limit the result to 1 books starting with the 2nd book (starting at offset 0!). **limit()** is supported in all dialects, **offset()** in all but Sybase ASE, which has no reasonable means to emulate it. This is how jOOQ trivially emulates the above query in various SQL dialects with native OFFSET pagination support:
Things get a little more tricky in those databases that have no native idiom for OFFSET pagination (actual queries may vary):

```
-- DB2 (with OFFSET), SQL Server 2008 (with OFFSET)
SELECT * FROM (
 SELECT * FROM BOOK
 ORDER BY ID ASC
) b
WHERE ROWNUM <= 3
```

As you can see, jOOQ will take care of the incredibly painful ROW_NUMBER() OVER() (or ROWNUM for Oracle) filtering in subselects for you, you'll just have to write `limit(1).offset(2)` in any dialect.

### SQL Server's ORDER BY, TOP and subqueries

As can be seen in the above example, writing correct SQL can be quite tricky, depending on the SQL dialect. For instance, with SQL Server, you cannot have an ORDER BY clause in a subquery, unless you also have a TOP clause. This is illustrated by the fact that jOOQ renders a TOP 100 PERCENT clause for you. The same applies to the fact that ROW_NUMBER() OVER() needs an ORDER BY windowing clause, even if you don't provide one to the jOOQ query. By default, jOOQ adds ordering by the first column of your projection.

### Keyset pagination

Note, the LIMIT clause can also be used with the [SEEK clause](#) for keyset pagination.
4.3.2.11. SEEK clause

The previous chapter talked about [OFFSET pagination](https://www.jooq.org/doc/latest/manual/en/user-manual/keyset-pagination/) using LIMIT .. OFFSET, or OFFSET .. FETCH or some other vendor-specific variant of the same. This can lead to significant performance issues when reaching a high page number, as all unneeded records need to be skipped by the database.

A much faster and more stable way to perform pagination is the so-called [keyset pagination method](https://www.jooq.org/doc/latest/manual/en/user-manual/keyset-pagination/) also called **seek method**. jOOQ supports a synthetic seek() clause, that can be used to perform keyset pagination (learn about other synthetic sql syntaxes). Imagine we have these data:

<table>
<thead>
<tr>
<th>ID</th>
<th>VALUE</th>
<th>PAGE_BOUNDARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>474</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>533</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>640</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>776</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>815</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>947</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>37</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>287</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>450</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Now, if we want to display page 6 to the user, instead of going to page 6 by using a record OFFSET, we could just fetch the record strictly after the last record on page 5, which yields the values (533, 2). This is how you would do it with SQL or with jOOQ:

```
SELECT id, value
FROM t
WHERE (value, id) > (2, 533)
ORDER BY value, id
LIMIT 5
```

As you can see, the jOOQ SEEK clause is a synthetic clause that does not really exist in SQL. However, the jOOQ syntax is far more intuitive for a variety of reasons:

- It replaces OFFSET where you would expect
- It doesn't force you to mix regular predicates with "seek" predicates
- It is typesafe
- It emulates [row value expression predicates](https://www.jooq.org/doc/latest/manual/en/user-manual/row-value-expression-predicates/) for you, in those databases that do not support them

This query now yields:

<table>
<thead>
<tr>
<th>ID</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>640</td>
<td>2</td>
</tr>
<tr>
<td>776</td>
<td>2</td>
</tr>
<tr>
<td>815</td>
<td>2</td>
</tr>
<tr>
<td>947</td>
<td>2</td>
</tr>
<tr>
<td>37</td>
<td>3</td>
</tr>
</tbody>
</table>

Note that you cannot combine the SEEK clause with the OFFSET clause.

More information about this great feature can be found in the jOOQ blog:
4.3.2.12. FOR UPDATE clause

For inter-process synchronisation and other reasons, you may choose to use the SELECT .. FOR UPDATE clause to indicate to the database, that a set of cells or records should be locked by a given transaction for subsequent updates. With jOOQ, this can be achieved as such:

```
SELECT *
FROM BOOK
WHERE ID = 3
FOR UPDATE
```

```java
create.select()
 .from(BOOK)
 .where(BOOK.ID.eq(3))
 .forUpdate();
```

The above example will produce a record-lock, locking the whole record for updates. Some databases also support cell-locks using FOR UPDATE OF ..

```
SELECT *
FROM BOOK
WHERE ID = 3
FOR UPDATE OF TITLE
```

```java
create.select()
 .from(BOOK)
 .where(BOOK.ID.eq(3))
 .forUpdate().of(BOOK.TITLE);
```

Oracle goes a bit further and also allows to specify the actual locking behaviour. It features these additional clauses, which are all supported by jOOQ:

- FOR UPDATE NOWAIT: This is the default behaviour. If the lock cannot be acquired, the query fails immediately
- FOR UPDATE WAIT n: Try to wait for [n] seconds for the lock acquisition. The query will fail only afterwards
- FOR UPDATE SKIP LOCKED: This peculiar syntax will skip all locked records. This is particularly useful when implementing queue tables with multiple consumers

With jOOQ, you can use those Oracle extensions as such:

```java
create.select().from(BOOK).where(BOOK.ID.eq(3)).forUpdate().nowait();
create.select().from(BOOK).where(BOOK.ID.eq(3)).forUpdate().wait(5);
create.select().from(BOOK).where(BOOK.ID.eq(3)).forUpdate().skipLocked();
```
FOR UPDATE in CUBRID and SQL Server

The SQL standard specifies a FOR UPDATE clause to be applicable for cursors. Most databases interpret this as being applicable for all SELECT statements. An exception to this rule are the CUBRID and SQL Server databases, that do not allow for any FOR UPDATE clause in a regular SQL SELECT statement. jOOQ emulates the FOR UPDATE behaviour, by locking record by record with JDBC. JDBC allows for specifying the flags TYPE_SCROLL_SENSITIVE, CONCUR_UPDATABLE for any statement, and then using ResultSet.updateXXX() methods to produce a cell-lock / row-lock. Here's a simplified example in JDBC:

```java
try {
 PreparedStatement stmt = connection.prepareStatement(
 "SELECT * FROM author WHERE id IN (3, 4, 5)",
 ResultSet.TYPE_SCROLL_SENSITIVE,
 ResultSet.CONCUR_UPDATABLE);
 ResultSet rs = stmt.executeQuery();
 while (rs.next()) {
 // UPDATE the primary key for row-locks, or any other columns for cell-locks
 rs.updateObject(1, rs.getObject(1));
 rs.updateRow();
 // Do more stuff with this record
 }
}
```

The main drawback of this approach is the fact that the database has to maintain a scrollable cursor, whose records are locked one by one. This can cause a major risk of deadlocks or race conditions if the JDBC driver can recover from the unsuccessful locking, if two Java threads execute the following statements:

```sql
-- thread 1
SELECT * FROM author ORDER BY id ASC;

-- thread 2
SELECT * FROM author ORDER BY id DESC;
```

So use this technique with care, possibly only ever locking single rows!

Pessimistic (shared) locking with the FOR SHARE clause

Some databases (MySQL, Postgres) also allow to issue a non-exclusive lock explicitly using a FOR SHARE clause. This is also supported by jOOQ

Optimistic locking in jOOQ

Note, that jOOQ also supports optimistic locking, if you're doing simple CRUD. This is documented in the section's manual about optimistic locking.

4.3.2.13. UNION, INTERSECTION and EXCEPT

SQL allows to perform set operations as understood in standard set theory on result sets. These operations include unions, intersections, subtractions. For two subselects to be combinable by such a set operator, each subselect must return a table expression of the same degree and type.
UNION and UNION ALL

These operators combine two results into one. While UNION removes all duplicate records resulting from this combination, UNION ALL leaves subselect results as they are. Typically, you should prefer UNION ALL over UNION, if you don’t really need to remove duplicates. The following example shows how to use such a UNION operation in jOOQ.

```
SELECT * FROM BOOK WHERE ID = 3
UNION ALL
SELECT * FROM BOOK WHERE ID = 5
```

create.selectFrom(BOOK).where(BOOK.ID.eq(3)).unionAll(
create.selectFrom(BOOK).where(BOOK.ID.eq(5)));

INTERSECT [ ALL ] and EXCEPT [ ALL ]

INTERSECT is the operation that produces only those values that are returned by both subselects. EXCEPT is the operation that returns only those values that are returned exclusively in the first subselect. Both operators will remove duplicates from their results. The SQL standard allows to specify the ALL keyword for both of these operators as well, but this is hardly supported in any database. jOOQ does not support INTERSECT ALL, EXEPT ALL operations either.

jOOQ's set operators and how they're different from standard SQL

As previously mentioned in the manual’s section about the ORDER BY clause, jOOQ has slightly changed the semantics of these set operators. While in SQL, a subselect may not contain any ORDER BY clause or LIMIT clause (unless you wrap the subselect into a derived table), jOOQ allows you to do so. In order to select both the youngest and the oldest author from the database, you can issue the following statement with jOOQ (rendered to the MySQL dialect):

```
(SELECT * FROM AUTHOR
ORDER BY DATE_OF_BIRTH ASC LIMIT 1)
UNION
(SELECT * FROM AUTHOR
ORDER BY DATE_OF_BIRTH DESC LIMIT 1)
```

create.selectFrom(AUTHOR)
.orderBy(AUTHOR.DATE_OF_BIRTH.asc()).limit(1)
.union(
create.selectFrom(AUTHOR)
.orderBy(AUTHOR.DATE_OF_BIRTH.desc()).limit(1));

Projection typesafety for degrees between 1 and 22

Two subselects that are combined by a set operator are required to be of the same degree and, in most databases, also of the same type. jOOQ 3.0's introduction of Typesafe Record[N] types helps compile-checking these constraints:

```
// Some sample SELECT statements
Select<Record2<Integer, String>> s1 = select(BOOK.ID, BOOK.TITLE).from(BOOK);
Select<Record1<Integer>> s2 = selectOne();
Select<Record2<Integer, Integer>> s3 = select(one(), zero());
Select<Record2<Integer, String>> s4 = select(one(), inline("abc"));

// Let's try to combine them:
s1.union(s2); // Doesn't compile because of a degree mismatch. Expected: Record2<...>, got: Record1<...>
s1.union(s3); // Doesn't compile because of a type mismatch. Expected: <Integer, String>, got: <Integer, Integer>
s1.union(s4); // OK. The two Record[N] types match
```
4.3.2.14. Oracle-style hints

If you are closely coupling your application to an Oracle (or CUBRID) database, you might need to be able to pass hints of the form /*+HINT*/ with your SQL statements to the Oracle database. For example:

```
SELECT /*+ALL_ROWS*/ FIRST_NAME, LAST_NAME
FROM AUTHOR
```

This can be done in jOOQ using the `.hint()` clause in your SELECT statement:

```java
create.select(AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME)
 .hint("/*+ALL_ROWS*/")
 .from(AUTHOR);
```

Note that you can pass any string in the `.hint()` clause. If you use that clause, the passed string will always be put in between the SELECT [DISTINCT] keywords and the actual projection list. This can be useful in other databases too, such as MySQL, for instance:

```sql
SELECT SQL_CALC_FOUND_ROWS field1, field2
FROM table1
```

```java
create.select(field1, field2)
 .hint("SQL_CALC_FOUND_ROWS")
 .from(table1);
```

4.3.2.15. Lexical and logical SELECT clause order

SQL has a lexical and a logical order of SELECT clauses. The lexical order of SELECT clauses is inspired by the English language. As SQL statements are commands for the database, it is natural to express a statement in an imperative tense, such as “SELECT this and that!”.

Logical SELECT clause order

The logical order of SELECT clauses, however, does not correspond to the syntax. In fact, the logical order is this:

- **The FROM clause**: First, all data sources are defined and joined
- **The WHERE clause**: Then, data is filtered as early as possible
- **The CONNECT BY clause**: Then, data is traversed iteratively or recursively, to produce new tuples
- **The GROUP BY clause**: Then, data is reduced to groups, possibly producing new tuples if grouping functions like ROLLUP(), CUBE(), GROUPING SETS() are used
- **The HAVING clause**: Then, data is filtered again
- **The SELECT clause**: Only now, the projection is evaluated. In case of a SELECT DISTINCT statement, data is further reduced to remove duplicates
- **The UNION clause**: Optionally, the above is repeated for several UNION-connected subqueries. Unless this is a UNION ALL clause, data is further reduced to remove duplicates
- **The ORDER BY clause**: Now, all remaining tuples are ordered
- **The LIMIT clause**: Then, a paginating view is created for the ordered tuples
- **The FOR UPDATE clause**: Finally, pessimistic locking is applied
The SQL Server documentation also explains this, with slightly different clauses:

- FROM
- ON
- JOIN
- WHERE
- GROUP BY
- WITH CUBE or WITH ROLLUP
- HAVING
- SELECT
- DISTINCT
- ORDER BY
- TOP

As can be seen, databases have to logically reorder a SQL statement in order to determine the best execution plan.

Alternative syntaxes: LINQ, SLICK

Some "higher-level" abstractions, such as C#'s LINQ or Scala's SLICK try to inverse the lexical order of SELECT clauses to what appears to be closer to the logical order. The obvious advantage of moving the SELECT clause to the end is the fact that the projection type, which is the record type returned by the SELECT statement can be re-used more easily in the target environment of the internal domain specific language.

A LINQ example:

```csharp
// LINQ-to-SQL looks somewhat similar to SQL
// AS clause // FROM clause
From p In db.Products
// WHERE clause
Where p.UnitsInStock <= p.ReorderLevel AndAlso Not p.Discontinued
// SELECT clause
Select p
```

A SLICK example:

```scala
// "for" is the "entry-point" to the DSL
val q = for {
 // FROM clause WHERE clause
 c <- Coffees if c.supID === 101
 // SELECT clause and projection to a tuple
 } yield (c.name, c.price)
```

While this looks like a good idea at first, it only complicates translation to more advanced SQL statements while impairing readability for those users that are used to writing SQL. jOOQ is designed to look just like SQL. This is specifically true for SLICK, which not only changed the SELECT clause order, but also heavily "integrated" SQL clauses with the Scala language.

For these reasons, the jOOQ DSL API is modelled in SQL's lexical order.
4.3.3. The INSERT statement

The INSERT statement is used to insert new records into a database table. Records can either be supplied using a VALUES() constructor, or a SELECT statement. jOOQ supports both types of INSERT statements. An example of an INSERT statement using a VALUES() constructor is given here:

```sql
INSERT INTO AUTHOR
(ID, FIRST_NAME, LAST_NAME)
VALUES (100, 'Hermann', 'Hesse');
```

```java
create.insertInto(AUTHOR,
 AUTHOR.ID, AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME)
 .values(100, "Hermann", "Hesse");
```

Note that for explicit degrees up to 22, the VALUES() constructor provides additional typesafety. The following example illustrates this:

```java
InsertValuesStep3<AuthorRecord, Integer, String, String> step =
 create.insertInto(AUTHOR, AUTHOR.ID, AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME);
step.values("A", "B", "C");
// ^^^ Doesn't compile, the expected type is Integer
```

**INSERT multiple rows with the VALUES() constructor**

The SQL standard specifies that multiple rows can be supplied to the VALUES() constructor in an INSERT statement. Here's an example of a multi-record INSERT:

```sql
INSERT INTO AUTHOR
(ID, FIRST_NAME, LAST_NAME)
VALUES (100, 'Hermann', 'Hesse'),
(101, 'Alfred', 'Döblin');
```

```java
create.insertInto(AUTHOR,
 AUTHOR.ID, AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME)
 .values(100, "Hermann", "Hesse")
 .values(101, "Alfred", "Döblin");
```

jOOQ tries to stay close to actual SQL. In detail, however, Java's expressiveness is limited. That's why the values() clause is repeated for every record in multi-record inserts.

Some RDBMS do not support inserting several records in a single statement. In those cases, jOOQ emulates multi-record INSERTs using the following SQL:

```sql
INSERT INTO AUTHOR
(ID, FIRST_NAME, LAST_NAME)
SELECT 100, 'Hermann', 'Hesse' FROM DUAL UNION ALL
SELECT 101, 'Alfred', 'Döblin' FROM DUAL;
```

```java
create.insertInto(AUTHOR,
 AUTHOR.ID, AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME)
 .values(100, "Hermann", "Hesse")
 .values(101, "Alfred", "Döblin");
```

**INSERT using jOOQ’s alternative syntax**

MySQL (and some other RDBMS) allow for using a non-SQL-standard, UPDATE-like syntax for INSERT statements. This is also supported in jOOQ (and emulated for all databases), should you prefer that syntax. The above INSERT statement can also be expressed as follows:

```java
create.insertInto(AUTHOR)
 .set(AUTHOR.ID, 100)
 .set(AUTHOR.FIRST_NAME, "Hermann")
 .set(AUTHOR.LAST_NAME, "Hesse")
 .newRecord()
 .set(AUTHOR.ID, 101)
 .set(AUTHOR.FIRST_NAME, "Alfred")
 .set(AUTHOR.LAST_NAME, "Döblin");
```
As you can see, this syntax is a bit more verbose, but also more readable, as every field can be matched with its value. Internally, the two syntaxes are strictly equivalent.

**MySQL's INSERT .. ON DUPLICATE KEY UPDATE**

The MySQL database supports a very convenient way to INSERT or UPDATE a record. This is a non-standard extension to the SQL syntax, which is supported by jOOQ and emulated in other RDBMS, where this is possible (e.g. if they support the SQL standard [MERGE statement](#)). Here is an example how to use the ON DUPLICATE KEY UPDATE clause:

```java
// Add a new author called "Koontz" with ID 3.
// If that ID is already present, update the author's name
create.insertInto(AUTHOR, AUTHOR.ID, AUTHOR.LAST_NAME)
 .values(3, "Koontz")
 .onDuplicateKeyUpdate()
 .set(AUTHOR.LAST_NAME, "Koontz");
```

**The synthetic ON DUPLICATE KEY IGNORE clause**

The MySQL database also supports an INSERT IGNORE INTO clause. This is supported by jOOQ using the more convenient SQL syntax variant of ON DUPLICATE KEY IGNORE, which can be equally emulated in other databases using a [MERGE statement](#):

```java
// Add a new author called "Koontz" with ID 3.
// If that ID is already present, ignore the INSERT statement
create.insertInto(AUTHOR, AUTHOR.ID, AUTHOR.LAST_NAME)
 .values(3, "Koontz")
 .onDuplicateKeyIgnore();
```

**Postgres's INSERT .. RETURNING**

The Postgres database has native support for an INSERT .. RETURNING clause. This is a very powerful concept that is emulated for all other dialects using JDBC's [getGeneratedKeys()](#) method. Take this example:

```java
// Add another author, with a generated ID
Record<?> record =
 create.insertInto(AUTHOR, AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME)
 .values("Charlotte", "Roche")
 .returning(AUTHOR.ID)
 .fetchOne();
System.out.println(record.getValue(AUTHOR.ID));
```

Some databases have poor support for returning generated keys after INSERTs. In those cases, jOOQ might need to issue another [SELECT statement](#) in order to fetch an @@identity value. Be aware, that this can lead to race-conditions in those databases that cannot properly return generated ID values. For more information, please consider the jOOQ Javadoc for the returning() clause.
The INSERT SELECT statement

In some occasions, you may prefer the INSERT SELECT syntax, for instance, when you copy records from one table to another:

```java
create.insertInto(AUTHOR_ARCHIVE)
 .select(create.selectFrom(AUTHOR).where(AUTHOR.DECEASED.isTrue()));
```

4.3.4. The UPDATE statement

The UPDATE statement is used to modify one or several pre-existing records in a database table. UPDATE statements are only possible on single tables. Support for multi-table updates will be implemented in the near future. An example update query is given here:

```java
create.update(AUTHOR)
 .set(AUTHOR.FIRST_NAME, "Hermann")
 .set(AUTHOR.LAST_NAME, "Hesse")
 .where(AUTHOR.ID.eq(3));
```

Most databases allow for using scalar subselects in UPDATE statements in one way or another. jOOQ models this through a `set(Field<T>, Select<? extends Record1<T>>)` method in the UPDATE DSL API:

```java
create.update(AUTHOR)
 .set(AUTHOR.FIRST_NAME,
 select(PERSON.FIRST_NAME)
 from(PERSON)
 where(PERSON.ID.eq(AUTHOR.ID)))
 .where(AUTHOR.ID.eq(3));
```

Using row value expressions in an UPDATE statement

jOOQ supports formal row value expressions in various contexts, among which the UPDATE statement. Only one row value expression can be updated at a time. Here’s an example:

```java
create.update(AUTHOR)
 .set(row(AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME),
 row("Herman", "Hesse"))
 .where(AUTHOR.ID.eq(3));
```

This can be particularly useful when using subselects:

```java
create.update(AUTHOR)
 .set(row(AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME),
 select(PERSON.FIRST_NAME, PERSON.LAST_NAME)
 from(PERSON)
 where(PERSON.ID.eq(AUTHOR.ID)))
 .where(AUTHOR.ID.eq(3));
```

The above row value expressions usages are completely typesafe.
UPDATE .. FROM

Some databases, including PostgreSQL and SQL Server, support joining additional tables to an UPDATE statement using a vendor-specific FROM clause. This is supported as well by jOOQ:

```
UPDATE BOOK_ARCHIVE
SET
 BOOK_ARCHIVE.TITLE = BOOK.TITLE
FROM BOOK
WHERE BOOK_ARCHIVE.ID = BOOK.ID
```

create.update(BOOK_ARCHIVE)
.set(BOOK_ARCHIVE.TITLE, BOOK.TITLE)
.from(BOOK)
.where(BOOK_ARCHIVE.ID.eq(BOOK.ID))
.execute();

In many cases, such a joined update statement can be emulated using a correlated subquery, or using updatable views.

UPDATE .. RETURNING

The Firebird and Postgres databases support a RETURNING clause on their UPDATE statements, similar as the RETURNING clause in INSERT statements. This is useful to fetch trigger-generated values in one go. An example is given here:

```
-- Fetch a trigger-generated value
UPDATE BOOK
SET TITLE = 'Animal Farm'
WHERE ID = 5
RETURNING TITLE
```

String title = create.update(BOOK)
.set(BOOK.TITLE, "Animal Farm")
.where(BOOK.ID.eq(5))
.returning(BOOK.TITLE)
.fetchOne().getValue(BOOK.TITLE);

The UPDATE .. RETURNING clause is currently not emulated for other databases. Future versions might execute an additional SELECT statement to fetch results.

4.3.5. The DELETE statement

The DELETE statement removes records from a database table. DELETE statements are only possible on single tables. Support for multi-table deletes will be implemented in the near future. An example delete query is given here:

```
DELETE AUTHOR
WHERE ID = 100;
```

create.delete(AUTHOR)
.where(AUTHOR.ID.eq(100));

4.3.6. The MERGE statement

The MERGE statement is one of the most advanced standardised SQL constructs, which is supported by DB2, HSQLDB, Oracle, SQL Server and Sybase (MySQL has the similar INSERT .. ON DUPLICATE KEY UPDATE construct)

The point of the standard MERGE statement is to take a TARGET table, and merge (INSERT, UPDATE) data from a SOURCE table into it. DB2, Oracle, SQL Server and Sybase also allow for DELETING some data and for adding many additional clauses. With jOOQ 3.3.4, only Oracle’s MERGE extensions are supported. Here is an example:
MERGE Statement (H2-specific syntax)

The H2 database ships with a somewhat less powerful but a little more intuitive syntax for its own version of the MERGE statement. An example more or less equivalent to the previous one can be seen here:

-- Check if there is already an author called 'Hitchcock'
-- If there is, rename him to John. If there isn't add him.
create.mergeInto(AUTHOR)
.on(AUTHOR.LAST_NAME.eq("Hitchcock"))
.whenMatchedThenUpdate().set(AUTHOR.FIRST_NAME, "John")
.whenNotMatchedThenInsert(AUTHOR.LAST_NAME)
.values("Hitchcock");

This syntax can be fully emulated by jOOQ for all other databases that support the SQL standard MERGE statement. For more information about the H2 MERGE syntax, see the documentation here: http://www.h2database.com/html/grammar.html#merge

Typesafety of VALUES() for degrees up to 22

Much like the INSERT statement, the MERGE statement's VALUES() clause provides typesafety for degrees up to 22, in both the standard syntax variant as well as the H2 variant.

4.3.7. The TRUNCATE statement

The TRUNCATE statement is the only DDL statement supported by jOOQ so far. It is popular in many databases when you want to bypass constraints for table truncation. Databases may behave differently, when a truncated table is referenced by other tables. For instance, they may fail if records from a truncated table are referenced, even with ON DELETE CASCADE clauses in place. Please, consider your database manual to learn more about its TRUNCATE implementation.

The TRUNCATE syntax is trivial:

create.truncate(AUTHOR).execute();

TRUNCATE is not supported by Ingres and SQLite. jOOQ will execute a DELETE FROM AUTHOR statement instead.

4.4. Table expressions

The following sections explain the various types of table expressions supported by jOOQ
4.4.1. Generated Tables

Most of the times, when thinking about a table expression you're probably thinking about an actual table in your database schema. If you're using jOOQ's code generator, you will have all tables from your database schema available to you as type safe Java objects. You can then use these tables in SQL FROM clauses, JOIN clauses or in other SQL statements, just like any other table expression. An example is given here:

```java
create.select()
 .from(AUTHOR) // Table expression AUTHOR
 .join(BOOK) // Table expression BOOK
 .on(AUTHOR.ID.eq(BOOK.AUTHOR_ID));
```

The above example shows how AUTHOR and BOOK tables are joined in a SELECT statement. It also shows how you can access table columns by dereferencing the relevant Java attributes of their tables. See the manual's section about generated tables for more information about what is really generated by the code generator.

4.4.2. Aliased Tables

The strength of jOOQ's code generator becomes more obvious when you perform table aliasing and dereference fields from generated aliased tables. This can best be shown by example:

```java
-- Select all books by authors born after 1920, -- named "Paulo" from a catalogue:
SELECT *
FROM author a
JOIN book b ON a.id = b.author_id
WHERE a.year_of_birth > 1920
AND a.first_name = 'Paulo'
ORDER BY b.title

// Declare your aliases before using them in SQL:
Author a = AUTHOR.as("a");
Book b = BOOK.as("b");

// Use aliased tables in your statement
create.select()
 .from(a)
 .join(b).on(a.ID.eq(b.AUTHOR_ID))
 .where(a.YEAR_OF_BIRTH.gt(1920)
 .and(a.FIRST_NAME.eq("Paulo")))
 .orderBy(b.TITLE);
```

As you can see in the above example, calling as() on generated tables returns an object of the same type as the table. This means that the resulting object can be used to dereference fields from the aliased table. This is quite powerful in terms of having your Java compiler check the syntax of your SQL statements. If you remove a column from a table, dereferencing that column from that table alias will cause compilation errors.

Dereferencing columns from other table expressions

Only few table expressions provide the SQL syntax typesafety as shown above, where generated tables are used. Most tables, however, expose their fields through field() methods:

```java
// "Type-unsafe" aliased table:
Table<?> a = AUTHOR.as("a");

// Get fields from a:
Field<?> id = a.field("ID");
Field<?> firstName = a.field("FIRST_NAME");
```
Derived column lists

The SQL standard specifies how a table can be renamed / aliased in one go along with its columns. It references the term "derived column list" for the following syntax (as supported by Postgres, for instance):

```sql
SELECT t.a, t.b
FROM (SELECT 1, 2
) t(a, b)
```

This feature is useful in various use-cases where column names are not known in advance (but the table's degree is!). An example for this are unnested tables, or the VALUES() table constructor:

```sql
-- Unnested tables
SELECT t.a, t.b
FROM unnest(my_table_function()) t(a, b)

-- VALUES() constructor
SELECT t.a, t.b
FROM VALUES(1, 2),(3, 4) t(a, b)
```

Only few databases really support such a syntax, but fortunately, jOOQ can emulate it easily using UNION ALL and an empty dummy record specifying the new column names. The two statements are equivalent:

```sql
-- Using derived column lists
SELECT t.a, t.b
FROM (SELECT 1, 2
) t(a, b)

-- Using UNION ALL and a dummy record
SELECT t.a, t.b
FROM (SELECT null a, null b FROM DUAL WHERE 1 = 0
UNION ALL
SELECT 1, 2 FROM DUAL
) t
```

In jOOQ, you would simply specify a varargs list of column aliases as such:

```java
// Unnested tables
create.select().from(unnest(myTableFunction()).as("t", "a", "b"));

// VALUES() constructor
create.select().from(values(row(1, 2), row(3, 4)).as("t", "a", "b"));
```

Unnamed derived tables

The `org.jooq.Table` type can reference a derived table:

```sql
-- Derived table
(SELECT 1 AS a)

// Derived table
table(select(inline(1).as("a")));
```

Most databases do not support unnamed derived tables, they require an explicit alias. If you do not provide jOOQ with such an explicit alias, an alias will be generated based on the derived table's content, to make sure the generated SQL will be syntactically correct. The generated alias is not specified and should not be referenced explicitly.
4.4.3. Joined tables

The JOIN operators that can be used in SQL SELECT statements are the most powerful and best supported means of creating new table expressions in SQL.

This section will explain the different types of join:

- CROSS JOIN: A cross product
- INNER JOIN: A cross product filtering on matches
- OUTER JOIN: A cross product filtering on matches, additionally producing some unmatched rows
- SEMI JOIN: A check for existence of rows from one table in another table (using EXISTS or IN)
- ANTI JOIN: A check for non-existence of rows from one table in another table (using NOT EXISTS or some conditions NOT IN)

... as well as the different types of forming join predicates:

- ON: Expressing join predicates explicitly
- ON KEY: Expressing join predicates explicitly or implicitly based on a FOREIGN KEY
- USING: Expressing join predicates implicitly based on an explicit set of shared column names in both tables
- NATURAL: Expressing join predicates implicitly based on an implicit set of shared column names in both tables

... and then, there are additional ways to enrich joins:

- APPLY or LATERAL: Ordering the join tree from left to right, allowing the right side to access rows from the left side
- PARTITION BY on OUTER JOIN: To fill the gaps in a report that uses OUTER JOIN

All of these approaches are available twice in the jOOQ API:

- On the org.jooq.Table API, where they form binary operators
- On the SELECT API, where they are offered as convenience in jOOQ's DSL, to tame the parentheses

4.4.3.1. CROSS JOIN

A CROSS JOIN creates a cartesian product or cross product between the two tables it joins. It does not allow for any join predicates to be specified.

It is an occasionally useful operator in reporting, when every element of one set need to be combined with every element of another set. For example, when you want to produce a report combining employees and weekdays, and then do something with the resulting table:
SELECT EMPLOYEE.NAME, WEEKDAY.NAME
FROM EMPLOYEE
CROSS JOIN WEEKDAY
create.select(EMPLOYEE.NAME, WEEKDAY.NAME)
  .from(EMPLOYEE)
  .crossJoin(WEEKDAY)
  .fetch();

Some example output might be:

<table>
<thead>
<tr>
<th>EMPLOYEE.NAME</th>
<th>WEEKDAY.NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jon</td>
<td>Monday</td>
</tr>
<tr>
<td>Jon</td>
<td>Tuesday</td>
</tr>
<tr>
<td>Jon</td>
<td>Wednesday</td>
</tr>
<tr>
<td>Jon</td>
<td>Thursday</td>
</tr>
<tr>
<td>Jon</td>
<td>Friday</td>
</tr>
<tr>
<td>Jon</td>
<td>Saturday</td>
</tr>
<tr>
<td>Jon</td>
<td>Sunday</td>
</tr>
<tr>
<td>Jane</td>
<td>Monday</td>
</tr>
<tr>
<td>Jane</td>
<td>Tuesday</td>
</tr>
<tr>
<td>Jane</td>
<td>Wednesday</td>
</tr>
<tr>
<td>Jane</td>
<td>Thursday</td>
</tr>
<tr>
<td>Jane</td>
<td>Friday</td>
</tr>
<tr>
<td>Jane</td>
<td>Saturday</td>
</tr>
<tr>
<td>Jane</td>
<td>Sunday</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Table lists

Note that a CROSS JOIN is functionally (but not syntactically) equivalent to a table list that you can provide in the FROM clause:

SELECT EMPLOYEE.NAME, WEEKDAY.NAME
FROM EMPLOYEE, WEEKDAY
create.select(EMPLOYEE.NAME, WEEKDAY.NAME)
  .from(EMPLOYEE, WEEKDAY)
  .fetch();

It is usually recommended to prefer the CROSS JOIN syntax in order to clearly communicate intent.

4.4.3.2. INNER JOIN

An INNER JOIN or just JOIN works like a CROSS JOIN, but adds a predicate of some sort filtering out unwanted combinations. This is the most popular way to join tables, as we hardly ever want to combine arbitrary rows from both tables, but the ones that have some relationship with each other, e.g. a FOREIGN KEY reference match.

SELECT *
FROM AUTHOR
JOIN BOOK ON BOOK.AUTHOR_ID = AUTHOR.ID
create.select()
  .from(AUTHOR)
  .join(BOOK).on(BOOK.AUTHOR_ID.eq(AUTHOR.ID))
  .fetch();

The above query will return all authors and their books. True to the nature of an INNER JOIN, authors without books are excluded as well as books without authors (if the FOREIGN KEY is optional).

The result might look like this:
In the example, we're using the **ON clause** to form the JOIN predicate, but other options will be discussed in later sections as well.

The **INNER** keyword is optional both in SQL and in jOOQ, and does not affect the query semantics at all.

### 4.4.3.3. OUTER JOIN

OUTER JOIN allows for producing some additional rows when an **INNER JOIN** does not match. There are 3 types of OUTER JOIN:

- **LEFT JOIN** or **LEFT OUTER JOIN**: Always produce *all* rows from the left side of the join, and only matched rows from the right side of the join
- **RIGHT JOIN** or **RIGHT OUTER JOIN**: Always produce *all* rows from the right side of the join, and only matched rows from the left side of the join
- **FULL JOIN** or **FULL OUTER JOIN**: Always produce *all* rows from both left and right side of the join

The **OUTER** keyword is optional both in SQL and in jOOQ, and does not affect the query semantics at all. This is best explained by example.

#### LEFT JOIN

LEFT JOIN is the most popular among the OUTER JOIN types.

The following query produces *all* authors, and possibly, their books:

```
SELECT
 AUTHOR.FIRST_NAME,
 AUTHOR.LAST_NAME,
 BOOK.TITLE
FROM AUTHOR
LEFT JOIN BOOK ON BOOK.AUTHOR_ID = AUTHOR.ID
```

The result might look like this:

<table>
<thead>
<tr>
<th>FIRST_NAME</th>
<th>LAST_NAME</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>George</td>
<td>Orwell</td>
<td>1984</td>
</tr>
<tr>
<td>George</td>
<td>Orwell</td>
<td>Animal Farm</td>
</tr>
<tr>
<td>Paulo</td>
<td>Coelho</td>
<td>O Alquimista</td>
</tr>
<tr>
<td>Paulo</td>
<td>Coelho</td>
<td>Brida</td>
</tr>
</tbody>
</table>

As can be seen, *all* rows from the **left** side of the join (authors) are produced, including the ones that do not have any matches on the right side of the join (books). We don't have any books for Jane Austen yet, but Jane Austen is in the result set. She wouldn't be if this were an **INNER JOIN**.
RIGHT JOIN

RIGHT JOIN is just the inverse of a LEFT JOIN, and is hardly ever used. The following query produces all books, and possibly, their authors:

```
SELECT
 AUTHOR.FIRST_NAME,
 AUTHOR.LAST_NAME,
 BOOK.TITLE
FROM AUTHOR
RIGHT JOIN BOOK ON BOOK.AUTHOR_ID = AUTHOR.ID
create.select(
 AUTHOR.FIRST_NAME,
 AUTHOR.LAST_NAME,
 BOOK.TITLE)
 .from(AUTHOR)
 .rightJoin(BOOK).on(BOOK.AUTHOR_ID.eq(AUTHOR.ID))
 .fetch();
```

The result might look like this:

```
+------------+-----------+--------------------+
<table>
<thead>
<tr>
<th>FIRST_NAME</th>
<th>LAST_NAME</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>George</td>
<td>Orwell</td>
<td>1984</td>
</tr>
<tr>
<td>George</td>
<td>Orwell</td>
<td>Animal Farm</td>
</tr>
<tr>
<td>Paulo</td>
<td>Coelho</td>
<td>O Alquimista</td>
</tr>
</tbody>
</table>
| Paulo | Coelho | Brida | <- Above rows are also produced by INNER JOIN
| | | The Arabian Nights | <- This row is only produced by RIGHT JOIN or FULL JOIN
+------------+-----------+--------------------+
```

As can be seen, all rows from the right side of the join (books) are produced, including the ones that do not have any matches on the left side of the join (authors). The Arabian Night does not have a specific author, but it is still in the result set. It wouldn’t be if this were an INNER JOIN.

Not that a RIGHT JOIN is just an inversed LEFT JOIN, and you would be much more likely to write the same query like this, with no semantic difference:

```
SELECT
 AUTHOR.FIRST_NAME,
 AUTHOR.LAST_NAME,
 BOOK.TITLE
FROM BOOK
LEFT JOIN AUTHOR ON BOOK.AUTHOR_ID = AUTHOR.ID
create.select(
 AUTHOR.FIRST_NAME,
 AUTHOR.LAST_NAME,
 BOOK.TITLE)
 .from(BOOK)
 .leftJoin(AUTHOR).on(BOOK.AUTHOR_ID.eq(AUTHOR.ID))
 .fetch();
```

There are complex join trees where a RIGHT JOIN may make things simpler, but in most cases, it only complicates readability and maintainability of your query.

FULL JOIN

FULL JOIN is an occasionally useful way to join two tables when no rows from either table should be omitted. This can be useful e.g. to compare two data sets. The following query produces all authors and all books:

```
SELECT
 AUTHOR.FIRST_NAME,
 AUTHOR.LAST_NAME,
 BOOK.TITLE
FROM AUTHOR
FULL JOIN BOOK ON BOOK.AUTHOR_ID = AUTHOR.ID
create.select(
 AUTHOR.FIRST_NAME,
 AUTHOR.LAST_NAME,
 BOOK.TITLE)
 .from(AUTHOR)
 .fullJoin(BOOK).on(BOOK.AUTHOR_ID.eq(AUTHOR.ID))
 .fetch();
```

The result might look like this:
As can be seen, all rows from the left side of the join (authors) as well as from the right side of the join (books) are produced, including the ones that do not have any matches on the respective other side of the join.

### 4.4.3.4. SEMI JOIN

Relational algebra defines a SEMI JOIN operation that regrettably didn't make it into standard SQL (yet), though it is easy to emulate using the EXISTS predicate or IN predicate, which is what most people are doing.

jOOQ offers a convenient LEFT SEMI JOIN operator to match the relational algebra semantics. The following query will produce all authors that have books (but doesn't produce any books):

```sql
create.select(
 AUTHOR.FIRST_NAME,
 AUTHOR.LAST_NAME
).from(AUTHOR)
.leftSemiJoin(BOOK).on(BOOK.AUTHOR_ID.eq(AUTHOR.ID))
.fetch();
```

The result might look like this:

```
+------------+-----------+
| FIRST_NAME | LAST_NAME |
+------------+-----------+
| George | Orwell |
| Paulo | Coelho |
```

Of course, you can form an equivalent query using EXISTS or IN as well in jOOQ. It is also possible to achieve SEMI JOIN semantics by using an INNER JOIN, and possibly the SELECT DISTINCT clause, but chances are, that query is slower and incorrect (e.g. removing too many distinct rows). A SEMI JOIN both using jOOQ's convenience syntax or the equivalent SQL emulation using EXISTS or IN are semantically more precise and should be preferred.

SEMI JOIN is the inverse of the ANTI JOIN operator.

### 4.4.3.5. ANTI JOIN

Relational algebra defines an ANTI JOIN operation that regrettably didn't make it into standard SQL (yet), though it is easy to emulate using the NOT EXISTS predicate. Unlike SEMI JOIN, it is not advised to use the NOT IN predicate to emulate ANTI JOIN, because that risks being incorrect in the presence of NULL values, a mistake that can be very subtle and thus hard to find.

jOOQ offers a convenient LEFT ANTI JOIN operator to match the relational algebra semantics. The following query will produce all authors that have no books:
The jOOQ User Manual

4.4.3.6. ON clause

The result might look like this, i.e. we might have an author Jane Austen in our database, but we don't have any books for her yet:

<table>
<thead>
<tr>
<th>FIRST_NAME</th>
<th>LAST_NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jane</td>
<td>Austen</td>
</tr>
</tbody>
</table>

Of course, you can form an equivalent query using NOT EXISTS as well in jOOQ. It is also possible to achieve ANTI JOIN semantics by using an LEFT JOIN and a NULL predicate on the anti joined table's primary key placed outside of the ON clause, though that might be a bit esoteric and hard to read:

SELECT
  AUTHOR.FIRST_NAME,
  AUTHOR.LAST_NAME
FROM AUTHOR
LEFT JOIN BOOK ON BOOK.AUTHOR_ID = AUTHOR.ID
WHERE BOOK.ID IS NULL
create.select()
  .from(AUTHOR)
  .leftJoin(BOOK).on(BOOK.AUTHOR_ID.eq(AUTHOR.ID))
  .where(BOOK.ID.isNull())
  .fetch();

Think of the LEFT JOIN example result:

<table>
<thead>
<tr>
<th>FIRST_NAME</th>
<th>LAST_NAME</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>George</td>
<td>Orwell</td>
<td>1984</td>
</tr>
<tr>
<td>George</td>
<td>Orwell</td>
<td>Animal Farm</td>
</tr>
<tr>
<td>Paulo</td>
<td>Coelho</td>
<td>O Alquimista</td>
</tr>
<tr>
<td>Paulo</td>
<td>Coelho</td>
<td>Brida</td>
</tr>
<tr>
<td>Jane</td>
<td>Austen</td>
<td></td>
</tr>
</tbody>
</table>

As can be seen, no DISTINCT is required to remove duplicates, because there's always only 1 row for an author without books.

ANTI JOIN is the inverse of the SEMI JOIN operator.

4.4.3.6. ON clause

All of INNER JOIN, OUTER JOIN, SEMI JOIN, ANTI JOIN require a join predicate.

One way to supply this join predicate is the ON clause, which offers most flexibility. The following example shows how to "equi join" the author and books tables based on their FOREIGN KEY relationship:

SELECT *
FROM AUTHOR
JOIN BOOK ON BOOK.AUTHOR_ID = AUTHOR.ID
create.select()
  .from(AUTHOR)
  .join(BOOK).on(BOOK.AUTHOR_ID.eq(AUTHOR.ID))
  .fetch();

But in most dialects, any type of join predicate is possible in ON to specify what rows should be produced by the join operation. Note that while for INNERJOIN, the predicates in the ON clause and the predicates in the WHERE clause have the same effect, this isn't true for all the other join types, including OUTER.
JOIN, SEMI JOIN, ANTI JOIN. For example, the following query will list all authors and their books, but only if the book was published before the year 1950:

```
SELECT *
FROM AUTHOR
LEFT JOIN BOOK
ON BOOK.AUTHOR_ID = AUTHOR.ID
AND BOOK.PUBLISHED_IN < 1950
```

The result might look like this:

```
<table>
<thead>
<tr>
<th>FIRST_NAME</th>
<th>LAST_NAME</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>George</td>
<td>Orwell</td>
<td>1984</td>
</tr>
<tr>
<td>George</td>
<td>Orwell</td>
<td>Animal Farm</td>
</tr>
<tr>
<td>Paulo</td>
<td>Coelho</td>
<td></td>
</tr>
</tbody>
</table>
```

We still get all the authors, but only the books that fulfil the ON predicate. This is very different from putting that additional predicate in the WHERE clause:

```
SELECT *
FROM AUTHOR
LEFT JOIN BOOK
ON BOOK.AUTHOR_ID = AUTHOR.ID
WHERE BOOK.PUBLISHED_IN < 1950
```

The result might now look like this:

```
<table>
<thead>
<tr>
<th>FIRST_NAME</th>
<th>LAST_NAME</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>George</td>
<td>Orwell</td>
<td>1984</td>
</tr>
<tr>
<td>George</td>
<td>Orwell</td>
<td>Animal Farm</td>
</tr>
</tbody>
</table>
```

Now the predicate is applied after the join operator, not as a part of the join operator, so it's just an ordinary predicate.

4.4.3.7. ON KEY clause

All of INNER JOIN, OUTER JOIN, SEMI JOIN, ANTI JOIN require a join predicate.

One way to supply this join predicate is the ON KEY clause, which allows for conveniently joining two tables based on their FOREIGN KEY relationship, assuming the relevant meta data is known to jOOQ via code generation:

```
SELECT *
FROM AUTHOR
JOIN BOOK ON BOOK.AUTHOR_ID = AUTHOR.ID
```

There are different overloads of this onKey() method. The above one is applicable when there are no ambiguous paths between the two joined tables. If there are several FOREIGN KEY declarations (e.g. a book has an AUTHOR_ID and a CO_AUTHOR_ID), then you can pass the org.jooq.ForeignKey reference to the method, instead, to resolve the ambiguity.
4.4.3.8. USING clause

All of **INNER JOIN, OUTER JOIN, SEMI JOIN, ANTI JOIN** require a join predicate. One way to supply this join predicate is the USING clause, which allows for specifying a set of column names that are common to both tables, based on which to form a join predicate. Assuming we called our AUTHOR.ID column AUTHOR.AUTHOR_ID instead:

```java
create.select()
 .from(AUTHOR)
 .join(BOOK).using(AUTHOR.AUTHOR_ID)
 .fetch();
```

There is a certain risk of ambiguities as well in more complex join trees, but in simple cases, this can be a very convenient way to join tables if you design your schema accordingly. The is a good example where all FOREIGN KEY columns share the referenced PRIMARY KEY column's names.

4.4.3.9. NATURAL clause

All of **INNER JOIN, OUTER JOIN, SEMI JOIN, ANTI JOIN** require a join predicate. One way to supply this join predicate is the NATURAL clause, which works like **USING clause**, except that it discovers shared column names implicitly from the table metadata. Assuming we called our AUTHOR.ID column AUTHOR.AUTHOR_ID instead:

```java
create.select()
 .from(AUTHOR)
 .naturalJoin(BOOK)
 .fetch();
```

There is a high risk of ambiguities even in simple join trees, which is why this syntax is hardly ever used. It can be very rarely useful combined with **FULL JOIN** to form a **NATURAL FULL JOIN**, which can create a sort of SQL-style untagged union type between two row types. A bit esoteric for every day usage.

4.4.3.10. PARTITION BY

Standard SQL (e.g. implemented by Oracle) ships with a special syntax available for **OUTER JOIN** clauses. This can be used to fill gaps for simplified analytical calculations. jOOQ only supports putting the PARTITION BY clause to the right of the OUTER JOIN clause. The following example will create at least one record per AUTHOR and per existing value in BOOK.PUBLISHED_IN, regardless if an AUTHOR has actually published a book in that year.
4.4.4. The VALUES() table constructor

Some databases allow for expressing in-memory temporary tables using a VALUES() constructor. This constructor usually works the same way as the VALUES() clause known from the INSERT statement or from the MERGE statement. With jOOQ, you can also use the VALUES() table constructor, to create tables that can be used in a SELECT statement’s FROM clause:

```java
create.select()
 .from(AUTHOR)
 .leftOuterJoin(BOOK)
 .partitionBy(BOOK.PUBLISHED_IN)
 .on(BOOK.AUTHOR_ID.eq(AUTHOR.ID))
 .fetch();
```

Note, that it is usually quite useful to provide column aliases ("derived column lists") along with the table alias for the VALUES() constructor.

The above statement is emulated by jOOQ for those databases that do not support the VALUES() constructor, natively (actual emulations may vary):

```java
-- If derived column expressions are supported:
SELECT a, b
FROM (SELECT 1, 'a' FROM DUAL UNION ALL
 SELECT 2, 'b' FROM DUAL)
 t(a, b);

-- If derived column expressions are not supported:
SELECT a, b
FROM {
 -- An empty dummy record is added to provide column names for the emulated derived column expression
 SELECT NULL a, NULL b FROM DUAL WHERE 1 = 0 UNION ALL
 -- Then, the actual VALUES() constructor is emulated
 SELECT 1, 'a' FROM DUAL UNION ALL
 SELECT 2, 'b' FROM DUAL
} t
```

4.4.5. Derived tables

A derived table is a nested SELECT in the FROM clause, i.e. it can be used as a table expression. As such, it works differently from a scalar subquery, which is a column expression.
4.4.6. The Oracle 11g PIVOT clause

If you are closely coupling your application to an Oracle database, you can take advantage of some Oracle-specific features, such as the PIVOT clause, used for statistical analyses. The formal syntax definition is as follows:

```sql
-- SELECT ..
FROM table PIVOT (aggregateFunction [, aggregateFunction] FOR column IN (expression [, expression]))
-- WHERE ..
```

The PIVOT clause is available from the `org.jooq.Table` type, as pivoting is done directly on a table. Currently, only Oracle's PIVOT clause is supported. Support for SQL Server's slightly different PIVOT clause will be added later. Also, jOOQ may emulate PIVOT for other dialects in the future.

4.4.7. jOOQ's relational division syntax

There is one operation in relational algebra that is not given a lot of attention, because it is rarely used in real-world applications. It is the relational division, the opposite operation of the cross product (or, relational multiplication). The following is an approximate definition of a relational division:

Assume the following cross join / cartesian product:

$$C = A \times B$$

Then it can be said that:

$$A = C \div B$$

$$B = C \div A$$

With jOOQ, you can simplify using relational divisions by using the following syntax:

```java
C.divideBy(B).on(C.ID.eq(B.C_ID)).returning(C.TEXT)
```

The above roughly translates to:

```sql
SELECT DISTINCT C.TEXT FROM C "c1"
WHERE NOT EXISTS (SELECT 1 FROM B WHERE NOT EXISTS (SELECT 1 FROM C "c2" WHERE "c2".TEXT = "c1".TEXT AND "c2".ID = B.C_ID))
```

Or in plain text: Find those TEXT values in C whose ID's correspond to all ID's in B. Note that from the above SQL statement, it is immediately clear that proper indexing is of the essence. Be sure to have indexes on all columns referenced from the on(...) and returning(...) clauses.

For more information about relational division and some nice, real-life examples, see:

4.4.8. Array and cursor unnesting

The SQL standard specifies how SQL databases should implement ARRAY and TABLE types, as well as CURSOR types. Put simply, a CURSOR is a pointer to any materialised table expression. Depending on the cursor's features, this table expression can be scrolled through in both directions, records can be locked, updated, removed, inserted, etc. Often, CURSOR types contain records, whereas ARRAY and TABLE types contain simple scalar values, although that is not a requirement.

ARRAY types in SQL are similar to Java's array types. They contain a "component type" or "element type" and a "dimension". This sort of ARRAY type is implemented in H2, HSQLDB and Postgres and supported by jOOQ as such. Oracle uses strongly-typed arrays, which means that an ARRAY type (VARRAY or TABLE type) has a name and possibly a maximum capacity associated with it.

Unnesting array and cursor types

The real power of these types become more obvious when you fetch them from stored procedures to unnest them as table expressions and use them in your FROM clause. An example is given here, where Oracle's DBMS_XPLAN package is used to fetch a cursor containing data about the most recent execution plan:

```sql
SELECT *
FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR(null, null, 'ALLSTATS'))
```

Note, in order to access the DbmsXplan package, you can use the code generator to generate Oracle's SYS schema.

4.4.9. The DUAL table

The SQL standard specifies that the FROM clause is optional in a SELECT statement. However, according to the standard, you may then no longer use some other clauses, such as the WHERE clause. In the real world, there exist three types of databases:

- The ones that always require a FROM clause (as required by the SQL standard)
- The ones that never require a FROM clause (and still allow a WHERE clause)
- The ones that require a FROM clause only with a WHERE clause, GROUP BY clause, or HAVING clause

With jOOQ, you don't have to worry about the above distinction of SQL dialects. jOOQ never requires a FROM clause, but renders the necessary "DUAL" table, if needed. The following program shows how jOOQ renders "DUAL" tables.
Note, that some databases (H2, MySQL) can normally do without "DUAL". However, there exist some corner-cases with complex nested SELECT statements, where this will cause syntax errors (or parser bugs). To stay on the safe side, jOOQ will always render "dual" in those dialects.

4.5. Column expressions

Column expressions can be used in various SQL clauses in order to refer to one or several columns. This chapter explains how to form various types of column expressions with jOOQ. A particular type of column expression is given in the section about tuples or row value expressions, where an expression may have a degree of more than one.

Using column expressions in jOOQ

jOOQ allows you to freely create arbitrary column expressions using a fluent expression construction API. Many expressions can be formed as functions from DSL methods, other expressions can be formed based on a pre-existing column expression. For example:

```java
// A regular table column expression
Field<String> field1 = BOOK.TITLE;

// A function created from the DSL
Field<String> field2 = trim(BOOK.TITLE);

// More complex function with advanced DSL syntax
Field<String> field4 = listAgg(BOOK.TITLE)
 .withinGroupOrderBy(BOOK.ID.asc())
 .over().partitionBy(AUTHOR.ID);
```

4.5.1. Table columns

Table columns are the most simple implementations of a column expression. They are mainly produced by jOOQ’s code generator and can be dereferenced from the generated tables. This manual is full of examples involving table columns. Another example is given in this query:

```java
SELECT BOOK.ID, BOOK.TITLE
FROM BOOK
WHERE BOOK.TITLE LIKE 'SQL%'
ORDER BY BOOK.TITLE
```

Table columns implement a more specific interface called `org.jooq.TableField`, which is parameterised with its associated <R extends Record> record type.
See the manual's section about generated tables for more information about what is really generated by the code generator.

4.5.2. Aliased columns

Just like tables, columns can be renamed using aliases. Here is an example:

```
SELECT FIRST_NAME || ' ' || LAST_NAME author, COUNT(*) books
FROM AUTHOR
JOIN BOOK ON AUTHOR.ID = AUTHOR_ID
GROUP BY FIRST_NAME, LAST_NAME;
```

Here is how it's done with jOOQ:

```
Record record = create.select(
 concat(AUTHOR.FIRST_NAME, inline(" "), AUTHOR.LAST_NAME).as("author"),
 count().as("books")
).from(AUTHOR)
.join(BOOK).on(AUTHOR.ID.eq(BOOK.AUTHOR_ID))
.groupBy(AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME).fetchAny();
```

When you alias Fields like above, you can access those Fields' values using the alias name:

```
System.out.println("Author : " + record.getValue("author");
System.out.println("Books : " + record.getValue("books");
```

Unnamed column expressions

In most SQL databases, aliasing of column expressions in top level selects is optional. The database will generate a column name that is roughly based on the expression for documentation purposes (e.g. when running the query in a tool like SQL Developer), but applications cannot rely on the name explicitly. This is not a problem as columns can still be referenced by index.

In a similar fashion, jOOQ will assume an unspecified, generated column name for column expressions, based on their content.

```
// Arithmetic expression
inline(1).plus(inline(2));
// Correlated subquery
field(select(inline(1).as("a")));
```

These unnamed expressions can be used both in SQL as well as with jOOQ. However, do note that jOOQ will use Field.getName() to extract this column name from the field, when referencing the field or when nesting it in derived tables. In order to stay in full control of any such column names, it is always a good idea to provide explicit aliasing for column expressions, both in SQL as well as in jOOQ.

4.5.3. Cast expressions

jOOQ's source code generator tries to find the most accurate type mapping between your vendor-specific data types and a matching Java type. For instance, most VARCHAR, CHAR, CLOB types will map to String. Most BINARY, BYTEA, BLOB types will map to byte[]. NUMERIC types will default to

Sometimes, this automatic mapping might not be what you needed, or jOOQ cannot know the type of a field. In those cases you would write SQL type CAST like this:

```sql
-- Let's say, your Postgres column LAST_NAME was VARCHAR(30)
-- Then you could do this:
SELECT CAST(AUTHOR.LAST_NAME AS TEXT) FROM DUAL
```

in jOOQ, you can write something like that:

```java
create.select(AUTHOR.LAST_NAME.cast(String.class));
```

The same thing can be achieved by casting a Field directly to String.class, as VARCHAR is the default SQLDataType to map to Java's String

```java
create.select(AUTHOR.LAST_NAME.cast(VARCHAR(100)));
```

The complete CAST API in org.jooq.Field consists of these three methods:

```java
generic interface Field<T> {
 // Cast this field to the type of another field
 <Z> Field<Z> cast(Field<Z> field);
 // Cast this field to a given DataType
 <Z> Field<Z> cast(DataType<Z> type);
 // Cast this field to the default DataType for a given Class
 <Z> Field<Z> cast(Class<? extends Z> type);
}
```

A slightly different use case than CAST expressions are data type coercions, which are not rendered through to generated SQL. Sometimes, you may want to pretend that a numeric value is really treated as a string value, for instance when binding a numeric bind value:

```java
Field<String> field1 = val(1).coerce(String.class);
Field<Integer> field2 = val("1").coerce(Integer.class);
```

In the above example, field1 will be treated by jOOQ as a Field<String>, binding the numeric literal 1 as a VARCHAR value. The same applies to field2, whose string literal "1" will be bound as an INTEGER value.

This technique is better than performing unsafe or rawtype casting in Java, if you cannot access the "right" field type from any given expression.
4.5.5. Arithmetic expressions

Numeric arithmetic expressions

Your database can do the math for you. Arithmetic operations are implemented just like numeric functions, with similar limitations as far as type restrictions are concerned. You can use any of these operators:

+  -  *  /  %%

In order to express a SQL query like this one:

```
SELECT ((1 + 2) * (5 - 3) / 2) % 10 FROM DUAL
```

You can write something like this in jOOQ:

```
create.select(val(1).add(2).mul(val(5).sub(3)).div(2).mod(10));
```

Operator precedence

jOOQ does not know any operator precedence (see also boolean operator precedence). All operations are evaluated from left to right, as with any object-oriented API. The two following expressions are the same:

```
val(1).add(2) .mul(val(5).sub(3)) .div(2) .mod(10);
```

```
(((val(1).add(2)).mul(val(5).sub(3))).div(2)).mod(10);
```

Datetime arithmetic expressions

jOOQ also supports the Oracle-style syntax for adding days to a Field<? extends java.util.Date>

```
SELECT SYSDATE + 3 FROM DUAL;
```

```
create.select(currentTimestamp().add(3));
```

For more advanced datetime arithmetic, use the DSL's timestampDiff() and dateDiff() functions, as well as jOOQ's built-in SQL standard INTERVAL data type support:

- INTERVAL YEAR TO MONTH: org.jooq.types.YearToMonth
- INTERVAL DAY TO SECOND: org.jooq.types.DayToSecond
4.5.6. String concatenation

The SQL standard defines the concatenation operator to be an infix operator, similar to the ones we've seen in the chapter about arithmetic expressions. This operator looks like this: `||`. Some other dialects do not support this operator, but expect a `concat()` function, instead. jOOQ renders the right operator / function, depending on your SQL dialect:

```
SELECT 'A' || 'B' || 'C' FROM DUAL
-- Or in MySQL:
SELECT concat('A', 'B', 'C') FROM DUAL
```

4.5.7. Case sensitivity with strings

Most databases allow for specifying a COLLATION which allows for re-defining the ordering of string values. By default, ASCII, ISO, or Unicode encodings are applied to character data, and ordering is applied according to the respective encoding.

Sometimes, however, certain queries like to ignore parts of the encoding by treating upper-case and lower-case characters alike, such that ABC = abc, or such that ABC, jkl, XyZ are an ordered list of strings (case-insensitively).

For these ad-hoc ordering use-cases, most people resort to using LOWER() or UPPER() as follows:

```
-- Case-insensitive filtering:
SELECT * FROM BOOK
WHERE upper(TITLE) = 'ANIMAL FARM'
-- Case-insensitive ordering:
SELECT *
FROM AUTHOR
ORDER BY upper(FIRST_NAME), upper(LAST_NAME)
```

4.5.8. General functions

There are a variety of general functions supported by jOOQ. As discussed in the chapter about SQL dialects functions are mostly emulated in your database, in case they are not natively supported.

4.5.8.1. COALESCE

The `COALESCE()` function produces the first non-NULL value from the variadic list of arguments.

```
SELECT coalesce(null, null, 1);
create.select(coalesce(null, null, 1)).fetch();
```

The result being
### Dialect support

This example using jOOQ:

```sql
coalesce(null, null, 1)
```

Translates to the following dialect specific expressions:

```sql
-- ACCESS, ASE, AURORA_MYSQL, AURORA_POSTGRES, BIQUERY, COCKROACHDB, CUBRID, DB2, DERBY, EXASOL, FIREBIRD, H2, HANA, HSQLDB,
-- IGNITE, INGRES, NABAB, MEMSQL, MYSQL, ORACLE, POSTGRES, REDSHIFT, SNOWFLAKE, SQLDATAWAREHOUSE, SQLITE, SQLSERVER, SYBASE,
-- TERADATA, VERTICA
coalesce(NULL, NULL, 1)
-- INFORMIX
nvl(nvl(NULL, NULL), 1)
```

#### 4.5.8.2. DECODE

Some SQL dialects, including Db2, H2, Oracle know a more succinct, but maybe less readable `DECODE()` function with a variable number of arguments. This function works like a NULL safe `CASE` expression. jOOQ supports the `DECODE()` function and emulates it using `CASE` expressions in all dialects that do not have native support:

```sql
SELECT
 -- Oracle:
 DECODE(FIRST_NAME, 'Paulo', 'brazilian', 'George', 'english', 'unknown'),
 -- Other SQL dialects
 CASE
 WHEN FIRST_NAME IS NOT DISTINCT FROM 'Paulo' THEN 'brazilian'
 WHEN FIRST_NAME IS NOT DISTINCT FROM 'George' THEN 'english'
 ELSE 'unknown'
 END
FROM AUTHOR
```

// Use the Oracle-style DECODE() function with jOOQ.
// Note, that you will not be able to rely on type-safety
decode(
  AUTHOR.FIRST_NAME,
  'Paulo', 'brazilian',
  'George', 'english',
  'unknown'
);

See the [DISTINCT predicate](#) for details about the NULL safe semantics.

#### 4.5.8.3. NULLIF

The `NULLIF()` function produces a NULL value if both its arguments are equal, otherwise it produces the first argument.

```sql
SELECT nullif(1, 1), nullif(1, 2);
```

```java
create.select(nullif(1, 1), nullif(1, 2)).fetch();
```

The result being
Dialect support

This example using jOOQ:

```
nullif(1, 2)
```

Translates to the following dialect specific expressions:

-- ACCESS
if(1 = 2, NULL, 1)

-- ASE, AURORA_MYSQL, AURORA_POSTGRES, BIGQUERY, COCKROACHDB, CUBRID, DB2, DERBY, EXASOL, FIREBIRD, H2, HANA, HSQldb, IGNITE,
-- INFORMIX, INGRES, MARIADB, MEMSQL, MYSQL, ORACLE, POSTGRES, REDSHIFT, SNOWFLAKE, SQLDATAWAREHOUSE, SQLITE, SQLSERVER,
-- SYBASE, TERADATA, VERTICA
nullif(1, 2)

4.5.8.4. NVL

The NVL() function (or also the ISNULL()) produces the first argument if it is NOT NULL, otherwise the second argument. It is a special case of the `COALESCE` function, which takes any number of arguments.

```
SELECT nvl(null, 1);
```

The result being

```
+-----+
| nvl |
+-----+
| 1 |
```

Dialect support

This example using jOOQ:

```
nvl(null, 1)
```

Translates to the following dialect specific expressions:
4.5.8.5. NVL2

The NVL2() function checks if the first argument is NOT NULL to produce the second argument, or the third argument otherwise. It works in a similar way as the `CASE` expression.

```
SELECT nvl2(1, 2, 3),
 nvl2(null, 2, 3);
create.select(
 nvl2(val(1) , 2, 3),
 nvl2(val(null), 2, 3)).fetch();
```

The result being

```
+------+------+
<table>
<thead>
<tr>
<th>nvl2</th>
<th>nvl2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
```

Dialect support

This example using jOOQ:

```
nvl2(val(1), 2, 3)
```

Translates to the following dialect specific expressions:

```
-- ACCESS, SQLSERVER
 iif(1 IS NOT NULL, 2, 3)
-- ASE, AURORA_MYSQL, AURORA_POSTGRES, BIGQUERY, COCKROACHDB, CUBRID, DERBY, FIREBIRD, HANA, MEMSQL, MYSQL, SQLITE
 ifnull(val(1), 2, 3)
-- DB2, EXASOL, H2, HSQLDB, IGNITE, INFORMIX, INGRES, ORACLE, REDSHIFT, SNOWFLAKE, TERADATA, VERTICA
 nvl2(1, 2, 3)
```

4.5.9. Numeric functions

In addition to the arithmetic expressions discussed previously, jOOQ also supports a variety of numeric functions. As discussed in the chapter about SQL dialects numeric functions (as any function type) are mostly emulated in your database, in case they are not natively supported.
4.5.9.1. ABS

The ABS() function produces the absolute value of a numeric value.

```sql
SELECT abs(-5), abs(0), abs(3);
create.select(abs(-5), abs(0), abs(3)).fetch();
```

The result being

<table>
<thead>
<tr>
<th>abs</th>
<th>abs</th>
<th>abs</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Dialect support

This example using jOOQ:

```java
abs(3)
```

Translates to the following dialect specific expressions:

```-- All dialects
abs(3)
```

4.5.9.2. ACOS

The ACOS() function calculates the arc cosine of a numeric value.

```sql
SELECT acos(0);
create.select(acos(0)).fetch();
```

The result being

<table>
<thead>
<tr>
<th>acos</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.57079633</td>
</tr>
</tbody>
</table>

Dialect support

This example using jOOQ:

```java
acos(0)
```

Translates to the following dialect specific expressions:
4.5.9.3. ASIN

The ASIN() function calculates the arc sine of a numeric value.

```sql
SELECT asin(1);
create.select(asin(1)).fetch();
```

The result being

<table>
<thead>
<tr>
<th>asin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5708</td>
</tr>
</tbody>
</table>

Dialect support

This example using jOOQ:

```java
asin(1)
```

Translates to the following dialect specific expressions:

```sql
-- ACCESS
atn((1 / sqr((-(1) * 1) + 1)))
-- ASE, CUBRID, DB2, DERBY, FIREBIRD, H2, HSQLDB, INGRES, MARIADB, MYSQL, ORACLE, POSTGRES, SQLSERVER, SYBASE
-- AURORA_MYSQL, AURORA_POSTGRES, BIGQUERY, COCKROACHDB, EXASOL, HANA, IGNITE, INFORMIX, MEMSQL, REDSHIFT, SNOWFLAKE,
-- SQLDATAWAREHOUSE, SQLITE, TERADATA, VERTICA
/* UNSUPPORTED */
```

4.5.9.4. ATAN

The ATAN() function calculates the arc tangent of a numeric value.

```sql
SELECT atan(1);
create.select(atan(1)).fetch();
```

The result being

<table>
<thead>
<tr>
<th>asin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5708</td>
</tr>
</tbody>
</table>

Dialect support

This example using jOOQ:

```java
asin(1)
```

Translates to the following dialect specific expressions:

```sql
-- ACCESS
atn((1 / sqr((-(1) * 1) + 1)))
-- ASE, CUBRID, DB2, DERBY, FIREBIRD, H2, HSQLDB, INGRES, MARIADB, MYSQL, ORACLE, POSTGRES, SQLSERVER, SYBASE
-- AURORA_MYSQL, AURORA_POSTGRES, BIGQUERY, COCKROACHDB, EXASOL, HANA, IGNITE, INFORMIX, MEMSQL, REDSHIFT, SNOWFLAKE,
-- SQLDATAWAREHOUSE, SQLITE, TERADATA, VERTICA
/* UNSUPPORTED */
```
4.5.9.5. ATAN2

The ATAN2() function calculates the ATAN2 of a numeric value.

```
SELECT atan2(1, 1);
```

The result being

```
 +---------------+
 | atan2 |
 +---------------+
 | 0.78539816339 |
 +---------------+
```

Dialect support

This example using jOOQ:

```
atan2(1, 1)
```

Translates to the following dialect specific expressions:

```
-- ASE, SQLSERVER
atan2(1, 1)
-- CUBRID, DB2, Derby, Firebird, H2, HSQLDB, INGRES, MARIADB, MYSQL, ORACLE, POSTGRES, SYBASE
atan2(1, 1)
-- ACCESS, AURORA_MYSQL, AURORA_POSTGRES, BIGQUERY, COCKROACHDB, EXASOL, HANA, IGNITE, INFORMIX, MEMSQL, REDSHIFT, SNOWFLAKE,
 -- SQLDATAMWAREHOUSE, SQLITE, TERADATA, VERTICA
/* UNSUPPORTED */
```
4.5.9.6. CEIL

The CEIL() function rounds a numeric value to its nearest higher integer.

```sql
SELECT
 ceil(1.7),
 ceil(-1.7); create.select(ceil(1.7), ceil(-1.7)).fetch();
```

The result being

```
+-------+-------+
| floor | floor |
+-------+-------+
| 2 | -1 |
+-------+-------+
```

Dialect support

This example using jOOQ:

```java
create.select(ceil(1.7)).fetch();
```

Translates to the following dialect specific expressions:

```
-- ACCESS
(CLNG(1.7E0) - (1.7E0 - clng(1.7E0) > 0))
-- ASE, SQLDATAMANAGER, SQLSERVER
ceiling(1.7E0)
-- AURORA_MYSQL, AURORA_POSTGRES, BIGQUERY, CUBRID, DB2, DERBY, EXASOL, FIREBIRD, HANA, HSQLDB, IGNITE, INFORMIX, INGRES,
-- MARIADB, MEMSQL, MYSQL, ORACLE, POSTGRES, REDSHIFT, SNOWFLAKE, SYBASE, TERADATA, VERTICA
ceil(1.7E0)
-- COCKROACHDB
ceil(CAST(1.7E0 AS double precision))
-- H2
ceiling(CAST(1.7E0 AS double))
-- SQLITE
(CAST(1.7E0 AS int8) + (1.7E0 > CAST(1.7E0 AS int8)))
```

4.5.9.7. COS

The COS() function calculates the cosine of a numeric value.

```sql
SELECT cos(3.14159265359);
create.select(cos(3.14159265359)).fetch();
```

The result being
Dialect support

This example using jOOQ:

```java
create.select(cosh(1)).fetch();
```

The result being

```
+---------------+
| cosh |
+---------------+
| 1.54308063482 |
```

Dialect support

This example using jOOQ:

```java
cosh(1)
```

Translates to the following dialect specific expressions:

```sql
-- ACCESS, ASE, CUBRID, DB2, DERBY, FIREBIRD, HSQLDB, INGRES, MARIADB, MYSQL, ORACLE, POSTGRES, SQLSERVER, SYBASE
(({exp(1 * 2)) + 1) / (exp(1) * 2))
-- DB2, DERBY, FIREBIRD, H2, ORACLE
cosh(1)
-- AURORA_MYSQL, AURORA_POSTGRES, BIGQUERY, COCKROACHDB, EXASOL, HANA, IGNITE, INFORMIX, MEMSQL, REDSHIFT, SNOWFLAKE,
-- SQLITE, TERADATA, VERTICA
/* UNSUPPORTED */
```

4.5.9.8. COSH

The COSH() function calculates the hyperbolic cosine of a numeric value.

```sql
SELECT cosh(1);
```

The result being

```
+---------------+
| cosh |
+---------------+
| 1.54308063482 |
```

Dialect support

This example using jOOQ:

```java
cosh(1)
```

Translates to the following dialect specific expressions:

```sql
-- ACCESS, ASE, CUBRID, HSQLDB, INGRES, MARIADB, MYSQL, POSTGRES, SQLSERVER, SYBASE
(({exp(1 * 2)) + 1) / (exp(1) * 2))
-- DB2, DERBY, FIREBIRD, H2, ORACLE
cosh(1)
-- AURORA_MYSQL, AURORA_POSTGRES, BIGQUERY, COCKROACHDB, EXASOL, HANA, IGNITE, INFORMIX, MEMSQL, REDSHIFT, SNOWFLAKE,
-- SQLITE, TERADATA, VERTICA
/* UNSUPPORTED */
```
### 4.5.9.9. COT

The COT() function calculates the cotangent of a numeric value.

```sql
SELECT cot(1.5707963268);
create.select(cot(1.5707963268)).fetch();
```

The result being

<table>
<thead>
<tr>
<th>cot</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

#### Dialect support

This example using jOOQ:

```java
cot(1.5707963268)
```

Translates to the following dialect specific expressions:

```sql
-- ACCESS, INGRES, ORACLE
(cot(1.5707963268) / sin(1.5707963268))

-- ASE, CUBRID, DB2, DERBY, FIREBIRD, HSQLDB, MARIADB, MYSQL, POSTGRES, SQLSERVER, SYBASE
cot(1.5707963268E0)

-- H2
cot(CAST(1.5707963268E0 AS double))

-- AURORA_MYSQL, AURORA_POSTGRES, BIGQUERY, COCKROACHDB, EXASOL, HANA, IGNIACE, INFORMIX, MEMSQL, REDSHIFT, SNOWFLAKE,
-- SQLATAMARQUEE, SQLITE, TERADATA, VERTICA
/* UNSUPPORTED */
```

### 4.5.9.10. COTH

The COTH() function calculates the hyperbolic cotangent of a numeric value.

```sql
SELECT coth(1);
create.select(coth(1)).fetch();
```

The result being

<table>
<thead>
<tr>
<th>coth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3130352855</td>
</tr>
</tbody>
</table>

/* Unsupported */
Dialect support

This example using jOOQ:

```
coth(1)
```

Translates to the following dialect specific expressions:

```
-- ACCESS, ASE, CUBRID, DB2, DERBY, FIREBIRD, H2, HSQLDB, INGRES, MARIADB, MYSQL, ORACLE, POSTGRES, SQLSERVER, SYBASE
((exp(l ! 2)) + 1) / (exp(l ! 2)) - 1)))
-- AURORA_MYSQL, AURORA_POSTGRES, BIGQUERY, COCKROACHDB, EXASOL, HANA, IGNITE, INFORMIX, MEMSQL, REDSHIFT, SNOWFLAKE,
-- SQLDATAWAREHOUSE, SQLITE, TERADATA, VERTICA
/* UNSUPPORTED */
```

4.5.9.11. DEG

The DEG() function calculates the degrees from a radian value (see also [RAD](#)).

```
SELECT deg(3.14159265359);
create.select(deg(3.14159265359)).fetch();
```

The result being

```
+-----+
| deg |
+-----+
| 180 |
```

Dialect support

This example using jOOQ:

```
deg(3.14159265359)
```

Translates to the following dialect specific expressions:
The E() function produces the Euler constant \( e \), which is around 2.71828182846

```sql
SELECT e();
create.select(e()).fetch();
```

The result being

```
+---------------+
| exp |
+---------------+
| 2.71828182846 |
+---------------+
```

**Dialect support**

This example using jOOQ:

```java
e()
```

Translates to the following dialect specific expressions:

-- ACCESS, ASE, AURORA_MYSQL, AURORA_POSTGRES, BIGQUERY, CUBRID, DB2, DERBY, EXASOL, IGNITE, INFORMIX, MARIADB, MSQL, MYSQL, POSTGRES, REDSHIFT, SNOWFLAKE, SQLDATANANREHOUSE, SQLSERVER, SYS, TERADATA, VERTICA
e() -- BigQuery
(CAST(2.71828182846 AS double precision) * 180) / (asin(1) * 2)
-- COCKROACHDB
degrees(CAST(2.71828182846 AS double precision))
-- FIREBIRD
(CAST(2.71828182846 AS numeric) * 180) / pi()
-- H2
degrees(CAST(2.71828182846 AS double))
-- HANA
(CAST(2.71828182846 AS numeric) * 180) / (asin(1) * 2)
-- INGRES
(CAST(2.71828182846 AS decimal(38, 19)) * 180) / pi()
-- ORACLE
(CAST(2.71828182846 AS number) * 180) / (asin(1) * 2)
-- SQLITE
(CAST(2.71828182846 AS numeric) * 180) / 3.141592653589793
```
4.5.9.13. EXP

The EXP() function calculates e^x

```
SELECT exp(1);  
create.select(exp(1)).fetch();
```

The result being

```
+---------------+  
| exp           |  
+---------------+  
| 2.71828182846 |  
+---------------+
```

Dialect support

This example using jOOQ:

```
exp(1)
```

Translates to the following dialect specific expressions:

```sql
-- ACCESS, ASE, CUBRID, DB2, DERBY, FIREBIRD, H2, HSQLDB, INGRES, MARIADB, MYSQL, ORACLE, POSTGRES, SQLSERVER, SYBASE
exp(1)
-- AURORA_MYSQL, AURORA_POSTGRES, BIQUERY, COCKROACHDB, EXASOL, HANA, IGNITE, INFORMIX, MEMSQL, REDSHIFT, SNOWFLAKE,
-- SQLDATAWAREHOUSE, SQLITE, TERADATA, VERTICA
/* UNSUPPORTED */
```

4.5.9.14. FLOOR

The FLOOR() function rounds a numeric value to its nearest lower integer.

```
SELECT  
  floor(1.7),
  floor(-1.7);  
create.select(  
  floor(1.7),
  floor(-1.7)).fetch();
```

The result being

```
+-------+-------+  
| floor | floor |  
+-------+-------+  
| 1     | -2    |  
+-------+-------+
```

Dialect support

This example using jOOQ:

```
floor(1.7),
floor(-1.7)
```
Floor(1.7)

Translates to the following dialect specific expressions:

```sql
-- ACCESS
(cdec(1.7E0) - (1.7E0 < cdec(1.7E0)))
-- ASE, AURORA_MYSQL, AURORA_POSTGRES, BIGQUERY, CUBRID, DB2, DERBY, EXASOL, FIREBIRD, HANA, HSQLDB, IGNITE, INFORMIX, INGRES,
-- MARIADB, MEMSQL, MYSQL, ORACLE, POSTGRES, REDSHIFT, SNOWFLAKE, SQLDATAWAREHOUSE, SQLSERVER, SYBASE, TERADATA, VERTICA
floor(1.7E0)
-- COCKROACHDB
floor(CAST(1.7E0 AS double precision))
-- H2
floor(CAST(1.7E0 AS double))
-- SQLITE
CAST(1.7E0 AS int8) - (1.7E0 < CAST(1.7E0 AS int8))
```

4.5.9.15. GREATEST

The GREATEST() function produces the greatest value among all the arguments.

```sql
SELECT greatest(2, 3);
create.select(greatest(2, 3)).fetch();
```

The result being

```
+----------+
| greatest  |
+----------+
|        3 |
+----------+
```

Dialect support

This example using jOOQ:

```java
greatest(2, 3)
```

Translates to the following dialect specific expressions:

```sql
-- ACCESS
SWITCH(2 > 3, 2, TRUE, 3)
-- ASE, DERBY, INFORMIX, SQLDATAWAREHOUSE, SQLSERVER, SYBASE
CASE WHEN 2 > 3 THEN 2 ELSE 3 END
-- AURORA_MYSQL, AURORA_POSTGRES, BIGQUERY, COCKROACHDB, CUBRID, DB2, EXASOL, H2, HANA, HSQLDB, IGNITE, INGRES, MARIADB,
-- MEMSQL, MYSQL, ORACLE, POSTGRES, REDSHIFT, SNOWFLAKE, TERADATA, VERTICA
greatest(2, 3)
-- FIREBIRD
maxvalue(2, 3)
-- SQLITE
max(2, 3)
```
4.5.9.16. LEAST

The LEAST() function produces the least value among all the arguments.

```sql
SELECT least(2, 3);
create.select(least(2, 3)).fetch();
```

The result being

```
<table>
<thead>
<tr>
<th>least</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
</tbody>
</table>
```

Dialect support

This example using jOOQ:

```java
least(2, 3)
```

Translates to the following dialect specific expressions:

```sql
-- ACCESS
SWITCH(2 < 3, 2, TRUE, 3)
-- ASE, Derby, INFORMIX, SQLDATAWAREHOUSE, SQLSERVER, SYBASE
CASE WHEN 2 < 3 THEN 2 ELSE 3 END
-- AURORA_MYSQL, AURORA_POSTGRES, BIGQUERY, COCKROACHDB, CUBRID, DB2, EXASOL, H2, HANA, HSQLDB, IGNITE, INGRES, MARIADB,
-- MEMSQL, MYSQL, ORACLE, POSTGRES, REDSHIFT, SNOWFLAKE, TERADATA, VERTICA
least(2, 3)
-- FIREBIRD
minvalue(2, 3)
-- SQLITE
min(2, 3)
```

4.5.9.17. LN

The LN() function calculates the natural logarithm of a numeric value.

```sql
SELECT ln(1);
create.select(ln(1)).fetch();
```

The result being

```
<table>
<thead>
<tr>
<th>ln</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>
```
Dialect support

This example using jOOQ:

```java
ln(1)
```

Translates to the following dialect specific expressions:

```text
-- ACCESS, ASE, SQLSERVER
log(1)
-- CUBRID, DERBY, FIREBIRD, H2, HSQLDB, INGRES, MARIADB, MYSQL, ORACLE, POSTGRES, SYBASE
ln(1)
-- AURORA_MYSQL, AURORA_POSTGRES, BIGQUERY, COCKROACHDB, EXASOL, HANA, IGNITE, INFORMIX, MEMSQL, REDSHIFT, SNOWFLAKE,
-- SQLDATAMWAREHOUSE, SQLITE, TERADATA, VERTICA
/* UNSUPPORTED */
```

4.5.9.18. LOG

The LOG() function calculates the logarithm of a numeric value, given a base.

```java
SELECT log(8, 2);
create.select(log(8, 2)).fetch();
```

The result being

```
+-----+
| log  |
+-----+
|  3   |
+-----+
```

Dialect support

This example using jOOQ:

```java
log(8, 2)
```

Translates to the following dialect specific expressions:

```text
-- ACCESS, ASE
(log(8) / log(2))
-- CUBRID, FIREBIRD, H2, MARIADB, MYSQL, ORACLE, POSTGRES
log(2, 8)
-- DERBY, HSQLDB, INGRES, SYBASE
(ln(8) / ln(2))
-- SQLSERVER
log(8, 2)
-- AURORA_MYSQL, AURORA_POSTGRES, BIGQUERY, COCKROACHDB, EXASOL, HANA, IGNITE, INFORMIX, MEMSQL, REDSHIFT, SNOWFLAKE,
-- SQLDATAMWAREHOUSE, SQLITE, TERADATA, VERTICA
/* UNSUPPORTED */
```
4.5.9.19. NEG

The NEG() function produces the negation of its argument.

```java
SELECT neg(2);
```

The result being

```
+-----+
<table>
<thead>
<tr>
<th>neg</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
</tr>
</tbody>
</table>
```

4.5.9.20. PI

The PI() function produces the pi constant \#, which is around 3.14159265359

```java
SELECT pi();
```

The result being

```
+---------------+
<table>
<thead>
<tr>
<th>pi</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.14159265359</td>
</tr>
</tbody>
</table>
```

Dialect support

This example using jOOQ:

```java
pi()
```

Translates to the following dialect specific expressions:

```
-- ACCESS, SQLITE
  3.141592653589793
-- ASE, AURORA_MYSQL, AURORA_POSTGRES, CTERA_BASH, CUBRID, DERNY, EXASOL, FIREBIRD, H2, HSQLDB, IGNITE, INGRES, MARIADB,
-- MEMSQL, MYSQL, POSTGRES, REDSHIFT, SNOWFLAKE, SQLDATAWAREHOUSE, SQLSERVER, SYBASE, VERTICA
  pi()
-- BIGQUERY, DB2, HANA, INFORMIX, ORACLE, TERADATA
  (asin(1) * 2)
```
4.5.9.21. POWER

The POWER() function calculates the power of two numbers.

```
SELECT power(2, 3);
```

The result being

```
+-------+
| power |
+-------+
|     8 |
```

Dialect support

This example using jOOQ:

```
power(2, 3)
```

Translates to the following dialect specific expressions:

```
-- ACCESS
(2 ^ 3)
-- ASE, CUBRID, DE2, FIREBIRD, H2, HSQLDB, INGRES, MARIADB, MYSQL, ORACLE, POSTGRES, SQLSERVER, STBASE
power(2, 3)
-- DERBY
exp((ln(2) * 3))
-- AURORA_MYSQL, AURORA_POSTGRES, BIGQUERY, COCKROACHDB, EXASOL, HANA, IGNITE, INFORMIX, MEMSQL, REDSHIFT, SNOWFLAKE,
-- SQLDATAWAREHOUSE, SQLITE, TERADATA, VERTICA
/* UNSUPPORTED */
```

4.5.9.22. RAD

The RAD() function calculates the radian value from degrees (see also DEG).

```
SELECT rad(180);
```

The result being

```
+------------+
|    rad     |
+------------+
| 3.14159265359 |
```

© 2009 - 2021 by Data Geekery™ GmbH.
Dialect support

This example using jOOQ:

```
rad(180)
```

Translates to the following dialect specific expressions:

```
-- ACCESS
((cdec(180) * 3.141592653589793) / 180)
-- ASE, AURORA_MYSQL, AURORA_POSTGRES, COCKROACHDB, CUBRID, DB2, DERBY, EXASOL, H2, HSQLDB, IGNITE, INFORMIX, MARIADB, MEMSQL,
-- MYSQL, POSTGRES, REDSHIFT, SNOWFLAKE, SQLDATAWAREHOUSE, SQLSERVER, SYBASE, TERADATA, VERTICA
radians(180)
-- BIGQUERY
((CAST(180 AS decimal) * (asin(1) * 2)) / 180)
-- FIREBIRD
((CAST(180 AS numeric) * pi()) / 180)
-- HANA
((CAST(180 AS numeric) * (asin(1) * 2)) / 180)
-- INGRES
((CAST(180 AS decimal(38, 19)) * pi()) / 180)
-- ORACLE
((CAST(180 AS number) * (asin(1) * 2)) / 180)
-- SQLITE
((CAST(180 AS numeric) * 3.141592653589793) / 180)
```

4.5.9.23. RAND

The RAND() function produces a random number.

```
SELECT rand();
```

The result being

```
+------+
| rand |
| 4    |
```

Dialect support

This example using jOOQ:

```
rand()
```

Translates to the following dialect specific expressions:
4.5.9.24. ROUND

The ROUND() function rounds a numeric value to its nearest integer, or optionally, to the nearest decimal precision.

```
SELECT round(1.7), round(-1.7);
```

The result being

```
+-------+-------+
| round | round |
+-------+-------+
|     2 |    -2 |
```

Dialect support

This example using jOOQ:

```
create.select(
    round(1.7),
    round(-1.7)).fetch();
```

Translates to the following dialect specific expressions:

```
-- ACCESS
round

-- ASE, AURORA_MYSQL, BIGQUERY, CUBRID, DB2, FIREBIRD, H2, HANA, HSQLDB, IGNITE, INFORMIX, MARIADB, MEMSQL, MYSQL, SNOWFLAKE,
-- SQLDATAMWAREHOUSE, SQLSERVER, SYBASE
rand()

-- AURORA_POSTGRES, COCKROACHDB, DERBY, EXASOL, INGRES, POSTGRES, REDSHIFT, SQLITE, VERTICA
random()

-- ORACLE
DBMS_RANDOM.RANDOM

-- TERADATA
(CAST((random(-2147483648, 2147483647) + 2147483648) AS NUMERIC(38, 19)) / 4294967295)
```
4.5.9.25. SIGN

The `SIGN()` function produces the sign of a numeric value, being any value of -1, 0, 1

```sql
SELECT sign(-5), sign(0), sign(3);
create.select(sign(-5), sign(0), sign(3)).fetch();
```

The result being

```
<table>
<thead>
<tr>
<th>sign</th>
<th>sign</th>
<th>sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
```

Dialect support

This example using jOOQ:

```
sign(3)
```

Translates to the following dialect specific expressions:

```sql
-- ACCESS
sign(3)
-- ASE, AURORA_MYSQL, AURORA_POSTGRES, BIGQUERY, COCKROACHDB, CUBRID, DR2, DERBY, EXASOL, FIREBIRD, H2, HANA, HSQLDB, IGNITE,
-- INFORMIX, INGRES, MARIADB, MEMSQL, MYSQL, ORACLE, POSTGRES, REDSHIFT, SNOWFLAKE, SQLDATAWAREHOUSE, SQLSERVER, SYBASE,
-- TERADATA, VERTICA
sign(3)
-- SQLITE
CASE WHEN 3 > 0 THEN 1 WHEN 3 < 0 THEN -1 WHEN 3 = 0 THEN 0 END
```

4.5.9.26. SIN

The `SIN()` function calculates the sine of a numeric value.

```sql
SELECT sin(3.14159265359);
create.select(sin(3.14159265359)).fetch();
```

The result being

```
<table>
<thead>
<tr>
<th>sin</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>
```
Dialect support

This example using jOOQ:

```java
sin(3.14159265359)
```

Translates to the following dialect specific expressions:

```
-- ACCESS, ASE, CUBRID, DB2, DERBY, FIREBIRD, HSQLDB, INGRES, MARIADB, MYSQL, ORACLE, POSTGRES, SQLSERVER, SYBASE
sin(3.14159265359E0)
-- H2
sin(CAST(3.14159265359E0 AS double))
-- AURORA_MYSQL, AURORA_POSTGRES, BIGQUERY, COCKROACHDB, EXASOL, HANA, IGNITE, INFORMIX, MEMSQL, REDSHIFT, SNOWFLAKE,
-- SQLDATAWAREHOUSE, SQLITE, TERADATA, VERTICA
/* UNSUPPORTED */
```

4.5.9.27. SINH

The SINH() function calculates the hyperbolic sine of a numeric value.

```java
SELECT sinh(1);
create.select(sinh(1)).fetch();
```

The result being

```
+---------------+
|          sinh |
+---------------+
| 1.17520119364 |
+---------------+
```

Dialect support

This example using jOOQ:

```java
sinh(1)
```

Translates to the following dialect specific expressions:

```
-- ACCESS, ASE, CUBRID, HSQLDB, INGRES, MARIADB, MYSQL, POSTGRES, SQLSERVER, SYBASE
((exp((1 * 2)) - 1) / (exp(1) * 2))
-- DB2, DERBY, FIREBIRD, H2, ORACLE
sinh(1)
-- AURORA_MYSQL, AURORA_POSTGRES, BIGQUERY, COCKROACHDB, EXASOL, HANA, IGNITE, INFORMIX, MEMSQL, REDSHIFT, SNOWFLAKE,
-- SQLDATAWAREHOUSE, SQLITE, TERADATA, VERTICA
/* UNSUPPORTED */
```
4.5.9.28. SQRT

The SQRT() function calculates the square root of a numeric value.

\[
\text{SELECT sqrt(4);}
\]

The result being

```
+------+
| sqrt |
| 2    |
+------+
```

Dialect support

This example using jOOQ:

```
sqrt(4)
```

Translates to the following dialect specific expressions:

```
-- ACCESS
sqrt(4)
-- ASE, CUBRID, DEJ, DERBY, FIREBIRD, H2, HSQLDB, INGRES, MARIADB, MYSQL, ORACLE, POSTGRES, SQLSERVER, SYBASE
sqrt(4)
-- AURORA_MYSQL, AURORA_POSTGRES, BIGQUERY, COCKROACHDB, EXASOL, HANA, IGNITE, INFORMIX, MEMSQL, REDSHIFT, SNOWFLAKE,
-- SQLDATAWAREHOUSE, SQLITE, TERADATA, VERTICA
/* UNSUPPORTED */
```

4.5.9.29. TAN

The TAN() function calculates the tangent of a numeric value.

\[
\text{SELECT tan(3.14159265359);}
\]

The result being

```
+-----+
| tan  |
| 0    |
+-----+
```

Dialect support

This example using jOOQ:

```
tan(3.14159265359)
```
The TANH function calculates the hyperbolic tangent of a numeric value.

```java
select tanh(1);
```

The result being

```
+---------------+
|           tanh |
+---------------+
| 0.76159415595 |
+---------------+
```

Dialect support

This example using jOOQ:

```
tanh(1)
```

Translates to the following dialect specific expressions:

```-- ACCESS, ASE, CUBRID, DB2, DERBY, FIREBIRD, HSQLDB, INGRES, MARIADB, MYSQL, ORACLE, POSTGRES, SQLSERVER, SYBASE
(tanh(3.14159265359E0))
-- H2
(tanh(3.14159265359E0 AS double))
-- AURORA_MYSQL, AURORA_POSTGRES, BIGQUERY, COCKROACHDB, EXASOL, HANA, IGNITE, INFORMIX, MEMSQL, REDSHIFT, SNOWFLAKE,
-- SQLATAMARKERHOUSE, SQLITE, TERADATA, VERTICA
/* UNSUPPORTED */```

4.5.9.31. TRUNC

The TRUNC function rounds a numeric value to its nearest integer (or optionally, to a specific decimal precision) that is closer to zero.
4.5.10. Bitwise functions

Most databases only support a few bitwise operations, while others ship with the full set of operators. jOOQ’s API includes most bitwise operations as listed below. In order to avoid ambiguities with conditional operators, most bitwise functions are prefixed with “bit”

4.5.10.1. BIT_COUNT

The BIT_COUNT() function counts the number of bits in a value.

```sql
SELECT bit_count(5);
```

The result being

```
+-----------+
<table>
<thead>
<tr>
<th>bit_count</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
</tbody>
</table>
```

Dialect support

This example using jOOQ:

```java
trunc(1.7)
```

Translates to the following dialect specific expressions:

```
-- CUBRID, DB2, HSQLDB, ORACLE
trunc(1.7E0, 0)
-- POSTGRES
CAST(trunc(CAST(1.7E0 AS numeric), 0) AS double precision)
-- ACCESS, ASE, AURORA_MYSQL, AURORA_POSTGRES, BIGQUERY, COCKROACHDB, DERRY, EXASOL, FIREBIRD, H2, HANA, IGNITE, INFORMIX,
-- MARIADB, MEMSQL, MYSQL, REDSHIFT, SNOWFLAKE, SQLITE, SQLSERVER, SYBASE, TERADATA, VERTICA
/* UNSUPPORTED */
```
Dialect support

This example using jOOQ:

```java
bitCount((byte) 5)
```

Translates to the following dialect specific expressions:

```
-- CUBRID, POSTGRES, SQLITE
CAST(((5 & 1) + ((5 & 2) >> 1) + ((5 & 4) >> 2) + ((5 & 8) >> 3) + ((5 & 16) >> 4) + ((5 & 64) >> 6) + ((5 & -128) >> 7)) AS int)

-- FIREBIRD
CAST((bin_and(5, 1) + bin_shr(bin_and(5, 2), 1) + bin_shr(bin_and(5, 4), 2) + bin_shr(bin_and(5, 8), 3) + bin_shr(bin_and(5, 16), 4) + bin_shr(bin_and(5, 32), 5) + bin_shr(bin_and(5, 64), 6) + bin_shr(bin_and(5, -128), 7)) AS integer)

-- H2, HSQLDB
CAST((bitand(5, 1) + (bitand(5, 2) / 2) + (bitand(5, 4) / 4) + (bitand(5, 8) / 8) + (bitand(5, 16) / 16) + (bitand(5, 32) / 32) + (bitand(5, 64) / 64) + (bitand(5, -128) / -128)) AS int)

-- MARIADB, MYSQL
bit_count(5)

-- ORACLE
CAST((bitand(5, 1) + (bitand(5, 2) / 2) + (bitand(5, 4) / 4) + (bitand(5, 8) / 8) + (bitand(5, 16) / 16) + (bitand(5, 32) / 32) + (bitand(5, 64) / 64) + (bitand(5, -128) / -128)) AS number(10))

-- SYBASE
CAST(((5 & 1) + ((5 & 2) / 2) + ((5 & 4) / 4) + ((5 & 8) / 8) + ((5 & 16) / 16) + ((5 & 32) / 32) + ((5 & 64) / 64) + ((5 & -128) / -128)) AS int)

-- ACCESS, ASE, AURORA_MYSQL, AURORA_POSTGRES, BIGQUERY, COCKROACHDB, DB2, DERBY, EXASOL, HANA, IGNITE, INFORMIX, MEMSQL, REDSHIFT, SNOWFLAKE, SQLDATAWAREHOUSE, SQLSERVER, TERADATA, VERTICA
/* UNSUPPORTED */
```

4.5.10.2. BIT_AND

The BIT_AND() function produces the bitwise AND operation.

```java
SELECT bit_and(5, 4);
```

The result being

```
+---------+
| bit_and |
+---------+
| 4 |
+---------+
```

Dialect support

This example using jOOQ:

```java
bitAnd(5, 4)
```

Translates to the following dialect specific expressions:
4.5.10.3. BIT_NAND

The `BIT_NAND()` function produces the bitwise NAND operation.

```
SELECT bit_nand(5, 4);
```

The result being

```
+----------+
| bit_nand |
+----------+
| -5 |
+----------+
```

Dialect support

This example using jOOQ:

```
bitNand(5, 4)
```

Translates to the following dialect specific expressions:

```
-- ASE, CUBRID, MARIADB, MYSQL, POSTGRES, SQLITE, SQLSERVER, SYBASE
~((5 & 4))

-- DB2, H2, HSQLDB, ORACLE
bitnot(bitand(5, 4))

-- FIREBIRD
bin_not(bin_and(5, 4))

-- HSQLDB, ORACLE
((0 - bitand(5, 4)) - 1)

-- ACCESS, AURORA_MYSQL, AURORA_POSTGRES, BIGQUERY, COCKROACHDB, DERBY, EXASOL, HANA, IGNITE, INFORMIX, MEMSQL, REDSHIFT,
-- SNOWFLAKE, SQLDATAWAREHOUSE, TERADATA, VERTICA
/* UNSUPPORTED */
```

4.5.10.4. BIT_NOR

The `BIT_NOR()` function produces the bitwise NOR operation.
The result being

<table>
<thead>
<tr>
<th>bit_nor</th>
</tr>
</thead>
<tbody>
<tr>
<td>-8</td>
</tr>
</tbody>
</table>

Dialect support

This example using jOOQ:

```java
create.select(bitNor(5, 2)).fetch();
```

The result being

<table>
<thead>
<tr>
<th>bit_nor</th>
</tr>
</thead>
<tbody>
<tr>
<td>-8</td>
</tr>
</tbody>
</table>

Dialect support

This example using jOOQ:

```java
bitNor(5, 2)
```

Translates to the following dialect specific expressions:

- **ASE, CUBRID, MARIADB, MYSQL, POSTGRES, SQLITE, SQLSERVER, SYBASE**
  ```sql
 ~((5 | 2))
  ```
- **DB2, H2**
  ```sql
 bitnot(bitor(5, 2))
  ```
- **FIREBIRD**
  ```sql
 bin_not(bin_or(5, 2))
  ```
- **HSQLDB**
  ```sql
 (0 - bitor(5, 2)) - 1
  ```
- **ORACLE**
  ```sql
 ((0 - ((5 + 2) - bitand(5, 2))) - 1)
  ```
- **ACCESS, AURORA_MYSQL, AURORA_POSTGRES, BIGQUERY, COCKROACHDB, DERBY, ERASOL, HANA, IGNITE, INFORMIX, MEMSQL, REDSHIFT,**
- **SNOWFLAKE, SQLDATAWAREHOUSE, TERADATA, VERTICA**
  /* UNSUPPORTED */

4.5.10.5. BIT_NOT

The BIT_NOT() function inverts the bits in a number, producing the 2's complement of a signed number.

The result being

<table>
<thead>
<tr>
<th>bit_not</th>
</tr>
</thead>
<tbody>
<tr>
<td>-6</td>
</tr>
</tbody>
</table>

Dialect support

This example using jOOQ:
4.5.10.6. BIT_OR

The BIT_OR() function produces the bitwise OR operation.

```java
SELECT bit_or(5, 2);
```

The result being

```
+--------+
| bit_or |
+--------+
| 7 |
+--------+
```

Dialect support

This example using jOOQ:

```java
bitOr(5, 2)
```

Translates to the following dialect specific expressions:

```sql
-- ASE, CUBRID, MARIADB, MYSQL, POSTGRES, SQLITE, SQLSERVER, SYBASE
(5 | 2)
-- DB2, H2
bit_or(5, 2)
-- FIREBIRD
bin_or(5, 2)
-- HSQLDB, ORACLE
((5 + 2) - bitand(5, 2))
-- ACCESS, AURORA_MYSQL, AURORA_POSTGRES, BIGQUERY, COCKROACHDB, DERBY, EXASOL, HANA, IGNITE, INFORMIX, MEMSQL, REDSHIFT,
-- SNOWFLAKE, SQLDATAWAREHOUSE, TERADATA, VERTICA
/* UNSUPPORTED */
```
4.5.10.7. SHL

The SHL() function produces the bitwise shift left operation.

```
SELECT shl(1, 4);
create.select(shl(1, 4)).fetch();
```

The result being

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>shl</td>
<td>16</td>
</tr>
</tbody>
</table>

Dialect support

This example using jOOQ:

```java
shl(1, 4)
```

Translates to the following dialect specific expressions:

```
-- ASE, HSQLDB, SQLSERVER, SYBASE
(1 * CAST(power(2, 4) AS int))

-- CUBRID, MARIADB, MYSQL, POSTGRES, SQLITE
(1 << 4)

-- DB2
(1 * CAST(power(2, 4) AS integer))

-- FIREBIRD
bin_shl(1, 4)

-- H2
lshift(1, 4)

-- ORACLE
(1 * CAST(power(2, 4) AS number(10)))

-- ACCESS, AURORA_MYSQL, AURORA_POSTGRES, BIGQUERY, COCKROACHDB, DERBY, EXASOL, HANA, IGNITE, INFORMIX, MEMSQL, REDSHIFT,
-- SNOWFLAKE, SQLDATAWAREHOUSE, TERADATA, VERTICA
/* UNSUPPORTED */
```

4.5.10.8. SHR

The SHR() function produces the bitwise shift right operation.

```
SELECT shr(16, 4);
create.select(shr(16, 4)).fetch();
```

The result being
Dialect support

This example using jOOQ:

```
shr(16, 4)
```

Translates to the following dialect specific expressions:

```sql
-- ASE, HSQLDB, SQLSERVER, SYBASE
(16 / CAST(power(2, 4) AS int))
-- CUBRID, MARIADB, MYSQL, POSTGRES, SQLITE
(16 >> 4)
-- DB2
(16 / CAST(power(2, 4) AS integer))
-- FIREBIRD
bin_shr(16, 4)
-- H2
rshift(16, 4)
-- ORACLE
(16 / CAST(power(2, 4) AS number(10)))
-- ACCESS, AURORA_MYSQL, AURORA_POSTGRES, BIGQUERY, COCKROACHDB, DERBY, EXASOL, HANA, IGNITE, INFORMIX, MEMSQL, REDSHIFT,
-- SNOWFLAKE, SQLDATAMARKET, TERADATA, VERTICA
/* UNSUPPORTED */
```

## 4.5.10.9. BIT_XNOR

The BIT_XNOR() function produces the bitwise XNOR (exclusive NOR) operation.

```
SELECT bit_xnor(5, 3);
create.select(bitXNor(5, 3)).fetch();
```

The result being

```
+----------+
<table>
<thead>
<tr>
<th>bit_xnor</th>
</tr>
</thead>
<tbody>
<tr>
<td>-7</td>
</tr>
</tbody>
</table>
```

Dialect support

This example using jOOQ:

```
bitXNor(5, 3)
```

Translates to the following dialect specific expressions:
4.5.10.10. BIT_XOR

The BIT_XOR() function produces the bitwise XOR (exclusive OR) operation.

```sql
SELECT bit_xor(5, 3);
create.select(bitXor(5, 3)).fetch();
```

The result being

```
<table>
<thead>
<tr>
<th>bit_xor</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
</tr>
</tbody>
</table>
```

Dialect support

This example using jOOQ:

```java
bitXor(5, 3)
```

Translates to the following dialect specific expressions:
4.5.11. String functions

String formatting can be done efficiently in the database before returning results to your Java application. As discussed in the chapter about SQL dialects string functions (as any function type) are mostly emulated in your database, in case they are not natively supported.

4.5.11.1. ASCII

The ASCII() function calculates the ASCII code of a single character.

```
SELECT ascii('A');
create.select(ascii("A")).fetch();
```

The result being

```
+-------+
| ascii |
| 65 |
+-------+
```

Dialect support

This example using jOOQ:

```
ascii("A")
```

Translates to the following dialect specific expressions:
4.5.11.2. CONCAT

The CONCAT() function concatenates several strings

```java
SELECT concat('hello', ' ', 'world');
```

The result being

```
+-------------+
| concat |
+-------------+
| hello world |
+-------------+
```

Dialect support

This example using jOOQ:

```java
concat("hello", " ", "world")
```

Translates to the following dialect specific expressions:

```java
-- ACCESS
('hello' & ' ' & 'world')
-- ASE, CUBRID, DR2, H2, HSQLDB, MARIADB, MYSQL, ORACLE, POSTGRES, SQLSERVER, SYBASE
ascii('A')
-- FIREBIRD
ascii_val('A')
-- AURORA_MYSQL, AURORA_POSTGRES, BIGQUERY, COCKROACHDB, CUBRID, DR2, DERBY, EXASOL, HANA, IGNITE, INFORMIX, MEMSQL, REDSHIFT, SNOWFLAKE,
-- SQLDATAWAREHOUSE, SQLITE, TERADATA, VERTICA
/* UNSUPPORTED */
```

4.5.11.3. LEFT

The LEFT() function calculates the substring of a given string starting from the left end. See also SUBSTRING, RIGHT
4.5.11.4. LENGTH

The LENGTH() function calculates the length of a given string.

```sql
create.select(length("hello"));
```

The result being

+--------+
<table>
<thead>
<tr>
<th>length</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

Dialect support

This example using jOOQ:

```java
length("hello")
```

Translates to the following dialect specific expressions:

- **ACCESS, ASE, AURORA_MYSQL, AURORA_POSTGRES, BIGQUERY, COCKROACHDB, CUBRID, DB2, EXASOL, FIREBIRD, H2, HANA, HSQLDB, IGNITE, INFORMIX, INGRES, MARIADB, MEMSQL, MYSQL, POSTGRES, REDSHIFT, SNOWFLAKE, SQLDATAWAREHOUSE, SQLSERVER, SYBASE, TERA DATA, VERTICA**
  ```sql
 left('hello world', 5);
  ```

- **DERBY, ORACLE, SQLITE**
  ```sql
 substr('hello world', 1, 5)
  ```
4.5.11.5. LOWER

The LOWER() function transforms a string into lower case.

```
SELECT lower('HELLO');
```

The result being

```
+-------+
<table>
<thead>
<tr>
<th>lower</th>
</tr>
</thead>
<tbody>
<tr>
<td>hello</td>
</tr>
</tbody>
</table>
```

Dialect support

This example using jOOQ:

```
lower("HELLO")
```

Translates to the following dialect specific expressions:

```
-- ACCESS, SQLDATAWAREHOUSE, SQLSERVER
len('hello')
-- ASE, AURORA_MYSQL, AURORA_POSTGRES, BIGQUERY, COCKROACHDB, CUBRID, EXASOL, FIREBIRD, H2, HSQLDB, IGNITE, INFORMIX, MARIADB,
-- ORACLE, POSTGRES, REDSHIFT, VERTICA
char_length('hello')
-- DB2, DERBY, HANA, INGRES, ORACLE, SNOWFLAKE, SQLITE, SYBASE, TERADATA
length('hello')
```

4.5.11.6. LPAD

The LPAD() pads a string at the left end. See also RPAD.

```
SELECT lpad('hello', 10, '.');
```

The result being
### 4.5.11.7. LTRIM

The LTRIM() function trims a string from the left end, stripping it of whitespace. See also RTRIM and TRIM.

```sql
SELECT ltrim(' hello '); create.select(ltrim(' hello ')).fetch();
```

The result being

```
+---------+
| ltrim |
+---------+
| hello |
```

**Dialect support**

This example using jOOQ:

```java
ltrim("hello")
```

Translates to the following dialect specific expressions:

```
-- ACCESS
(select rtrim('hello', ' '))
-- ASE
(replace(lead('
', (10 - length('hello'))) || 'hello')
-- CUBRID, DB2, FIREBIRD, H2, HSQLDB, INGRES, MARIADB, MYSQL, ORACLE, POSTGRES
ltrim('hello', 10, '.')
-- SQLITE
(str_replace(hex(zeroblob(10)), '00', '.'), 1, 10 - length('hello')) || 'hello'
-- SQLSERVER
(replicate('.', (10 - length('hello'))) || 'hello')
-- SYBASE
((repeat('.', (10 - length('hello'))) || 'hello')
-- AURORA_MYSQL, AURORA_POSTGRES, BIQUERY, COCKROACHDB, DERBY, EXASOL, HANA, IGNITE, INFORMIX, MENSQNL, REDSHIFT, SNOWFLAKE,
-- SQLDATAWAREHOUSE, TERADATA, VERTICA
/* UNSUPPORTED */
```
4.5.11.8. MD5

The MD5() function calculates the MD5 hash of a given string.

```
SELECT md5('hello');
create.select(md5("hello")).fetch();
```

The result being

```
+-------------------+
| md5 |
+-------------------+
| 5d41402abc4b2a76b9719d911017c592 |
+-------------------+
```

Dialect support

This example using jOOQ:

```
md5('hello')
```

Translates to the following dialect specific expressions:

```
-- MARIADB, MYSQL
md5('hello')
-- ORACLE
lower(standard_hash('hello', 'MD5'))
-- ACCESS, ASE, AURORA_MYSQL, AURORA_POSTGRES, BIGQUERY, COCKROACHDB, DB2, Derby, EXASOL, H2, HANA, HSQLDB, IGNITE,
-- INFORMIX, INGRES, MARIADB, MONGODB, MYSQL, ORACLE, POSTGRES, REDSHIFT, SNOWFLAKE, SQLDATAREPOSITORY, SQLITE, SQLSERVER, SYBASE,
-- TERADATA, VERTICA
/* UNSUPPORTED */
```

4.5.11.9. MID

The MID() function is an alias for the substring function

4.5.11.10. POSITION

The POSITION() function finds the first position of a string within another string, starting with 1.
The jOOQ User Manual

4.5.11.11. REPEAT

The result being

<table>
<thead>
<tr>
<th>position</th>
<th>position</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Dialect support

This example using jOOQ:

```
position("hello", "e")
```

Translates to the following dialect specific expressions:

```
-- ASE, SQLSERVER
charindex('e', 'hello')
-- CUBRID, FIREBIRD, H2, HSQLDB, MARIADB, MYSQL, POSTGRES
position('e' IN 'hello')
-- DB2, DERBY
locate('e', 'hello')
-- INGRES, SYBASE
locate('hello', 'e')
-- ORACLE
instr('hello', 'e')
-- ACCESS, AURORA_MYSQL, AURORA_POSTGRES, BIGQUERY, COCKROACHDB, EXASOL, HANA, IGNITE, INFORMIX, MEMSQL, REDSHIFT, SNOWFLAKE,
-- SQLDATAWAREHOUSE, SQLITE, TERADATA, VERTICA
/* UNSUPPORTED */
```

4.5.11.11. REPEAT

The REPEAT() function repeats a string a number of times.

The result being

```
<table>
<thead>
<tr>
<th>repeat</th>
</tr>
</thead>
<tbody>
<tr>
<td>abcabcabc</td>
</tr>
</tbody>
</table>
```

Dialect support

This example using jOOQ:

```
repeat('abc', 3)
```
The REPLACE() function replaces a substring inside of a string by another string.

```sql
SELECT replace('hello world', 'llo', 'y');
```

The result being

```
+-----------+
| replace |
+-----------+
| hey world |
+-----------+
```

Dialect support

This example using jOOQ:

```java
replace(val("hello world"), "llo", "y")
```

Translates to the following dialect specific expressions:

```sql
-- ACCESS, CUBRID, DB2, FIREBIRD, H2, HSQLDB, INGRES, MARIADB, MYSQL, ORACLE, POSTGRES, SQLSERVER, SYBASE
replace('hello world', 'llo', 'y')
-- ASE
str_replace('hello world', 'llo', 'y')
-- SQLITE
"replace"('hello world', 'llo', 'y')
-- AURORA_MYSQL, AURORA_POSTGRES, BIGQUERY, COCKROACHDB, Derby, EXASOL, HANA, IGNITE, INFORMIX, MEMSQL, REDSHIFT, SNOWFLAKE, SQLDATAWAREHOUSE, TERADATA, VERTICA
/* UNSUPPORTED */
4.5.11.13. REVERSE

The REVERSE() function reverses a string.

```
SELECT reverse('hello');
create.select(reverse("hello")).fetch();
```

The result being

```
+---------+
| reverse |
+---------+
| olleh   |
+---------+
```

Dialect support

This example using jOOQ:

```
reverse("hello")
```

Translates to the following dialect specific expressions:

```
-- ASE, CUBRID, HSQLDB, MARIADB, MYSQL, ORACLE, POSTGRES, SQLSERVER
   reverse('hello')
-- ACCESS, AURORA_MYSQL, AURORA_POSTGRES, BIGQUERY, COCKROACHDB, DB2, DERBY, EXASOL, FIREBIRD, H2, HANA, IGNI
```
right("hello world", 5)

Translates to the following dialect specific expressions:

- ACCESS, ASE, AURORA_MYSQL, AURORA_POSTGRES, BIGQUERY, COCKROACHDB, CUBRID, DB2, EXASOL, FIREBIRD, H2, HANA, HSQldb, IGNITE, INFORMIX, INGRES, MARIADB, MEMSQL, MYSQL, POSTGRES, REDSHIFT, SNOWFLAKE, SQLDATAWAREHOUSE, SQLSERVER, SYBASE, TERADATA, VERTICA
- DERBY
  ```
  substr('hello world', (length('hello world') + (1 - 5)))
  ```
- ORACLE, SQLITE
  ```
  substr('hello world', -(5))
  ```

4.5.11.15. RPAD

The `RPAD()` pads a string at the right end. See also [LPAD](#).

```sql
SELECT rpad('hello', 10, '.');
```

The result being

```
+------------+
| rpad       |
+------------+
| hello..... |
+------------+
```

Dialect support

This example using jOOQ:

```java
create.select(rpad(val("hello"), 10, '.')).fetch();
```

Translates to the following dialect specific expressions:

- ACCESS
  ```
  ('hello' & replace(space(10 - len('hello')), ' ', '.'))
  ```
- ASE
  ```
  ('hello' || replicate('.', (10 - char_length('hello'))) )
  ```
- CUBRID, DB2, FIREBIRD, H2, HSQldb, INGRES, MARIADB, MYSQL, ORACLE, POSTGRES
  ```
  rpad('hello', 10, '.')
  ```
- SQLITE
  ```
  'hello' || substr('replace'(hex(zeroBlob(10)), '00', '.'), 1, 10 - length('hello'))
  ```
- SQLSERVER
  ```
  ('hello' + replicate('.', (10 - len('hello'))))
  ```
- SYBASE
  ```
  ('hello' || repeat('.', (10 - length('hello'))) )
  ```
- AURORA_MYSQL, AURORA_POSTGRES, BIGQUERY, COCKROACHDB, DERBY, EXASOL, HANA, IGNITE, INFORMIX, MEMSQL, REDSHIFT, SNOWFLAKE, SQLDATAWAREHOUSE, TERADATA

/* UNSUPPORTED */
4.5.11.16. RTRIM

The RTRIM() function trims a string from the right end, stripping it of whitespace. See also LTRIM and TRIM.

```java
SELECT rtrim('  hello  ');
create.select(rtrim("  hello  ").fetch());
```

The result being

```
<table>
<thead>
<tr>
<th>rtrim</th>
</tr>
</thead>
<tbody>
<tr>
<td>hello</td>
</tr>
</tbody>
</table>
```

Dialect support

This example using jOOQ:

```java
rtrim(" hello ")
```

Translates to the following dialect specific expressions:

```sql
-- ACCESS, ASE, AURORA_MYSQL, AURORA_POSTGRES, BIGQUERY, COCKROACHDB, CUBRID, DB2, DERBY, EXASOL, H2, HANA, HSQLDB, IGNITE,
-- INFORMIX, INGRES, MARIA DB, MEMSQL, MYSQL, ORACLE, POSTGRES, REDSHIFT, SNOWFLAKE, SQLDATAWAREHOUSE, SQLITE, SQLSERVER, SYBASE,
-- TERADATA, VERTICA
rtrim(' hello ')
```

4.5.11.17. SPACE

The SPACE() function repeats a space character a number of times. This is convenience for REPEAT, as available natively in SQL Server, for example.

```java
SELECT 'a' || space(3) || 'b';
create.select(val("a").concat(space(3)).concat(val("b")).fetch());
```

The result being

```
<table>
<thead>
<tr>
<th>space</th>
</tr>
</thead>
<tbody>
<tr>
<td>a b</td>
</tr>
</tbody>
</table>
```
Dialect support

This example using jOOQ:

```java
space(3)
```

Translates to the following dialect specific expressions:

```sql
-- ASE, CURRIBD, DB2, H2, MARIADB, MYSQL, SQLSERVER, SYBASE
space(3)
-- FIREBIRD, INGRES, ORACLE
rpad(' ', 3, ' ')
-- HSQLDB, POSTGRES
repeat(' ', 3)
-- SQLITE
' ' || substr("replace"(hex(zeroblob(3)), '00', ' '), 1, 3 - length(' '))
-- ACCESS, AURORA_MYSQL, AURORA_POSTGRES, BIGQUERY, COCKROACHDB, DERBY, EXASOL, HANA, IGNITE, INFORMIX, MEMSQL, REDSHIFT,
-- SNOWFLAKE, SQLDATAWAREHOUSE, TERADATA, VERTICA
/* UNSUPPORTED */
```

4.5.11.18. SUBSTRING

The SUBSTRING() function calculates the substring of a string given a starting position and optionally, a length. See also [LEFT](#), [RIGHT](#)

```sql
SELECT substring('hello world', 7),
substring('hello world', 7, 1);
```

The result being

<table>
<thead>
<tr>
<th>substring</th>
<th>substring</th>
</tr>
</thead>
<tbody>
<tr>
<td>world</td>
<td>w</td>
</tr>
</tbody>
</table>

Dialect support

This example using jOOQ:

```java
substring(val("hello world"), ?)
```

Translates to the following dialect specific expressions:
4.5.11.19. TRANSLATE

The TRANSLATE() function translates a set of characters to another set of characters within a string, based on matching positions within the search and replacement string.

```sql
SELECT translate('1 * [2 + 3]', '[]', '()');
create.select(translate(val("1 * [2 + 3]"), "[]", "()").fetch());
```

The result being

```
+-------------+
| translate   |
+-------------+
| 1 * (2 + 3) |
+-------------+
```

4.5.11.20. TRIM

The TRIM() function trims a string from both ends, stripping it of whitespace. See also LTRIM and RTRIM.

```sql
SELECT trim('  hello  ');
create.select(trim("  hello  ").fetch());
```

The result being

```
+-------+
| trim   |
+-------+
| hello  |
+-------+
```

Dialect support

This example using jOOQ:

```
trim(" hello ")
```
4.5.11.21. UPPER

The UPPER() function transforms a string into upper case.

```
SELECT upper('hello');
create.select(upper("hello")).fetch();
```

The result being

<table>
<thead>
<tr>
<th>upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>HELLO</td>
</tr>
</tbody>
</table>

Dialect support

This example using jOOQ:

```
upper("hello")
```

Translates to the following dialect specific expressions:

```
-- ACCESS
ucase('hello')
-- ASE, AURORA_MYSQL, AURORA_POSTGRES, BIGQUERY, COCKROACHDB, CUBRID, DB2, DERBY, EXASOL, FIREBIRD, H2, HANA, HSQLDB,
-- IGNITE, INFORMIX, MARIADB, MEMSQL, MYSQL, ORACLE, POSTGRES, REDSHIFT, SNOWFLAKE, SQLITE, SQLSERVER, SYBASE, TERADATA, VERTICA
upper('hello')
```

4.5.12. Datetime functions

Datetime functions are useful to calculate date time arithmetic and formatting.

Many functions in this section come with two flavours supporting both the JDBC datetime data types, and the JSR 310 types. These include:

- SQL DATE modelled by `java.time.LocalDate` and JDBC's `java.sql.Date`
- SQL TIME modelled by `java.time.LocalDateTime` and JDBC's `java.sql.Time`
- SQL TIMESTAMP modelled by `java.time.LocalDateTime` and JDBC's `java.sql.Timestamp`
Some temporal SQL data types could not be represented canonically with historic JDBC types, but only with JSR 310 types. These include:

- SQL TIME WITH TIME ZONE modelled by `java.time.OffsetTime`
- SQL TIMESTAMP WITH TIME ZONE modelled by any of `java.time.Instant` (e.g. PostgreSQL), `java.time.OffsetDateTime` (JDBC and standard SQL), as well as `java.time.ZonedDateTime` (e.g. Oracle)

4.5.12.1. CURRENT_DATE

Get the current server time as a SQL DATE type (represented by `java.sql.Date`).

```java
SELECT current_date;
```

```java
create.select(currentDate()).fetch();
```

The result being something like

```
<table>
<thead>
<tr>
<th>current_date</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020-02-03</td>
</tr>
</tbody>
</table>
```

Dialect support

This example using jOOQ:

```java
currentDate()
```

Translates to the following dialect specific expressions:

```java
-- ACCESS
DATE()

-- ASE, AURORA_MYSQL, MARIADB, MEMSQL, MYSQL, SNOWFLAKE
current_date()

-- AURORA_POSTGRES, BIGQUERY, COCKROACHDB, CUBRID, DB2, DERBY, EKASQL, FIREBIRD, H2, HANA, HSQLDB, IGNITE, INGRES, POSTGRES,
-- REDSHIFT, SQLITE, TERADATA, VERTICA
CURRENT_DATE

-- INFORMIX
CURRENT YEAR TO DAY

-- ORACLE
trunc(current_date)

-- SQLDATAWAREHOUSE, SQLSERVER
convert(DATE, current_timestamp)

-- SYBASE
CURRENT DATE
```

4.5.12.2. CURRENT_TIME

Get the current server time as a SQL TIME type (represented by `java.sql.Time`).
The result being something like

```
+---------------+
| current_time  |
+---------------+
|     15:30:45  |
+---------------+
```

Dialect support

This example using jOOQ:

```
currentTime()
```

Translates to the following dialect specific expressions:

```
-- ACCESS
TIME()
-- ASE, AURORA_MYSQL, MARIADB, MEMSQL, MYSQL, SNOWFLAKE
currentTime()
-- AURORA_POSTGRES, BIGQUERY, COCKROACHDB, CUBRID, DB2, DERBY, FIREBIRD, H2, HANA, HSQLDB, IGNITE, INGRES, POSTGRES, REDSHIFT,
-- SQLITE, TERADATA, VERTICA
CURRENT_TIME
-- EXASOL, ORACLE
current_timestamp
-- INFORMIX
CURRENT HOUR TO SECOND
-- SQLDATAWAREHOUSE, SQLSERVER
convert(TIME, current_timestamp)
-- SYBASE
CURRENT TIME
```

4.5.12.3. CURRENT_TIMESTAMP

Get the current server time as a SQL TIMESTAMP type (represented by `java.sql.Timestamp`).

The result being something like

```
+-----------------------+
| current_timestamp    |
+-----------------------+
|   2020-02-03 15:30:45 |
+-----------------------+
```

Dialect support

This example using jOOQ:
4.5.12.4. DATEADD

Add an interval of type `java.lang.Number` (number of days) or `org.jooq.types.Interval` (SQL interval type) to a date (represented by `java.sql.Date`).

```java
SELECT DATE '2020-02-03' + 3;
```
```java
create.select(dateAdd(Date.valueOf("2020-02-03"), 3)).fetch();
```

The result being

```
+------------+
| date_add   |
+------------+
| 2020-02-06 |
+------------+
```

Dialect support

This example using jOOQ:

```java
dateAdd(Date.valueOf("2020-02-03"), 3)
```

Translates to the following dialect specific expressions:
4.5.12.5. DATEDIFF

Subtract two SQL DATE types (represented by java.sql.Date).

This function comes in two flavours:

MySQL 2 argument version

In MySQL, there is a 2 argument version of the DATEDIFF() function, where the result produces the number of days between the two dates. The argument order is in the order of the difference notation: end_date - start_date

```java
create.select(dateDiff(
    Date.valueOf("2020-02-03"),
    Date.valueOf("2020-02-01"))
).fetch();
```

The result being

```
+----------+
<table>
<thead>
<tr>
<th>datediff</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
</tbody>
</table>
+----------+
```

Dialect support

This example using jOOQ:

```java
dateDiff(Date.valueOf("2020-02-03"), Date.valueOf("2020-02-01"))
```

Translates to the following dialect specific expressions:

```
-- ACCESS
datediff('d', #2020/02/01#, #2020/02/03#)

-- ASE, SYBASE
datediff(DAY, '2020-02-01', '2020-02-03')

-- AURORA_MYSQL, MEMSQL, MYSQL
datediff(("2020-02-03"), ("2020-02-01"))

-- AURORA_POSTGRES, COCKROACHDB, CUBRID, ORACLE, POSTGRES
(date '2020-02-03' - date '2020-02-01')

-- BIGQUERY
data_diff(date '2020-02-03', date '2020-02-01', DAY)

-- DB2
(days(DATE '2020-02-03') - days(DATE '2020-02-01'))

-- DERBY
{fn timestampdiff(sql_tsi_day, DATE('2020-02-01'), DATE('2020-02-03')) }

-- EXASOL, IGNITE
CAST(date '2020-02-03' - date '2020-02-01') AS int

-- FIREBIRD, RS, SQLDB, SNOWFLAKE, VERTICA
datediff(DAY, DATE '2020-02-01', DATE '2020-02-03')

-- HANA
days_between(DATE '2020-02-01', DATE '2020-02-03')

-- INFORMIX
CAST(DATETIME(2020-02-03) YEAR TO DAY - DATETIME(2020-02-01) YEAR TO DAY) AS integer

-- INGRES, TERADATA
CAST(date '2020-02-03' - date '2020-02-01') AS integer

-- MARIADB
datediff(date '2020-02-03', date '2020-02-01')

-- REDSHIFT
datediff('d', DATE '2020-02-01', DATE '2020-02-03')

-- SQLDATAWAREHOUSE, SQLSERVER
datediff(DAY, CAST('2020-02-01' AS date), CAST('2020-02-03' AS date))

-- SQLITE
strftime('%s', '2020-02-03') - strftime('%s', '2020-02-01') / 86400
```

SQL Server 3 argument version

In SQL Server, there is a 3 argument version of the DATEDIFF() function, where the result produces the number of date part periods between the two dates, with the dates being **TRUNC-ed** to the relevant date part. The argument order is in the order of the interval notation: [start_date, end_date]. This version is supported only in jOOQ 3.14+

4.5.12.6. DAY

Extract the DAY value from a datetime value.
The DAY function is a short version of the **EXTRACT**, passing a **DatePart.DAY** value as an argument.
EXTRACT

Dialect support

This example using jOOQ:

```java
day(Date.valueOf("2020-02-03"))
```

Translates to the following dialect specific expressions:

<table>
<thead>
<tr>
<th>Dialect</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCESS</td>
<td><code>datepart('d', '2020/02/03 00:00:00')</code></td>
</tr>
<tr>
<td>ASE, SYBASE</td>
<td><code>datepart(dd, '2020-02-03 00:00:00.0')</code></td>
</tr>
<tr>
<td>AURORA_MYSQL, MEMSQL, MYSQL</td>
<td><code>extract(DAY FROM {ts '2020-02-03 00:00:00.0'})</code></td>
</tr>
<tr>
<td>AURORA_POSTGRES, COCKROACHDB, EXASOL, FIREBIRD, M2, HANA, HSQLDB, IGNITE, INGRES, MARIADB, ORACLE, POSTGRES, REDSHIFT,</td>
<td><code>extract(DAY FROM TIMESTAMP '2020-02-03 00:00:00.0')</code></td>
</tr>
<tr>
<td>BIGQUERY, CUBRID</td>
<td><code>extract(DAY FROM DATETIME '2020-02-03 00:00:00.0')</code></td>
</tr>
<tr>
<td>DB2</td>
<td><code>DAY(TIMESTAMP '2020-02-03 00:00:00.0')</code></td>
</tr>
<tr>
<td>DERBY</td>
<td><code>DAY(TIMESTAMP('2020-02-03 00:00:00.0'))</code></td>
</tr>
<tr>
<td>INFORMIX</td>
<td><code>DAY(DATETIME(2020-02-03 00:00:00.0) YEAR TO FRACTION)</code></td>
</tr>
<tr>
<td>SQLDATAWAREHOUSE, SQLSERVER</td>
<td><code>datepart(dd, CAST('2020-02-03 00:00:00.0' AS DATETIME))</code></td>
</tr>
<tr>
<td>SQLITE</td>
<td><code>CAST(strftime('%d', '2020-02-03 00:00:00.0') AS int)</code></td>
</tr>
</tbody>
</table>

Extract a `org.jooq.DatePart` from a datetime value.

```java
SELECT extract(Date.valueOf("2020-02-03"), DatePart.MONTH).fetch();
```

The result being

<table>
<thead>
<tr>
<th>month</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
</tbody>
</table>
Dialect support

This example using jOOQ:

```
extract(Date.valueOf("2020-02-03"), DatePart.MONTH)
```

Translates to the following dialect specific expressions:

```
-- ACCESS
datepart('m', #2020/02/03 00:00:00#)
-- ASE, SYBASE
datepart(mm, '2020-02-03 00:00:00.0')
-- AURORA_MYSQL, MEMSQL, MYSQL
extract(MONTH FROM ts '2020-02-03 00:00:00.0')
-- AURORA_POSTGRES, COCKROACHDB, EXASOL, FIREBIRD, H2, HANA, HSQldb, IGNITE, INGRES, MARIADB, ORACLE, POSTGRES, REDSHIFT,
-- SNOWFLAKE, TERADATA, VERTICA
extract(MONTH FROM TIMESTAMP '2020-02-03 00:00:00.0')
-- BIGQUERY, CURRID
extract(MONTH FROM DATETIME '2020-02-03 00:00:00.0')
-- DB2
MONTH(TIMESTAMP '2020-02-03 00:00:00.0')
-- DERBY
MONTH(TIMESTAMP('2020-02-03 00:00:00.0'))
-- INFORMIX
MONTH(DATETIME(2020-02-03 00:00:00.0) YEAR TO FRACTION)
-- SQLDATAMWAREHOUSE, SQLSERVER
datepart(mm, CAST('2020-02-03 00:00:00.0' AS DATETIME2))
-- SQLITE
CAST(strftime('%m', '2020-02-03 00:00:00.0') AS int)
```

4.5.12.8. HOUR

Extract the HOUR value from a datetime value.
The HOUR function is a short version of the extract, passing a DatePart.HOUR value as an argument.

```
SELECT hour(TIMESTAMP '2020-02-03 15:30:45');
create.select(hour(Timestamp.valueOf("2020-02-03
15:30:45"))).fetch();
```

The result being

```
+------+
| hour |
+------+
|   15 |
+------+
```

Dialect support

This example using jOOQ:

```
hour(Timestamp.valueOf("2020-02-03 15:30:45"))
```
4.5.12.9. MINUTE

Extract the MINUTE value from a datetime value.

The MINUTE function is a short version of the `EXTRACT`, passing a `DatePart.MINUTE` value as an argument.

```java
create.select(minute(Timestamp.valueOf("2020-02-03 15:30:45"))).fetch();
```

The result being

```
+--------+
<table>
<thead>
<tr>
<th>minute</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
</tr>
</tbody>
</table>
```

Dialect support

This example using jOOQ:

```java
minute(Timestamp.valueOf("2020-02-03 15:30:45"))
```

Translates to the following dialect specific expressions:
4.5.12.10. MONTH

Extract the MONTH value from a datetime value.
The MONTH function is a short version of the EXTRACT, passing a DatePart.MONTH value as an argument.

```
SELECT month(DATE '2020-02-03');
```

The result being

```
+-------+
| month |
+-------+
|     2 |
```

Dialect support

This example using jOOQ:

```
month(Date.valueOf("2020-02-03"))
```

Translates to the following dialect specific expressions:
4.5.12.11. SECOND

Extract the SECOND value from a datetime value.

The `SECOND` function is a short version of the `EXTRACT`, passing a `DatePart.SECOND` value as an argument.

```sql
SELECT second(TIMESTAMP '2020-02-03 15:30:45');
```

The result being

<table>
<thead>
<tr>
<th>second</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
</tr>
</tbody>
</table>

Dialect support

This example using jOOQ:

```java
second(Timestamp.valueOf("2020-02-03 15:30:45")).
```

Translates to the following dialect specific expressions:
4.5.12.12. TIMESTAMPADD

Add an interval of type java.lang.Number (number of days) or org.jooq.types.Interval (SQL interval type) to a timestamp (represented by java.sql.Timestamp).

```java
SELECT DATE '2020-02-03 15:30:45' + INTERVAL 3 DAYS;
```

Dialect support

This example using jOOQ:

```java
timestampAdd(Timestamp.valueOf("2020-02-03 15:30:45"), 3)
```

Translates to the following dialect specific expressions:
Truncate a datetime value to the precision of a certain org.jooq.DatePart, or DatePart.DAY by default.

```java
SELECT TRUNC(DATE '2020-02-03', 'YY');
```

The result being

```
+------------+
| trunc      |
+------------+
| 2020-01-01 |
+------------+
```

Dialect support

This example using jOOQ:

```java
trunc(Date.valueOf("2020-02-03"), DatePart.YEAR))
```
4.5.12.14. YEAR

Extract the YEAR value from a datetime value.
The YEAR function is a short version of the EXTRACT, passing a DatePart.YEAR value as an argument.

SELECT year(DATE '2020-02-03');
create.select(year(Date.valueOf("2020-02-03"))).fetch();

The result being

```
+------+
| year |
+------+
| 2020 |
```

Dialect support

This example using jOOQ:

```
year(Date.valueOf("2020-02-03"));
```

Translates to the following dialect specific expressions:

--- CUBRID, HSQLDB
`trunc(DATE '2020-02-03', 'YY')`

--- DB2, ORACLE
`trunc(DATE '2020-02-03', 'YYYY')`

--- POSTGRES
`date_trunc('year', DATE '2020-02-03')`

--- ACCESS, ASE, AURORA_MYSQL, AURORA_POSTGRES, BIGQUERY, COCKROACHDB, DERBY, ERASOL, FIBERIO, H2, HANA, IGNITE, INFORMIX,
-- MARIADB, MEMSQL, MYSQL, REDSHIFT, SNOWFLAKE, SQLDATAWAREHOUSE, SQLITE, SQLSERVER, STBASE, TERADATA, VERTICA
/* UNSUPPORTED */
4.5.13. System functions

Some system functions are supported by jOOQ.

4.5.13.1. CURRENT_USER

The CURRENT_USER() function produces the dialect dependent expression to produce the currently connected user for the JDBC connection.

```java
SELECT current_user;
create.select(currentUser()).fetch();
```

The result being, for example

```
+------------------+
<table>
<thead>
<tr>
<th>current_user</th>
</tr>
</thead>
<tbody>
<tr>
<td>sa</td>
</tr>
</tbody>
</table>
+------------------+
```

Dialect support

This example using jOOQ:

```java
currentUser()
```

Translates to the following dialect specific expressions:
4.5.14. Aggregate functions

Aggregate functions work like Java `java.util.stream.Collector`, as they aggregate data from a group of data into a new data structure.

This section will first explain concepts common to many aggregate functions, and then proceed to explaining individual aggregate functions supported by jOOQ.

4.5.14.1. Grouping

Aggregate functions aggregate data from groups of data into individual values. There are three main ways of forming such groups:

- A **GROUP BY** clause is used to define the groups for which data is aggregated
- No **GROUP BY** clause is defined, which means that all data from a **SELECT statement** (or subquery) is aggregated into a single row
- All aggregate functions can be used as **window functions**, in case of which they will aggregate the data of the specified window

Aggregation with GROUP BY

In the presence of **GROUP BY**, a **SELECT statement** transforms the output of its **FROM clause** into a new "virtual" set of tuples containing:

- The column expressions of the GROUP BY clause. In the overall data set, the values of these column expressions is unique.
- A set of data corresponding to each row produced by the GROUP BY clause. This data set can be aggregated per group using aggregate functions.

Using GROUP BY means that a new set of rules need to be observed in the rest of the query:

- Clauses that **logically precede GROUP BY** are not affected. These include, for example, **FROM** and **WHERE**
- All other clauses (e.g. **HAVING**, **WINDOW**, **SELECT**, or **ORDER BY**) may now only reference expressions built from the expressions in the GROUP BY clause, or aggregations on any other expression
An example:

```java
create.select(BOOK.AUTHOR_ID, count()).from(BOOK).groupBy(BOOK.AUTHOR_ID).fetch();
```

Producing:

<table>
<thead>
<tr>
<th>AUTHOR_ID</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Per the rules imposed by GROUP BY, it would not be possible, for example, to project the BOOK.TITLE column, because it is not defined per author. An author has written many books, so we don't know what a BOOK.TITLE is supposed to mean. Only an aggregation, such as `LISTAGG`, can reference BOOK.TITLE as an argument.

Aggregation without GROUP BY

In the absence of GROUP BY, a SELECT statement that contains at least one aggregate function in any of its clauses (e.g. HAVING, WINDOW, SELECT, or ORDER BY) will proceed to aggregating the entire data into a single row. There is an implied "empty grouping", i.e. a grouping that has no GROUP BY columns. These two are the same things:

```sql
SELECT count(*) FROM BOOK;
SELECT count(*) FROM BOOK GROUP BY ();
```

See also GROUPING SETS for more details about this empty GROUP BY syntax.

For example, using our sample database, which has 4 books with IDs 1-4, we can write:

```java
create.select(count(), sum(BOOK.ID)).from(BOOK).fetch();
```

Producing:

<table>
<thead>
<tr>
<th>count(*)</th>
<th>sum(ID)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>10</td>
</tr>
</tbody>
</table>

No other columns from the tables in the FROM clause may be projected by the SELECT clause, because they would not be defined for this single group. For example, no specific BOOK.TITLE is defined for the aggregated value of all books. Only an aggregation, such as `LISTAGG` can reference BOOK.TITLE as an argument.

However, any expression whose components do not depend on content of the group is allowed. For example, it is possible to combine aggregate functions and constant expressions like this:

```java
create.select(count().plus(sum(BOOK.ID)).plus(1)).from(BOOK).fetch();
```

Producing:
4.5.14.2. Distinctness

A useful thing to do when aggregating data is to remove duplicate input first, prior to aggregation. A few aggregate functions support a DISTINCT keyword for that purpose. For example, we can query

```
SELECT
count(AUTHOR_ID),
count(DISTINCT AUTHOR_ID),
group_concat(AUTHOR_ID),
group_concat(DISTINCT AUTHOR_ID)
FROM BOOK
```

```
create.select(
count(BOOK.AUTHOR_ID),
countDistinct(BOOK.AUTHOR_ID),
groupConcat(BOOK.AUTHOR_ID),
groupConcatDistinct(BOOK.AUTHOR_ID))
.from(BOOK).fetch();
```

Producing:

<table>
<thead>
<tr>
<th>count</th>
<th>count_distinct</th>
<th>group_concat</th>
<th>group_concat_distinct</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>1, 1, 2, 2</td>
<td>1, 2</td>
</tr>
</tbody>
</table>

If DISTINCT is available through the jOOQ API, it is always appended to the aggregate function name, such as `count()` and `countDistinct()`, `sum()` and `sumDistinct()`, etc.

4.5.14.3. Filtering

The SQL standard specifies an optional FILTER clause, that can be appended to all aggregate functions including aggregated window functions. This is very useful, for example, to implement "pivot" tables, such as the following:

```
SELECT
count(*),
count(*) FILTER (WHERE TITLE LIKE 'A%'),
count(*) FILTER (WHERE TITLE LIKE '%A%')
FROM BOOK
```

```
create.select(
count(),
count().filterWhere(BOOK.TITLE.like("A%")),
count().filterWhere(BOOK.TITLE.like("%A%")))
.from(BOOK)
```

Producing:

<table>
<thead>
<tr>
<th>count</th>
<th>count</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Or, with GROUP BY:
It is usually a good idea to calculate multiple aggregate functions in a single query, if this is possible, and FILTER helps here.

Only a few dialects implement native support for the FILTER clause. In all other databases, jOOQ emulates the clause using a CASE expression. Aggregate functions exclude NULL values from aggregation.

Dialect support

This example using jOOQ:

```
count().filterWhere(BOOK.TITLE.like("A\%"))
```

Translates to the following dialect specific expressions:

```
-- ACCESS
count(SWITCH(BOOK.TITLE LIKE 'A\%', 1))

-- ASE, AURORA_MYSQL, CUBRID, DB2, DERBY, EXASOL, FIREBIRD, HANA, IGNITE, INFORMIX, INGRES, MARIADB, MEMSQL, MYSQL, ORACLE,
-- REDSHIFT, SQLDATANUMEROUS, SQLSERVER, SYBASE, TERADATA, VERTICA
count(CASE WHEN BOOK.TITLE LIKE 'A\%' THEN 1 END)

-- AURORA_POSTGRES, COCKROACHDB, H\$, HSQLDB, POSTGRES, SQLITE
count(*).filterWhere(WHERE BOOK.TITLE LIKE 'A\%')

-- BIGQUERY
countif((BOOK.TITLE LIKE 'A\%'))

-- SNOWFLAKE
count_if((BOOK.TITLE LIKE 'A\%'))
```

4.5.14.4. Keeping

Oracle allows for restricting other aggregate functions using the KEEP() clause, which is supported by jOOQ. In Oracle, some aggregate functions (e.g. MIN, MAX, SUM, AVG, COUNT, VARIANCE, or STDDEV) can be restricted by this clause, hence org.jooq.AggregateFunction also allows for specifying it. Here is an example using this clause:

```
SUM(BOOK.AMOUNT_SOLD)
KEEP(DENSE_RANK FIRST ORDER BY BOOK.AUTHOR_ID)
```

```
sum(BOOK.AMOUNT_SOLD)
 .keepDenseRankFirstOrderBy(BOOK.AUTHOR_ID)
```
4.5.14.5. AVG

The AVG() aggregate function calculates the average value of all input values

```
SELECT avg(ID)
FROM BOOK
```

Producing:

```
+-----+
| avg  |
| 2.5  |
+-----+
```

Dialect support

This example using jOOQ:

```
create.select(avg(BOOK.ID))
.from(BOOK)
```

4.5.14.6. COUNT

The COUNT() aggregate function comes in two flavours:

- **COUNT(*)**: This version counts the number of tuples in a group, regardless of any contents, including NULL values.
- **COUNT(expression)**: This version counts the number of non-NULL expression evaluations per group.

The second version can be used to emulate the **FILTER** clause as the argument expression effectively filters out NULL values. Alternatively, in the case of a **LEFT JOIN**, the outer joined rows can be counted using an expression on the primary key, because COUNT(*) always produces at least one row.

```
SELECT
    AUTHOR.ID,
    count(*),
    count(BOOK.ID)
FROM AUTHOR
LEFT JOIN BOOK
ON BOOK.AUTHOR_ID = AUTHOR.ID
```

Producing (assuming the presence of an author with ID = 3, but without books):
4.5.14.7. GROUP_CONCAT

The GROUP_CONCAT() aggregate function is the MySQL version of the standard SQL `LISTAGG` function, to concatenate aggregate data into a string.

SELECT

- `group_concat(ID)`
- `group_concat(ID ORDER BY ID)`
- `group_concat(ID SEPARATOR '; ')`
- `group_concat(ID ORDER BY ID SEPARATOR '; ')`

```java
FROM BOOK
```

Producing:

<table>
<thead>
<tr>
<th>group_concat</th>
<th>group_concat</th>
<th>group_concat</th>
<th>group_concat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 3, 4, 2</td>
<td>1, 2, 3, 4</td>
<td>1; 3; 4; 2</td>
<td>1; 2; 3; 4</td>
</tr>
</tbody>
</table>

Dialect support

This example using jOOQ:

```java
groupConcat(BOOK.ID)
```

Translates to the following dialect specific expressions:

```java
-- All dialects
count(BOOK.ID)
```
4.5.14.8. LISTAGG

The LISTAGG() aggregate function aggregates data into a string.

```sql
SELECT
    listagg(ID) WITHIN GROUP (ORDER BY ID),
    listagg(ID, '; ') WITHIN GROUP (ORDER BY ID),
FROM BOOK
create.select(
    listagg(BOOK.ID).withinGroupOrderBy(BOOK.ID),
    listagg(BOOK.ID, " "; ").withinGroupOrderBy(BOOK.ID))
.from(BOOK).fetch();
```

Producing:

```
+-----------------+---------------+
| listagg         | listagg       |
+-----------------+---------------+
| 1, 2, 3, 4      | 1; 2; 3; 4    |
+-----------------+---------------+
```

4.5.14.9. MAX

The MAX() aggregate function calculates the maximum value of all input values

```sql
SELECT max(ID)
FROM BOOK
create.select(max(BOOK.ID))
.from(BOOK)
```

Producing:

```
+-----+
| max  |
+-----+
| 4    |
+-----+
```

Dialect support

This example using jOOQ:
The MEDIAN() aggregate function calculates the median value of all input values.

```
SELECT median(ID)
FROM BOOK
```

Producing:

```
+--------+
| median  |
+--------+
| 2.5    |
+--------+
```

Dialect support

This example using jOOQ:

```
median(BOOK.ID)
```

Translates to the following dialect specific expressions:

```
-- CUBRID, HSQLDB, ORACLE, SYBASE
median(BOOK.ID)
-- ACCESS, ASE, AURORA_MYSQL, AURORA_POSTGRES, BIGQUERY, COCKROACHDB, DB2, DERBY, EXASQL, FIREBIRD, H2, HANA, IGNITE,
-- INFORMIX, MARIADB, MNSQL, MYSQL, POSTGRES, REDSHIFT, SNOWFLAKE, SQILDATAWAREHOUSE, SQILITE, SQLSERVER, TERADATA, VERTICA
/* UNSUPPORTED */
```

4.5.14.11. MIN

The MIN() aggregate function calculates the minimum value of all input values.

```
SELECT min(ID)
FROM BOOK
```

Producing:
Dialect support

This example using jOOQ:

```
min(BOOK.ID)
```

Translates to the following dialect specific expressions:

```
-- All dialects
min(BOOK.ID)
```

4.5.14.12. PRODUCT

The PRODUCT() aggregate function is a synthetic aggregate function that calculates the product of all values in the group, similar to how the SUM function calculates the sum (learn about other synthetic sql syntaxes).

```
SELECT product(ID)
FROM BOOK
```

Producing:

```
+---------+
<table>
<thead>
<tr>
<th>product</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
</tr>
</tbody>
</table>
```

4.5.14.13. SUM

The SUM() aggregate function calculates the sum of all values per group.

```
SELECT sum(ID)
FROM BOOK
```

Producing:

```
+-----+
<table>
<thead>
<tr>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
</tr>
</tbody>
</table>
```

© 2009 - 2021 by Data Geekery™ GmbH.
Dialect support

This example using jOOQ:

```java
sum(BOOK.ID)
```

Translates to the following dialect specific expressions:

```sql
-- All dialects
sum(BOOK.ID)
```

4.5.15. Window functions

Most major RDBMS support the concept of window functions.

As previously discussed, any `org.jooq.AggregateFunction` can be transformed into a window function using the `over()` method. See the chapter about `aggregate functions` for details. In addition to those, there are also some more window functions supported by jOOQ, as declared in the DSL:

```java
// Ranking functions
WindowOverStep<Integer>    rowNumber();
WindowOverStep<Integer>    rank();
WindowOverStep<Integer>    denseRank();
WindowOverStep<BigDecimal> percentRank();

// Windowing functions
<T> WindowIgnoreNullsStep<T>   firstValue(Field<T> field);
<T> WindowIgnoreNullsStep<T>   lastValue(Field<T> field);
<T> WindowIgnoreNullsStep<T>   lead(Field<T> field);
<T> WindowIgnoreNullsStep<T>   lead(Field<T> field, int offset);
<T> WindowIgnoreNullsStep<T>   lead(Field<T> field, int offset, T defaultValue);
<T> WindowIgnoreNullsStep<T>   lead(Field<T> field, int offset, Field<T> defaultValue);
<T> WindowIgnoreNullsStep<T>   lag(Field<T> field);
<T> WindowIgnoreNullsStep<T>   lag(Field<T> field, int offset);
<T> WindowIgnoreNullsStep<T>   lag(Field<T> field, int offset, T defaultValue);
<T> WindowIgnoreNullsStep<T>   lag(Field<T> field, int offset, Field<T> defaultValue);

// Statistical functions
WindowOverStep<BigDecimal> cumeDist();
WindowOverStep<Integer>    ntile(int number);
```

SQL distinguishes between various window function types (e.g. "ranking functions"). Depending on the function, SQL expects mandatory `PARTITION BY` or `ORDER BY` clauses within the `OVER()` clause. jOOQ does not enforce those rules for two reasons:

- Your JDBC driver or database already checks SQL syntax semantics
- Not all databases behave correctly according to the SQL standard

If possible, however, jOOQ tries to render missing clauses for you, if a given SQL dialect is more restrictive.

Some examples

Here are some simple examples of window functions with jOOQ:
4.5.15. Window functions

An advanced window function example

Window functions can be used for things like calculating a “running total”. The following example fetches transactions and the running total for every transaction going back to the beginning of the transaction table (ordered by booked_at). Window functions are accessible from the previously seen `org.jooq.AggregateFunction` type using the over() method:

```
SELECT booked_at, amount,
    SUM(amount) OVER (PARTITION BY 1
        ORDER BY booked_at
        ROWS BETWEEN UNBOUNDED PRECEDING
        AND CURRENT ROW) AS total
FROM transactions
```

Window functions created from ordered-set aggregate functions

In the previous chapter about aggregate functions, we have seen the concept of "ordered-set aggregate functions", such as Oracle's LISTAGG(). These functions have a window function / analytical function variant, as well. For example:

```
SELECT LISTAGG(TITLE, ', ') WITHIN GROUP (ORDER BY TITLE)
    OVER (PARTITION BY BOOK.AUTHOR_ID)
FROM BOOK
```

Window functions created from Oracle's FIRST and LAST aggregate functions

In the previous chapter about aggregate functions, we have seen the concept of "FIRST and LAST aggregate functions". These functions have a window function / analytical function variant, as well. For example:

```
SUM(BOOK.AMOUNT_SOLD)
    KEEP(DENSE_RANK FIRST ORDER BY BOOK.AUTHOR_ID)
OVER(PARTITION BY 1)
```

Window functions created from user-defined aggregate functions

User-defined aggregate functions also implement `org.jooq.AggregateFunction`, hence they can also be transformed into window functions using over(). This is supported by Oracle in particular. See the manual's section about user-defined aggregate functions for more details.
4.5.16. Grouping functions

ROLLUP() explained in SQL

The SQL standard defines special functions that can be used in the GROUP BY clause: the grouping functions. These functions can be used to generate several groupings in a single clause. This can best be explained in SQL. Let's take ROLLUP() for instance:

```
-- ROLLUP() with one argument
SELECT AUTHOR_ID, COUNT(*)
FROM BOOK
GROUP BY ROLLUP(AUTHOR_ID)

-- ROLLUP() with two arguments
SELECT AUTHOR_ID, PUBLISHED_IN, COUNT(*)
FROM BOOK
GROUP BY ROLLUP(AUTHOR_ID, PUBLISHED_IN)
```

In English, the ROLLUP() grouping function provides N+1 groupings, when N is the number of arguments to the ROLLUP() function. Each grouping has an additional group field from the ROLLUP() argument field list. The results of the second query might look something like this:

```
+-----------+--------------+----------+
| AUTHOR_ID | PUBLISHED_IN | COUNT(*) |
+-----------+--------------+----------+
|         1 |         1945 |        1 | <- GROUP BY (AUTHOR_ID, PUBLISHED_IN)
|         1 |         1948 |        1 | <- GROUP BY (AUTHOR_ID, PUBLISHED_IN)
|         1 |         NULL |        2 | <- GROUP BY (AUTHOR_ID)
|         2 |         1988 |        1 | <- GROUP BY (AUTHOR_ID, PUBLISHED_IN)
|         2 |         1990 |        1 | <- GROUP BY (AUTHOR_ID, PUBLISHED_IN)
|         2 |         NULL |        2 | <- GROUP BY (AUTHOR_ID)
| NULL     |     NULL    |        2 | <- GROUP BY ()
+-----------+--------------+----------+
```

CUBE() explained in SQL

CUBE() is different from ROLLUP() in the way that it doesn't just create N+1 groupings, it creates all 2^N possible combinations between all group fields in the CUBE() function argument list. Let's re-consider our second query from before:

```
-- CUBE() with two arguments
SELECT AUTHOR_ID, PUBLISHED_IN, COUNT(*)
FROM BOOK
GROUP BY CUBE(AUTHOR_ID, PUBLISHED_IN)

-- The same query using UNION ALL:
SELECT AUTHOR_ID, PUBLISHED_IN, COUNT(*)
FROM BOOK GROUP BY AUTHOR_ID, PUBLISHED_IN
UNION ALL
SELECT NULL, PUBLISHED_IN, COUNT(*)
FROM BOOK GROUP BY()
ORDER BY 1 NULLS LAST, 2 NULLS LAST

SELECT AUTHOR_ID, NULL, COUNT(*)
FROM BOOK GROUP BY AUTHOR_ID
UNION ALL
SELECT NULL, NULL, COUNT(*)
FROM BOOK GROUP BY()
ORDER BY 1 NULLS LAST, 2 NULLS LAST

SELECT NULL, NULL, COUNT(*)
FROM BOOK GROUP BY()
ORDER BY 1 NULLS FIRST, 2 NULLS FIRST
```

The results would then hold:
GROUPING SETS()

GROUPING SETS() are the generalised way to create multiple groupings. From our previous examples:

- ROLLUP(AUTHOR_ID, PUBLISHED_IN) corresponds to GROUPING SETS((AUTHOR_ID, PUBLISHED_IN), (AUTHOR_ID), ())
- CUBE(AUTHOR_ID, PUBLISHED_IN) corresponds to GROUPING SETS((AUTHOR_ID, PUBLISHED_IN), (AUTHOR_ID), (PUBLISHED_IN), ())

This is nicely explained in the SQL Server manual pages about GROUPING SETS() and other grouping functions:

jOOQ's support for ROLLUP(), CUBE(), GROUPING SETS()

jOOQ fully supports all of these functions, as well as the utility functions GROUPING() and GROUPING_ID(), used for identifying the grouping set ID of a record. The DSL API thus includes:

```java
// The various grouping function constructors
GroupField rollup(Field<?>... fields);
GroupField cube(Field<?>... fields);
GroupField groupingSets(Field<?>... fields);
GroupField groupingSets(Field<?>[]... fields);
GroupField groupingSets(Collection<? extends Field<?>>... fields);

// The utility functions generating IDs per GROUPING SET
Field<Integer> grouping(Field<?>);  // Field<Integer> groupingId(Field<?>);
Field<Integer> groupingId(Field<?>...);
```

MySQL's and CUBRID's WITH ROLLUP syntax

MySQL and CUBRID don't know any grouping functions, but they support a WITH ROLLUP clause, that is equivalent to simple ROLLUP() grouping functions. jOOQ emulates ROLLUP() in MySQL and CUBRID, by rendering this WITH ROLLUP clause. The following two statements mean the same:

Statement 1: SQL standard
GROUP BY ROLLUP(A, B, C)

Statement 2: SQL standard
GROUP BY A, ROLLUP(B, C)

Statement 1: MySQL
GROUP BY A, B, C WITH ROLLUP

Statement 2: MySQL

This is not supported in MySQL
4.5.17. User-defined functions

Some databases support user-defined functions, which can be embedded in any SQL statement, if you're using jOOQ's code generator. Let's say you have the following simple function in Oracle SQL:

```sql
CREATE OR REPLACE FUNCTION echo (INPUT NUMBER)
    RETURN NUMBER
IS
    BEGIN
        RETURN INPUT;
    END echo;
```

The above function will be made available from a generated Routines class. You can use it like any other column expression:

```
SELECT echo(1) FROM DUAL WHERE echo(2) = 2
```

Note that user-defined functions returning CURSOR or ARRAY data types can also be used wherever table expressions can be used, if they are unnested.

4.5.18. User-defined aggregate functions

Some databases support user-defined aggregate functions, which can then be used along with GROUP BY clauses or as window functions. An example for such a database is Oracle. With Oracle, you can define the following OBJECT type (the example was taken from the Oracle 11g documentation):
The jOOQ User Manual

4.5.19. The CASE expression

The jOOQ User Manual

4.5.19. The CASE expression

The CASE expression is part of the standard SQL syntax. While some RDBMS also offer an IF expression, or a DECODE function, you can always rely on the two types of CASE syntax:

```sql
-- Get the second-latest publishing date by author
SELECT SECOND_MAX(PUBLISHED_IN) FROM BOOK
GROUP BY AUTHOR_ID
```

```sql
// Routines.secondMax() can be static-imported
create.select(secondMax(BOOK.PUBLISHED_IN))
.from(BOOK)
.groupBy(BOOK.AUTHOR_ID)
```

The above OBJECT type is then available to function declarations as such:

```sql
CREATE FUNCTION SECOND_MAX (input NUMBER) RETURN NUMBER
PARALLEL_ENABLE AGGREGATE USING U_SECOND_MAX;
```

Using the generated aggregate function

jOOQ's code generator will detect such aggregate functions and generate them differently from regular user-defined functions. They implement the org.jooq.AggregateFunction type, as mentioned in the manual's section about aggregate functions. Here's how you can use the SECOND_MAX() aggregate function with jOOQ:
SELECT
-- Searched case
CASE WHEN AUTHOR.FIRST_NAME = 'Paulo' THEN 'brazilian'
 WHEN AUTHOR.FIRST_NAME = 'George' THEN 'english'
 ELSE 'unknown'
END,
-- Simple case
CASE AUTHOR.FIRST_NAME WHEN 'Paulo' THEN 'brazilian'
 WHEN 'George' THEN 'english'
 ELSE 'unknown'
END
FROM AUTHOR

create.select(
 // Searched case
 when(AUTHOR.FIRST_NAME.eq("Paulo"), "brazilian")
 .when(AUTHOR.FIRST_NAME.eq("George"), "english")
 .otherwise("unknown")
 // Simple case
 choose(AUTHOR.FIRST_NAME)
 .when("Paulo", "brazilian")
 .when("George", "english")
 .otherwise("unknown")
 .from(AUTHOR)
 .fetch();

In jOOQ, both syntaxes are supported (The second one is emulated in Derby, which only knows the first one). Unfortunately, both case and else are reserved words in Java. jOOQ chose to use decode() from the Oracle DECODE function, and otherwise(), which means the same as else.

A CASE expression can be used anywhere where you can place a column expression (or Field). For instance, you can SELECT the above expression, if you're selecting from AUTHOR:

```sql
SELECT AUTHOR.FIRST_NAME, [... CASE EXPR ...] AS nationality
FROM AUTHOR
```

Short forms of the CASE expression

The SQL standard and some vendors support a variety of short forms of the CASE expression, usually in the form of functions. These include:

- COALESCE
- DECODE
- NULLIF
- NVL
- NVL2

Sort indirection is often implemented with a CASE clause of a SELECT's ORDER BY clause. See the manual's section about the ORDER BY clause for more details.

4.5.20. Sequences and serials

Sequences implement the org.jooq.Sequence interface, providing essentially this functionality:

```java
// Get a field for the CURRVAL sequence property
Field<T> currval();
// Get a field for the NEXTVAL sequence property
Field<T> nextval();
```

So if you have a sequence like this in Oracle:

```sql
CREATE SEQUENCE s_author_id
```

You can then use your generated sequence object directly in a SQL statement as such:
4.5.21. Scalar subqueries

A scalar subquery is a subquery that produces a scalar value, i.e. one row and one column. Such values can be used as ordinary column expressions. Syntactically, any Select<Record1<?>> type qualifies as a scalar subquery, irrespective of content and whether it is "correlated".

There are mostly 3 ways of creating scalar subqueries in jOOQ

- Type safe wrapping using DSL.field(Select)
- Type unsafe wrapping using Select.asField()
- Through convenience methods, such as Field.eq(Select)

For example:

```
create.select(
    AUTHOR.ID,
    field(selectCount().from(AUTHOR)).as("authors")
).from(AUTHOR)
.fetch();
```

Correlated subqueries

A "correlated" subquery is a subquery (scalar or not) whose execution depends on the query that it is embedded in. It acts as a function taking the current row as an input argument.

In the above example, the subquery counts the number of books for each author from the outer query.
4.5.22. Tuples or row value expressions

According to the SQL standard, row value expressions can have a degree of more than one. This is commonly used in the INSERT statement, where the VALUES row value constructor allows for providing a row value expression as a source for INSERT data. Row value expressions can appear in various other places, though. They are supported by jOOQ as records / rows. jOOQ's DSL allows for the construction of type-safe records up to the degree of 22. Higher-degree Rows are supported as well, but without any type-safety. Row types are modelled as follows:

```java
// The DSL provides overloaded row value expression constructor methods:
public static <T1>             Row1<T1>             row(T1 t1)                      { ... }
public static <T1, T2>         Row2<T1, T2>         row(T1 t1, T2 t2)               { ... }
public static <T1, T2, T3>     Row3<T1, T2, T3>     row(T1 t1, T2 t2, T3 t3)        { ... }
public static <T1, T2, T3, T4> Row4<T1, T2, T3, T4> row(T1 t1, T2 t2, T3 t3, T4 t4) { ... }
// [ ... idem for Row5, Row6, Row7, ..., Row22 ]
// Degrees of more than 22 are supported without type-safety
public static RowN row(Object... values) { ... }
```

Using row value expressions in predicates

Row value expressions are incompatible with most other QueryParts, but they can be used as a basis for constructing various conditional expressions, such as:

- comparison predicates
- NULL predicates
- BETWEEN predicates
- IN predicates
- OVERLAPS predicate (for degree 2 row value expressions only)

See the relevant sections for more details about how to use row value expressions in predicates.

Using row value expressions in UPDATE statements

The UPDATE statement also supports a variant where row value expressions are updated, rather than single columns. See the relevant section for more details.

Higher-degree row value expressions

jOOQ chose to explicitly support degrees up to 22 to match Scala's typesafe tuple, function and product support. Unlike Scala, however, jOOQ also supports higher degrees without the additional typesafety.

4.6. Conditional expressions

Conditions or conditional expressions are widely used in SQL and in the jOOQ API. They can be used in
- The **CASE expression**
- The **JOIN clause** (or **JOIN .. ON clause**, to be precise) of a **SELECT statement**, **UPDATE statement**, **DELETE statement**
- The **WHERE clause** of a **SELECT statement**, **UPDATE statement**, **DELETE statement**
- The **CONNECT BY clause** of a **SELECT statement**
- The **HAVING clause** of a **SELECT statement**
- The **MERGE statement**'s **ON clause**

Boolean types in SQL

Before SQL:1999, boolean types did not really exist in SQL. They were modelled by 0 and 1 numeric/char values. With SQL:1999, true booleans were introduced and are now supported by most databases. In short, these are possible boolean values:

- 1 or TRUE
- 0 or FALSE
- NULL or UNKNOWN

It is important to know that SQL differs from many other languages in the way it interprets the NULL boolean value. Most importantly, the following facts are to be remembered:

- [ANY] = NULL yields NULL (not FALSE)
- [ANY] != NULL yields NULL (not TRUE)
- NULL = NULL yields NULL (not TRUE)
- NULL != NULL yields NULL (not FALSE)

For simplified NULL handling, please refer to the section about the **DISTINCT predicate**.

Note that jOOQ does not model these values as actual column expression compatible.

4.6.1. Condition building

With jOOQ, most **conditional expressions** are built from **column expressions**, calling various methods on them. For instance, to build a **comparison predicate**, you can write the following expression:

```java
TITLE = 'Animal Farm'
BOOK.TITLE.eq("Animal Farm")
```

Create conditions from the DSL

There are a few types of conditions, that can be created statically from the **DSL**. These are:

- plain SQL conditions, that allow you to phrase your own SQL string **conditional expression**
- The **EXISTS predicate**, a standalone predicate that creates a conditional expression
- Constant **TRUE** and **FALSE** conditional expressions
- Converting a **BOOLEAN column** to a condition
Connect conditions using boolean operators

Conditions can also be connected using boolean operators as will be discussed in a subsequent chapter.

4.6.2. TRUE and FALSE condition

When a conditional expression is mandatory, or when using dynamic SQL, it may be required to provide a "dummy" condition that always evaluates to TRUE or FALSE. For this purpose, you can use DSL.trueCondition() or DSL.falseCondition(). For example:

TRUE

TRUE is the identity value of the AND boolean operator, and can be used for procedural or functional reduction of a set of values to a condition:

<table>
<thead>
<tr>
<th>TRUE</th>
<th>AND</th>
<th>ID = 1</th>
<th>AND</th>
<th>TITLE = 'Animal Farm'</th>
</tr>
</thead>
</table>

```java
Condition condition = trueCondition();
if (id != null)
    condition = condition.and(BOOK.ID.eq(id));
if (title != null)
    condition = condition.and(BOOK.TITLE.eq(title));
```

If a dialect does not support boolean column types, jOOQ will simply generate 1 = 1.

FALSE

FALSE is the identity value of the OR boolean operator, and can be used for procedural or functional reduction of a set of values to a condition:

<table>
<thead>
<tr>
<th>FALSE</th>
<th>OR</th>
<th>ID = 1</th>
<th>OR</th>
<th>ID = 7</th>
</tr>
</thead>
</table>

```java
List<Integer> list = List.of(1, 7);
Condition condition = list
    .stream()
    .map(BOOK.ID::eq)
    .reduce(falseCondition(), Condition::or);
```

If a dialect does not support boolean column types, jOOQ will simply generate 1 = 0.

4.6.3. BOOLEAN columns

Some databases support the standard SQL BOOLEAN data type, which produces Field<Boolean> column types in jOOQ's code generator. But even if your dialect doesn't support the BOOLEAN type out of the box, you may have applied a data type rewrite to force a TINYINT(1) or CHAR(1) or NUMBER(1) column to act as a BOOLEAN.

When you have such a column, you will want to use it as a condition, and vice-versa. An org.jooq.Field<Boolean> can be turned into a org.jooq.Condition using DSL.condition(Field). The inverse operation can be achieved using DSL.field(Condition):
4.6.4. AND, OR, NOT boolean operators

In SQL, as in most other languages, conditional expressions can be connected using the AND and OR binary operators, as well as the NOT unary operator, to form new conditional expressions. In jOOQ, this is modelled as such:

```java
Condition condition = BOOK.TITLE.eq("Animal Farm");
Field<Boolean> field = field(condition);
// Fetch boolean values from a table
create.select(field).from(BOOK).fetch();
// Use a boolean field as a condition
create.selectFrom(BOOK).where(field).fetch();
```

In SQL, the above example shows that the number of parentheses in Java can quickly explode. Proper indentation may become crucial in making such code readable. In order to understand how jOOQ composes combined conditional expressions, let's assign component expressions first:

```java
Condition a = BOOK.TITLE.eq("Animal Farm");
Condition b = BOOK.TITLE.eq("1984");
Condition c = AUTHOR.LAST_NAME.eq("Orwell");
Condition combined1 = a.or(b); // These OR-connected conditions form a new condition, wrapped in parentheses
Condition combined2 = combined1.andNot(c); // The left-hand side of the AND NOT () operator is already wrapped in parentheses
```

The Condition API

Here are all boolean operators on the `org.jooq.Condition` interface:

- `and(Condition)` // Combine conditions with AND
- `and(String)` // Combine conditions with AND. Convenience for adding plain SQL to the right-hand side
- `and(String, Object...)` // Combine conditions with AND. Convenience for adding plain SQL to the right-hand side
- `and(String, QueryPart...)` // Combine conditions with AND. Convenience for adding plain SQL to the right-hand side
- `andExists(Select<?>)` // Combine conditions with AND. Convenience for adding an exists predicate to the rhs
- `andNot(Condition)` // Combine conditions with AND. Convenience for adding an inverted condition to the rhs
- `andNotExists(Select<?>)` // Combine conditions with AND. Convenience for adding an inverted exists predicate to the rhs
- `or(Condition)` // Combine conditions with OR
- `or(String)` // Combine conditions with OR. Convenience for adding plain SQL to the right-hand side
- `or(String, Object...)` // Combine conditions with OR. Convenience for adding plain SQL to the right-hand side
- `or(String, QueryPart...)` // Combine conditions with OR. Convenience for adding plain SQL to the right-hand side
- `orExists(Select<?>)` // Combine conditions with OR. Convenience for adding an exists predicate to the rhs
- `orNot(Condition)` // Combine conditions with OR. Convenience for adding an inverted condition to the rhs
- `orNotExists(Select<?>)` // Combine conditions with OR. Convenience for adding an inverted exists predicate to the rhs
- `not()` // Invert a condition (synonym for `DSL.not(Condition)`)

4.6.5. Comparison predicate

In SQL, comparison predicates are formed using common comparison operators:
- = to test for equality
- <> or != to test for non-equality
- > to test for being strictly greater
- >= to test for being greater or equal
- < to test for being strictly less
- <= to test for being less or equal

Unfortunately, Java does not support operator overloading, hence these operators are also implemented as methods in jOOQ, like any other SQL syntax elements. The relevant parts of the org.jooq.Field interface are these:

```
- eq or equal(T);                                     // =  (some bind value)
- eq or equal(Field<T>);                              // =  (some column expression)
- eq or equal(Select<? extends Record1<T>>);          // =  (some scalar SELECT statement)
- ne or notEqual(T);                                  // <> (some bind value)
- ne or notEqual(Field<T>);                           // <> (some column expression)
- ne or notEqual(Select<? extends Record1<T>>);       // <> (some scalar SELECT statement)
- lt or lessThan(T);                                  // <  (some bind value)
- lt or lessThan(Field<T>);                           // <  (some column expression)
- lt or lessThan(Select<? extends Record1<T>>);       // <  (some scalar SELECT statement)
- le or lessOrEqual(T);                               // <= (some bind value)
- le or lessOrEqual(Field<T>);                        // <= (some column expression)
- le or lessOrEqual(Select<? extends Record1<T>>);    // <= (some scalar SELECT statement)
- gt or greaterThan(T);                               // >  (some bind value)
- gt or greaterThan(Field<T>);                        // >  (some column expression)
- gt or greaterThan(Select<? extends Record1<T>>);    // >  (some scalar SELECT statement)
- ge or greaterOrEqual(T);                            // >= (some bind value)
- ge or greaterOrEqual(Field<T>);                     // >= (some column expression)
- ge or greaterOrEqual(Select<? extends Record1<T>>); // >= (some scalar SELECT statement)
```

Note that every operator is represented by two methods. A verbose one (such as equal()) and a two-character one (such as eq()). Both methods are the same. You may choose either one, depending on your taste. The manual will always use the more verbose one.

jOOQ's convenience methods using comparison operators

In addition to the above, jOOQ provides a few convenience methods for common operations performed on strings using comparison predicates:

```
LOWER(TITLE) = LOWER('animal farm')
BOOK.TITLE.equalIgnoreCase("animal farm")
```

4.6.6. Boolean operator precedence

As previously mentioned in the manual's section about arithmetic expressions, jOOQ does not implement operator precedence. All operators are evaluated from left to right, as expected in an object-oriented API. This is important to understand when combining boolean operators, such as AND, OR, and NOT. The following expressions are equivalent:

```
A .and(B) .or(C) .and(D) .or(E)
((A .and(B)) .or(C)) .and(D) .or(E)
```

In SQL, the two expressions wouldn't be the same, as SQL natively knows operator precedence.

```
A AND B OR C AND D OR E -- Precedence is applied
((A AND B) OR C) AND D OR E -- Precedence is overridden
```
4.6.7. Comparison predicate (degree > 1)

All variants of the comparison predicate that we've seen in the previous chapter also work for row value expressions. If your database does not support row value expression comparison predicates, jOOQ emulates them the way they are defined in the SQL standard:

--- Row value expressions (equal) ---

(A, B) = (X, Y)
(A, B, C) = (X, Y, Z)

--- greater than ---

(A, B) > (X, Y)
(A, B, C) > (X, Y, Z)

--- greater or equal ---

(A, B) >= (X, Y)
(A, B, C) >= (X, Y, Z)

--- Inverse comparisons ---

(A, B) <> (X, Y)
(A, B) < (X, Y)
(A, B) <= (X, Y)

--- Equivalent factored-out predicates (equal) ---

(A = X) AND (B = Y)
(A = X) AND (B = Y) AND (C = Z)

--- greater than ---

(A > X)
OR ((A = X) AND (B > Y))
OR ((A = X) AND (B = Y) AND (C > Z))

--- greater or equal ---

(A > X)
OR ((A = X) AND (B > Y))
OR ((A = X) AND (B = Y))
OR ((A = X) AND (B = Y) AND (C > Z))

--- For simplicity, these predicates are shown in terms of their negated counter parts ---

NOT((A, B) = (X, Y))
NOT((A, B) >= (X, Y))
NOT((A, B) > (X, Y))

jOOQ supports all of the above row value expression comparison predicates, both with column expression lists and scalar subselects at the right-hand side:

--- With regular column expressions ---

(BOOK.AUTHOR_ID, BOOK.TITLE) = (1, 'Animal Farm')

--- With scalar subselects ---

(Book.Author_id, Book.Title) = (SELECT PERSON.ID, 'Animal Farm' FROM PERSON WHERE PERSON.ID = 1)

--- Equivalent factored-out predicates (equal) ---

(A = X) AND (B = Y)
(A = X) AND (B = Y) AND (C = Z)

--- greater than ---

(A > X)
OR ((A = X) AND (B > Y))
OR ((A = X) AND (B = Y) AND (C > Z))

--- greater or equal ---

(A > X)
OR ((A = X) AND (B > Y))
OR ((A = X) AND (B = Y))
OR ((A = X) AND (B = Y) AND (C > Z))

--- For simplicity, these predicates are shown in terms of their negated counter parts ---

NOT((A, B) = (X, Y))
NOT((A, B) >= (X, Y))
NOT((A, B) > (X, Y))

4.6.8. Quantified comparison predicate

If the right-hand side of a comparison predicate turns out to be a non-scalar table subquery, you can wrap that subquery in a quantifier, such as ALL, ANY, or SOME. Note that the SQL standard defines ANY and SOME to be equivalent. jOOQ settled for the more intuitive ANY and doesn't support SOME. Here are some examples, supported by jOOQ:

TITLE = ANY('Animal Farm', '1982')
PUBLISHED_IN > ALL(1920, 1940)

BOOK.TITLE.eq(any("Animal Farm", "1982"));
BOOK.PUBLISHED_IN.gt(all(1920, 1940));

For the example, the right-hand side of the quantified comparison predicates were filled with argument lists. But it is easy to imagine that the source of values results from a subselect.

ANY and the IN predicate

It is interesting to note that the SQL standard defines the IN predicate in terms of the ANY-quantified predicate. The following two expressions are equivalent:
Typically, the **IN predicate** is more readable than the quantified comparison predicate.

4.6.9. NULL predicate

In SQL, you cannot compare NULL with any value using **comparison predicates**, as the result would yield NULL again, which is neither TRUE nor FALSE (see also the manual's section about conditional expressions). In order to test a **column expression** for NULL, use the NULL predicate as such:

```
TITLE IS NULL
TITLE IS NOT NULL
```

BOOK.TITLE.isNull()

BOOK.TITLE.isNotNull()

4.6.10. NULL predicate (degree > 1)

The SQL NULL predicate also works well for **row value expressions**, although it has some subtle, counter-intuitive features when it comes to inversing predicates with the NOT() operator! Here are some examples:

```
-- Row value expressions
(A, B) IS NULL
(A, B) IS NOT NULL

-- Inverse of the above
NOT((A, B) IS NULL)
NOT((A, B) IS NOT NULL)
```

```
-- Equivalent factored-out predicates
(A IS NULL) AND (B IS NULL)
(A IS NOT NULL) AND (B IS NOT NULL)

-- Inverse
(A IS NOT NULL) OR (B IS NOT NULL)
(A IS NULL) OR (B IS NULL)
```

The SQL standard contains a nice truth table for the above rules:

<table>
<thead>
<tr>
<th>Expression</th>
<th>R IS NULL</th>
<th>R IS NOT NULL</th>
<th>NOT R IS NULL</th>
<th>NOT R IS NOT NULL</th>
</tr>
</thead>
<tbody>
<tr>
<td>degree 1: null</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>degree 1: not null</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>degree > 1: all null</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>degree > 1: some null</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>degree > 1: none null</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
</tbody>
</table>

In jOOQ, you would simply use the `isNull()` and `isNotNull()` methods on row value expressions. Again, as with the **row value expression comparison predicate**, the row value expression NULL predicate is emulated by jOOQ, if your database does not natively support it:

```
row(BOOK.ID, BOOK.TITLE).isNull();
row(BOOK.ID, BOOK.TITLE).isNotNull();
```
4.6.11. DISTINCT predicate

Some databases support the DISTINCT predicate, which serves as a convenient, NULL-safe comparison predicate. With the DISTINCT predicate, the following truth table can be assumed:

- [ANY] IS DISTINCT FROM NULL yields TRUE
- [ANY] IS NOT DISTINCT FROM NULL yields FALSE
- NULL IS DISTINCT FROM NULL yields FALSE
- NULL IS NOT DISTINCT FROM NULL yields TRUE

For instance, you can compare two fields for distinctness, ignoring the fact that any of the two could be NULL, which would lead to funny results. This is supported by jOOQ as such:

```
TITLE IS DISTINCT FROM SUB_TITLE
TITLE IS NOT DISTINCT FROM SUB_TITLE
```

If your database does not natively support the DISTINCT predicate, jOOQ emulates it with an equivalent CASE expression, modelling the above truth table:

```
-- A IS DISTINCT FROM B
CASE WHEN A IS     NULL AND B IS     NULL THEN FALSE
     WHEN A IS     NULL AND B IS NOT NULL THEN TRUE
     WHEN A IS NOT NULL AND B IS     NULL THEN TRUE
     WHEN A =               B             THEN FALSE
     ELSE                                      TRUE
END

-- A IS NOT DISTINCT FROM B
CASE WHEN A IS     NULL AND B IS     NULL THEN TRUE
     WHEN A IS     NULL AND B IS NOT NULL THEN FALSE
     WHEN A IS NOT NULL AND B IS     NULL THEN FALSE
     WHEN A =               B             THEN TRUE
     ELSE                                      FALSE
END
```

4.6.12. BETWEEN predicate

The BETWEEN predicate can be seen as syntactic sugar for a pair of comparison predicates. According to the SQL standard, the following two predicates are equivalent:

```
A BETWEEN B AND C
```
```
A >= B AND A <= C
```

Note the inclusiveness of range boundaries in the definition of the BETWEEN predicate. Intuitively, this is supported in jOOQ as such:

```
PUBLISHED_IN     BETWEEN 1920 AND 1940
PUBLISHED_IN NOT BETWEEN 1920 AND 1940
```
```
BOOK.PUBLISHED_IN.between(1920).and(1940)
BOOK.PUBLISHED_IN.notBetween(1920).and(1940)
```

BETWEEN SYMMETRIC

The SQL standard defines the SYMMETRIC keyword to be used along with BETWEEN to indicate that you do not care which bound of the range is larger than the other. A database system should simply swap range bounds, in case the first bound is greater than the second one. jOOQ supports this keyword as well, emulating it if necessary.
The emulation is done trivially:

\[
\begin{align*}
& A \text{ BETWEEN SYMMETRIC } B \text{ AND } C \\
& A \text{ BETWEEN SYMMETRIC } B \text{ AND } C \\
\end{align*}
\]

\[(A \text{ BETWEEN } B \text{ AND } C) \text{ OR } (A \text{ BETWEEN } C \text{ AND } B)\]

4.6.13. BETWEEN predicate (degree > 1)

The SQL BETWEEN predicate also works well for row value expressions. Much like the BETWEEN predicate for degree 1, it is defined in terms of a pair of regular comparison predicates:

\[
\begin{align*}
& A \text{ BETWEEN } B \text{ AND } C \\
& A \text{ BETWEEN SYMMETRIC } B \text{ AND } C \\
& A \geq B \text{ AND } A \leq C \\
& (A \geq B \text{ AND } A \leq C) \text{ OR } (A \geq C \text{ AND } A \leq B) \]
\]

The above can be factored out according to the rules listed in the manual's section about row value expression comparison predicates.

jOOQ supports the BETWEEN [SYMMETRIC] predicate and emulates it in all SQL dialects where necessary. An example is given here:

\[
\text{row(BOOK.ID, BOOK.TITLE).between(1, "A").and(10, "Z");}
\]

4.6.14. LIKE predicate

LIKE predicates are popular for simple wildcard-enabled pattern matching. Supported wildcards in all SQL databases are:

- _: (single-character wildcard)
- %: (multi-character wildcard)

With jOOQ, the LIKE predicate can be created from any column expression as such:

\[
\begin{align*}
& \text{TITLE \ LIKE '\%abc\%'} \\
& \text{TITLE NOT LIKE '\%abc\%'} \\
& \text{BOOK.TITLE.like('%abc%')} \\
& \text{BOOK.TITLE.notLike('%abc%')} \\
\end{align*}
\]

Concatenating wildcards

A common practice is to conatenate wildcards to the actual expression. While concatenation is dangerous in plain SQL, it is safe when creating dynamic bind values using the DSL API:
Escaping operands with the LIKE predicate

Often, your pattern may contain any of the wildcard characters "_" and "%", in case of which you may want to escape them. jOOQ does not automatically escape patterns in `like()` and `notLike()` methods. Instead, you can explicitly define an escape character as such:

```
TITLE LIKE '%The !%-Sign Book%' ESCAPE '!'
TITLE NOT LIKE '%The !%-Sign Book%' ESCAPE '!'
```

In the above predicate expressions, the exclamation mark character is passed as the escape character to escape wildcard characters "_" and "%", as well as to escape the escape character itself: "!!"

Please refer to your database manual for more details about escaping patterns with the LIKE predicate.

jOOQ’s convenience methods using the LIKE predicate

In addition to the above, jOOQ provides a few convenience methods for common operations performed on strings using the LIKE predicate. Typical operations are "contains predicates", "starts with predicates", "ends with predicates", etc. Here is the full convenience API wrapping LIKE predicates:

```
-- case insensitivity
LOWER(TITLE) LIKE LOWER('%abc%')
LOWER(TITLE) NOT LIKE LOWER('%abc%')

-- contains and similar methods
TITLE LIKE 'abc' || '%'
TITLE LIKE '%' || 'abc'
TITLE LIKE 'abc' || '%'
TITLE LIKE '%' || 'abc'
```

Note, that jOOQ escapes % and _ characters in value in some of the above predicate implementations. For simplicity, this has been omitted in this manual.

4.6.15. IN predicate

In SQL, apart from comparing a value against several values, the IN predicate can be used to create semi-joins or anti-joins. jOOQ knows the following methods on the `org.jooq.Field` interface, to construct such IN predicates:

```
in(Collection<?>) // Construct an IN predicate from a collection of bind values
in(T...) // Construct an IN predicate from bind values
in(Select<? extends Record1<T>>...) // Construct an IN predicate from column expressions
notin(Collection<?>) // Construct a NOT IN predicate from a collection of bind values
notin(T...) // Construct a NOT IN predicate from bind values
notin(Select<? extends Record1<T>>...) // Construct a NOT IN predicate from column expressions
```

A sample IN predicate might look like this:
NOT IN and NULL values

Beware that you should probably not have any NULL values in the right hand side of a NOT IN predicate, as the whole expression would evaluate to NULL, which is rarely desired. This can be shown informally using the following reasoning:

```
-- The following conditional expressions are formally or informally equivalent
A NOT IN (B, C)
A != ANY(B, C)
A != B AND A != C

-- Substitute C for NULL, you'll get
A NOT IN (B, NULL)   -- Substitute C for NULL
A != B AND A != NULL -- From the above rules
A != B AND NULL
NULL               -- [ANY] != NULL yields NULL
```

A good way to prevent this from happening is to use the EXISTS predicate for anti-joins, which is NULL-value insensitive. See the manual's section about conditional expressions to see a boolean truth table.

4.6.16. IN predicate (degree > 1)

The SQL IN predicate also works well for row value expressions. Much like the IN predicate for degree 1, it is defined in terms of a quantified comparison predicate. The two expressions are equivalent:

```
R IN [IN predicate value]
R = ANY [IN predicate value]
```

jOOQ supports the IN predicate with row value expressions. An example is given here:

```
-- Using an IN list
(Book.ID, Book.TITLE) IN ((1, 'A'), (2, 'B'))

-- Using a subselect
(Book.ID, Book.TITLE) IN {
    SELECT T.ID, T.TITLE
    FROM T
}

// Using an IN list
row(Book.ID, Book.TITLE).in(row(1, "A"), row(2, "B"));

// Using a subselect
row(Book.ID, Book.TITLE).in(
    select(T.ID, T.TITLE)
    .from(T)
);
```

In both cases, i.e. when using an IN list or when using a subselect, the type of the predicate is checked. Both sides of the predicate must be of equal degree and row type.

Emulation of the IN predicate where row value expressions aren’t well supported is currently only available for IN predicates that do not take a subselect as an IN predicate value.

4.6.17. EXISTS predicate

Slightly less intuitive, yet more powerful than the previously discussed IN predicate is the EXISTS predicate, that can be used to form semi-joins or anti-joins. With jOOQ, the EXISTS predicate can be formed in various ways:
- From the DSL, using static methods. This is probably the most used case
- From a conditional expression using convenience methods attached to boolean operators
- From a SELECT statement using convenience methods attached to the where clause, and from other clauses

An example of an EXISTS predicate can be seen here:

```
EXISTS (SELECT 1 FROM BOOK
WHERE AUTHOR_ID = 3)
```

```
exists(create.selectOne().from(BOOK)
(where(BOOK.AUTHOR_ID.eq(3))));
```

Note that in SQL, the projection of a subselect in an EXISTS predicate is irrelevant. To help you write queries like the above, you can use jOOQ's selectZero() or selectOne() DSL methods

Performance of IN vs. EXISTS

In theory, the two types of predicates can perform equally well. If your database system ships with a sophisticated cost-based optimiser, it will be able to transform one predicate into the other, if you have all necessary constraints set (e.g. referential constraints, not null constraints). However, in reality, performance between the two might differ substantially. An interesting blog post investigating this topic on the MySQL database can be seen here:

4.6.18. OVERLAPS predicate

When comparing dates, the SQL standard allows for using a special OVERLAPS predicate, which checks whether two date ranges overlap each other. The following can be said:

```
-- This yields true
(DATE '2010-01-01', DATE '2010-01-03') OVERLAPS (DATE '2010-01-02' DATE '2010-01-04')
```

```
-- INTERVAL data types are also supported. This is equivalent to the above
(DATE '2010-01-01', CAST('+2 00:00:00' AS INTERVAL DAY TO SECOND)) OVERLAPS
(DATE '2010-01-02', CAST('+2 00:00:00' AS INTERVAL DAY TO SECOND))
```

The OVERLAPS predicate in jOOQ

jOOQ supports the OVERLAPS predicate on row value expressions of degree 2. The following methods are contained in `org.jooq.Row2`:

```
Condition overlaps(T1 t1, T2 t2);
Condition overlaps(Field<T1> t1, Field<T2> t2);
Condition overlaps(Row2<T1, T2> row);
```

This allows for expressing the above predicates as such:

```
// The date range tuples version
row(Date.valueOf('2010-01-01'), Date.valueOf('2010-01-03')).overlaps(Date.valueOf('2010-01-02'), Date.valueOf('2010-01-04'))
```

```
// The INTERVAL tuples version
row(Date.valueOf('2010-01-01'), new DayToSecond(2)).overlaps(Date.valueOf('2010-01-02'), new DayToSecond(2))
```
jOOQ’s extensions to the standard

Unlike the standard (or any database implementing the standard), jOOQ also supports the OVERLAPS predicate for comparing arbitrary row value expressions of degree 2. For instance, \((1, 3) \text{ OVERLAPS } (2, 4)\) will yield true in jOOQ. This is emulated as such

\[
\begin{align*}
\text{-- This predicate} \\
(A, B) \text{ OVERLAPS } (C, D) \\
\text{-- can be emulated as such} \\
(C <= B) \text{ AND } (A <= D)
\end{align*}
\]

4.7. Synthetic SQL clauses

Most of the previously mentioned SQL clauses have a native representation in at least one of jOOQ’s supported SQL dialects. For example, when a function like LPAD() is unavailable, jOOQ produces an equivalent expression for it:

\[
\begin{align*}
\text{-- MySQL (native support)} \\
\text{lpad('a', 10, ' ')} \\
\text{-- SQL Server (emulation)} \\
\text{(replicate(' ', (10 - \text{len('a'))}) + 'a')}
\end{align*}
\]

However, since a lot of SQL is emulated for dialect compatibility, nothing prevents jOOQ from supporting synthetic SQL clauses that do not have any native representation anywhere. An example for this is the quantified like predicate, introduced in jOOQ 3.12 (yes, you should upgrade!), which would be really useful in any database:

\[
\begin{align*}
(TITLE \text{ LIKE } '%abc%' \text{ OR } TITLE \text{ LIKE } '%def%') \\
(TITLE \text{ NOT LIKE } '%abc%' \text{ OR } TITLE \text{ NOT LIKE } '%def%') \\
(TITLE \text{ NOT LIKE } '%abc%' \text{ AND } TITLE \text{ NOT LIKE } '%def%') \\
\text{BOOK.TITLE(like(any('%abc%', '%def%')))} \\
\text{BOOK.TITLE(notLike(any('%abc%', '%def%')))} \\
\text{BOOK.TITLE(like(all('%abc%', '%def%')))} \\
\text{BOOK.TITLE(notLike(all('%abc%', '%def%')))}
\end{align*}
\]

In this section, we briefly list most such synthetic SQL clauses, which are available both through the jOOQ API, yet they do not have a native representation in any dialect.

- **Relational Division**: Relational algebra supports a division operator, which is the inverse operator of the cross product.
- **SEEK clause**: The SEEK clause is a synthetic clause of the SELECT statement, which provides an alternative way of paginating other than the OFFSET clause. From a performance perspective, it is generally the preferred way to paginate.
- **Sort indirection**: When sorting, sometimes, we want to sort by a derived value, not the actual value of a column. Sort indirection makes this very easy with jOOQ.
4.8. Dynamic SQL

In most cases, table expressions, column expressions, and conditional expressions as introduced in the previous chapters will be embedded into different SQL statement clauses as if the statement were a static SQL statement (e.g. in a view or stored procedure):

```java
create.select(
    AUTHOR.FIRST_NAME.concat(AUTHOR.LAST_NAME),
    count()
).from(AUTHOR)
.join(BOOK).on(AUTHOR.ID.eq(BOOK.AUTHOR_ID))
.groupBy(AUTHOR.ID, AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME)
.orderBy(count().desc())
.fetch();
```

It is, however, interesting to think of all of the above expressions as what they are: expressions. And as such, nothing keeps users from extracting expressions and referencing them from outside the statement. The following statement is exactly equivalent:

```java
SelectField<?>[] select = {
    AUTHOR.FIRST_NAME.concat(AUTHOR.LAST_NAME),
    count()
};
Table<?> from = AUTHOR.join(BOOK).on(AUTHOR.ID.eq(BOOK.AUTHOR_ID));
GroupField[] groupBy = { AUTHOR.ID, AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME };
SortField<?>[] orderBy = { count().desc() };
create.select(select)
    .from(from)
    .groupBy(groupBy)
    .orderBy(orderBy)
    .fetch();
```

Each individual expression, and collection of expressions can be seen as an independent entity that can be
- Constructed dynamically
- Reused across queries

Dynamic construction is particularly useful in the case of the WHERE clause, for dynamic predicate building. For instance:

```java
public Condition condition(HttpServletRequest request) {
    Condition result = trueCondition();
    if (request.getParameter("title") != null)
        result = result.and(BOOK.TITLE.like("%" + request.getParameter("title") + "%"));
    if (request.getParameter("author") != null)
        result = result.and(BOOK.AUTHOR_ID.in(
            selectOne().from(AUTHOR).where(
                AUTHOR.FIRST_NAME.like("%" + request.getParameter("author") + "%")
                .or(AUTHOR.LAST_NAME .like("%" + request.getParameter("author") + "%"))
            )
        ));
    return result;
}

// And then:
create.select()
    .from(BOOK)
    .where(condition(httpRequest))
    .fetch();
```

The dynamic SQL building power may be one of the biggest advantages of using a runtime query model like the one offered by jOOQ. Queries can be created dynamically, of arbitrary complexity. In the above
example, we’ve just constructed a dynamic WHERE clause. The same can be done for any other clauses, including dynamic FROM clauses (dynamic JOINs) as needed.

4.9. Plain SQL

A DSL is a nice thing to have, it feels "fluent" and "natural", especially if it models a well-known language, such as SQL. But a DSL is always expressed in a host language (Java in this case), which was not made for exactly the same purposes as its hosted DSL. If it were, then jOOQ would be implemented on a compiler-level, similar to LINQ in .NET. But it’s not, and so, the DSL is limited by language constraints of its host language. We have seen many functionalities where the DSL becomes a bit verbose. This can be especially true for:

- aliasing
- derived tables
- arithmetic expressions
- casting

You’ll probably find other examples. If verbosity scares you off, don’t worry. The verbose use-cases for jOOQ are rather rare, and when they come up, you do have an option. Just write SQL the way you’re used to!

jOOQ allows you to embed SQL as a String into any supported statement in these contexts:

- Plain SQL as a conditional expression
- Plain SQL as a column expression
- Plain SQL as a function
- Plain SQL as a table expression
- Plain SQL as a query

The DSL plain SQL API

Plain SQL API methods are usually overloaded in three ways. Let’s look at the condition query part constructor:

```java
// Construct a condition without bind values
// Example: condition("a = b")
Condition condition(String sql);

// Construct a condition with bind values
// Example: condition("a = ?", 1);
Condition condition(String sql, Object... bindings);

// Construct a condition taking other jOOQ object arguments
// Example: condition("a = {0}", val(1));
Condition condition(String sql, QueryPart... parts);
```

Both the bind value and the query part argument overloads make use of jOOQ’s plain SQL templating language.

Please refer to the org.jooq.impl.DSL Javadoc for more details. The following is a more complete listing of plain SQL construction methods from the DSL:
Apart from the general factory methods, plain SQL is also available in various other contexts. For instance, when adding a `.where("a = b")` clause to a query. Hence, there exist several convenience methods where plain SQL can be inserted usefully. This is an example displaying all various use-cases in one single query:

```
// You can use your table aliases in plain SQL fields
Field<?> LAST_NAME = field("a.LAST_NAME");

// You can alias your plain SQL fields
Field<?> COUNT1  = field("count(*) x");
// If you know a reasonable Java type for your field, you
// can also provide jOOQ with that type
Field<Integer> COUNT2 = field("count(*) y", Integer.class);

// Use plain SQL as select fields
create.select(LAST_NAME, COUNT1, COUNT2)
// Use plain SQL for conditions both in JOIN and WHERE clauses
.on("a.id = b.author_id")
// Bind a variable in plain SQL
.where("b.title != ?", "Brida")
// Use plain SQL again as fields in GROUP BY and ORDER BY clauses
.groupBy(LAST_NAME)
.orderBy(LAST_NAME);
```

Important things to note about plain SQL!

There are some important things to keep in mind when using plain SQL:
- jOOQ doesn't know what you're doing. You're on your own again!
- You have to provide something that will be syntactically correct. If it's not, then jOOQ won't know. Only your JDBC driver or your RDBMS will detect the syntax error.
- You have to provide consistency when you use variable binding. The number of ? must match the number of variables
- Your SQL is inserted into jOOQ queries without further checks. Hence, jOOQ can't prevent SQL injection.

4.10. Plain SQL Templating Language

The plain SQL API, as documented in the previous chapter, supports a string templating mini-language that allows for constructing complex SQL string content from smaller parts. A simple example can be seen below, e.g. when looking for support for one of PostgreSQL's various vendor-specific operator types:

```sql
ARRAY[1,4,3] && ARRAY[2,1]
```

Such a plain SQL template always consists of two things:

- The SQL string fragment
- A set of `org.jooq.QueryPart` arguments, which are expected to be embedded in the SQL string

The SQL string may reference the arguments by 0-based indexing. Each argument may be referenced several times. For instance, SQLite's emulation of the REPEAT(string, count) function may look like this:

```java
Field<Integer> count = val(3);
Field<String> string = val("abc");
field("replace(substr(quote(zeroblob(({0} + 1) / 2)), 3, {0}, '0', {1})), String.class, count, string);
```

```
// argument "count" is repeated twice: \\
// argument "string" is used only once: \\
```

Parsing rules

When processing these plain SQL templates, a mini parser is run that handles things like

- String literals
- Quoted names
- Comments
- JDBC escape sequences

The above are recognised by the templating engine and contents inside of them are ignored when replacing numbered placeholders and/or bind variables. For instance:
The above query does not contain any numbered placeholders nor bind variables, because the tokens that would otherwise be searched for are contained inside of comments, string literals, or quoted names.

4.11. Bind values and parameters

Bind values are used in SQL / JDBC for various reasons. Among the most obvious ones are:

- Protection against SQL injection. Instead of inlining values possibly originating from user input, you bind those values to your prepared statement and let the JDBC driver / database take care of handling security aspects.

- Increased speed. Advanced databases such as Oracle can keep execution plans of similar queries in a dedicated cache to prevent hard-parsing your query again and again. In many cases, the actual value of a bind variable does not influence the execution plan, hence it can be reused. Preparing a statement will thus be faster

- On a JDBC level, you can also reuse the SQL string and prepared statement object instead of constructing it again, as you can bind new values to the prepared statement. JOOQ currently does not cache prepared statements, internally.

The following sections explain how you can introduce bind values in JOOQ, and how you can control the way they are rendered and bound to SQL.

4.11.1. Indexed parameters

JDBC only knows indexed bind values. A typical example for using bind values with JDBC is this:

```java
try (PreparedStatement stmt = connection.prepareStatement("SELECT * FROM BOOK WHERE ID = ? AND TITLE = ?") {  
  // bind values to the above statement for appropriate indexes  
  stmt.setInt(1, 5);  
  stmt.setString(2, "Animal Farm");  
  stmt.executeQuery();
}
```

With dynamic SQL, keeping track of the number of question marks and their corresponding index may turn out to be hard. JOOQ abstracts this and lets you provide the bind value right where it is needed. A trivial example is this:

```java
create.select().from(BOOK).where(BOOK.ID.eq(5)).and(BOOK.TITLE.eq("Animal Farm"));
// This notation is in fact a short form for the equivalent:  
create.select().from(BOOK).where(BOOK.ID.eq(val(5))).and(BOOK.TITLE.eq(val("Animal Farm")));
```

Note the using of `DSL.val()` to explicitly create an indexed bind value. You don't have to worry about that index. When the query is rendered, each bind value will render a question mark. When the query binds its variables, each bind value will generate the appropriate bind value index.
Extract bind values from a query

Should you decide to run the above query outside of jOOQ, using your own `java.sql.PreparedStatement`, you can do so as follows:

```java
Select<?> select = create.select().from(BOOK).where(BOOK.ID.eq(5)).and(BOOK.TITLE.eq("Animal Farm"));

// Render the SQL statement:
String sql = select.getSQL();
assertEquals("SELECT * FROM BOOK WHERE ID = ? AND TITLE = ?", sql);

// Get the bind values:
List<Object> values = select.getBindValues();
assertEquals(2, values.size());
assertEquals(5, values.get(0));
assertEquals("Animal Farm", values.get(1));
```

For more details about jOOQ’s internals, see the manual’s section about [QueryParts](#).

4.11.2. Named parameters

Some SQL access abstractions that are built on top of JDBC, or some that bypass JDBC may support named parameters. jOOQ allows you to give names to your parameters as well, although those names are not rendered to SQL strings by default. Here is an example of how to create named parameters using the `org.jooq.Param` type:

```java
// Create a query with a named parameter. You can then use that name for accessing the parameter again
Query query1 = create.select().from(AUTHOR).where(LAST_NAME.eq(param("lastName", "Poe")));
Param<?> param1 = query1.getParam("lastName");

// Or, keep a reference to the typed parameter in order not to lose the <T> type information:
Param<String> param2 = param("lastName", "Poe");
Query query2 = create.select().from(AUTHOR).where(LAST_NAME.eq(param2));
```

The `org.jooq.Query` interface also allows for setting new bind values directly, without accessing the `Param` type:

```java
Query query1 = create.select().from(AUTHOR).where(LAST_NAME.eq("Poe"));
query1.bind(1, "Orwell" );

// Or, with named parameters
Query query2 = create.select().from(AUTHOR).where(LAST_NAME.eq(param("lastName", "Poe")));
query2.bind("lastName", "Orwell" );
```

In order to actually render named parameter names in generated SQL, use the `DSLContext.renderNamedParams()` method:

```java
-- The named bind variable can be rendered
create.renderNamedParams(
create.select()
.with但也オがある
WHERE LAST_NAME = :lastName
```

© 2009 - 2021 by Data Geekery™ GmbH.
4.11.3. Inlined parameters

Sometimes, you may wish to avoid rendering bind variables while still using custom values in SQL. jOOQ refers to that as "inlined" bind values. When bind values are inlined, they render the actual value in SQL rather than a JDBC question mark. Bind value inlining can be achieved in several ways:

- Globally, by using the Settings and setting the org.jooq.conf.StatementType to STATIC_STATEMENT. This will inline all bind values for SQL statements rendered from such a Configuration.
- Per query locally, by using the Query.getSQL(ParamType) method.
- Per value locally, by using DSL.inline() methods.

In all cases, your inlined bind values will be properly escaped to avoid SQL syntax errors and SQL injection. Some examples:

```java
// Use dedicated calls to inline() in order to specify
// single bind values to be rendered as inline values
create.select()
    .from(AUTHOR)
    .where(LAST_NAME.eq(inline("Poe")));

// Or render the whole query with inlined values
// --------------------------------------------------
Settings settings = new Settings()
    .withStatementType(StatementType.STATIC_STATEMENT);
DSLContext create = DSL.using(connection, SQLDialect.ORACLE, settings);
create.select()
    .from(AUTHOR)
    .where(LAST_NAME.eq("Poe"));
```

4.11.4. SQL injection and plain SQL QueryParts

Special care needs to be taken when using plain SQL QueryParts. While jOOQ's API allows you to specify bind values for use with plain SQL, you're not forced to do that. For instance, both of the following queries will lead to the same, valid result:

```java
// This query will use bind values, internally.
create.fetch("SELECT * FROM BOOK WHERE ID = ? AND TITLE = ?", 5, "Animal Farm");

// This query will not use bind values, internally.
create.fetch("SELECT * FROM BOOK WHERE ID = 5 AND TITLE = 'Animal Farm'"));
```

All methods in the jOOQ API that allow for plain (unescape, untreated) SQL contain a warning message in their relevant Javadoc, to remind you of the risk of SQL injection in what is otherwise a SQL-Injection-safe API.
4.12. QueryParts

A `org.jooq.Query` and all its contained objects is a `org.jooq.QueryPart`. QueryParts essentially provide this functionality:

- they can render SQL using the `toSQL(RenderContext)` method
- they can bind variables using the `bind(BindContext)` method

Both of these methods are contained in jOOQ's internal API's `org.jooq.QueryPartInternal`, which is internally implemented by every QueryPart.

The following sections explain some more details about SQL rendering and variable binding, as well as other implementation details about QueryParts in general.

4.12.1. SQL rendering

Every `org.jooq.QueryPart` must implement the `toSQL(RenderContext)` method to render its SQL string to a `org.jooq.RenderContext`. This RenderContext has two purposes:

- It provides some information about the "state" of SQL rendering.
- It provides a common API for constructing SQL strings on the context's internal `java.lang.StringBuilder`

An overview of the `org.jooq.RenderContext` API is given here:

```java
// These methods are useful for generating unique aliases within a RenderContext (and thus within a Query)
String peekAlias();
String nextAlias();

// These methods return rendered SQL
String render();
String render(QueryPart part);

// These methods allow for fluent appending of SQL to the RenderContext's internal StringBuilder
RenderContext keyword(String keyword);
RenderContext literal(String literal);
RenderContext sql(String sql);
RenderContext sql(char sql);
RenderContext sql(int sql);
RenderContext sql(QueryPart part);

// These methods allow for controlling formatting of SQL, if the relevant Setting is active
RenderContext formatNewLine();
RenderContext formatSeparator();
RenderContext formatIndentStart();
RenderContext formatIndentStart(int indent);
RenderContext formatIndentLockStart();
RenderContext formatIndentEnd();
RenderContext formatIndentEnd(int indent);
RenderContext formatIndentLockEnd();

// These methods allow for controlling formatting of SQL, if the relevant Setting is active
RenderContext initialize();
RenderContext formatIndentStart();
RenderContext formatIndentStart(int indent);
RenderContext formatIndentLockStart();
RenderContext formatIndentEnd();
RenderContext formatIndentEnd(int indent);
RenderContext formatIndentLockEnd();

// These methods control the RenderContext's internal state
boolean inline();
RenderContext inline(boolean inline);
boolean qualify();
RenderContext qualify(boolean qualify);
boolean namedParams();
RenderContext namedParams(boolean namedParams);
CastMode castMode();
RenderContext castMode(CastMode mode);
Boolean cast();
RenderContext cast(Boolean cast);
RenderContext castModeSome(SQLEncodingSome dialects);
```
The jOOQ User Manual

4.12.2. Pretty printing SQL

The following additional methods are inherited from a common org.jooq.Context, which is shared
among org.jooq.RenderContext and org.jooq.BindContext:
// These methods indicate whether fields or tables are being declared (MY_TABLE AS MY_ALIAS) or referenced (MY_ALIAS)
boolean declareFields();
Context declareFields(boolean declareFields);
boolean declareTables();
Context declareTables(boolean declareTables);
// These methods indicate whether a top-level query is being rendered, or a subquery
boolean subquery();
Context subquery(boolean subquery);
// These methods provide the bind value indices within the scope of the whole Context (and thus of the whole Query)
int nextIndex();
int peekIndex();

An example of rendering SQL
A simple example can be provided by checking out jOOQ's internal representation of a (simplified)
CompareCondition. It is used for any org.jooq.Condition comparing two fields as for example the
AUTHOR.ID = BOOK.AUTHOR_ID condition here:
-- [...]
FROM AUTHOR
JOIN BOOK ON AUTHOR.ID = BOOK.AUTHOR_ID
-- [...]

This is how jOOQ renders such a condition (simplified example):
@Override
public final void toSQL(RenderContext context) {
// The CompareCondition delegates rendering of the Fields to the Fields
// themselves and connects them using the Condition's comparator operator:
context.sql(field1)
.sql(" ")
.sql(comparator.toSQL())
.sql(" ")
.sql(field2);
}

See the manual's sections about custom QueryParts and plain SQL QueryParts to learn about how to
write your own query parts in order to extend jOOQ.

4.12.2. Pretty printing SQL
As mentioned in the previous chapter about SQL rendering, there are some elements in the
org.jooq.RenderContext that are used for formatting / pretty-printing rendered SQL. In order to obtain
pretty-printed SQL, just use the following custom settings:
// Create a DSLContext that will render "formatted" SQL
DSLContext pretty = DSL.using(dialect, new Settings().withRenderFormatted(true));

And then, use the above DSLContext to render pretty-printed SQL:

© 2009 - 2021 by Data Geekery™ GmbH.

Page 192 / 289


The section about ExecuteListeners shows an example of how such pretty printing can be used to log readable SQL to the stdout.

4.12.3. Variable binding

Every org.jooq.QueryPart must implement the bind(BindContext) method. This BindContext has two purposes:

- It provides some information about the "state" of the variable binding in process.
- It provides a common API for binding values to the context's internal java.sql.PreparedStatement

An overview of the org.jooq.RenderContext API is given here:

Some additional methods are inherited from a common org.jooq.Context, which is shared among org.jooq.RenderContext and org.jooq.BindContext. Details are documented in the previous chapter about SQL rendering.

An example of binding values to SQL

A simple example can be provided by checking out jOOQ's internal representation of a (simplified) CompareCondition. It is used for any org.jooq.Condition comparing two fields as for example the AUTHOR.ID = BOOK.AUTHOR_ID condition here:

```java
@Override
public final void bind(BindContext context) throws DataAccessException {
    // The CompareCondition itself does not bind any variables...
    context.bind(field1).bind(field2);
}
```

This is how jOOQ binds values on such a condition:

See the manual's sections about custom QueryParts and plain SQL QueryParts to learn about how to write your own query parts in order to extend jOOQ.
4.12.4. Extend jOOQ with custom types

To support simple vendor specific SQL syntax extensions, jOOQ offers the plain SQL templating API. If a SQL clause is too complex to express with jOOQ or with this templating API, or you have a requirement to support different dialects, you can extend either one of the following types for use directly in a jOOQ query:

```java
// Simplified API description:
public abstract class CustomField<T> implements Field<T> {}
public abstract class CustomCondition implements Condition {}
public abstract class CustomTable<R extends TableRecord<R>> implements Table<R> {}
public abstract class CustomRecord<R extends TableRecord<R>> implements TableRecord<R> {}
```

These classes are declared public and covered by jOOQ's integration tests. When you extend these classes, you will have to provide your own implementations for the `toSQL()` and `bind()` methods, as discussed before:

```java
// This method must produce valid SQL. If your QueryPart contains other parts, you may delegate SQL generation to them
// in the correct order, passing the render context.
//
// If context.inline() is true, you must inline all bind variables
// If context.inline() is false, you must generate ? for your bind variables
public void toSQL(RenderContext context);

// This method must bind all bind variables to a PreparedStatement. If your QueryPart contains other QueryParts, $
// you may delegate variable binding to them in the correct order, passing the bind context.
//
// Every QueryPart must ensure, that it starts binding its variables at context.nextIndex().
public void bind(BindContext context) throws DataAccessException;
```

An example for implementing multiplication.

The above contract may be a bit tricky to understand at first. The best thing is to check out jOOQ source code and have a look at a couple of QueryParts, to see how it’s done. Here’s an example `org.jooq.impl.CustomField` showing how to create a field multiplying another field by 2:

```java
// Create an anonymous CustomField, initialised with BOOK.ID arguments
final Field<Integer> IDx2 = new CustomField<Integer>(BOOK.ID.getName(), BOOK.ID.getDataType()) {
    @Override
    public void toSQL(RenderContext context) {
        // In inline mode, render the multiplication directly
        if (context.inline()) {
            context.sql(BOOK.ID).sql(" * 2");
        }
        // In non-inline mode, render a bind value
        else {
            context.sql(BOOK.ID).sql(" * ?");
        }
    }
    @Override
    public void bind(BindContext context) {
        try {
            // Manually bind the value 2
            context.statement().setInt(context.nextIndex(), 2);
            // Alternatively, you could also write:
            // context.bind(DSL.val(2));
        } catch (SQLException e) {
            throw new DataAccessException("Bind error", e);
        }
    }
};
// Use the above field in a SQL statement:
create.select(IDx2).from(BOOK);
```
An example for implementing vendor-specific functions.

Many vendor-specific functions are not officially supported by jOOQ, but you can implement such support yourself using CustomField, for instance. Here's an example showing how to implement Oracle's TO_CHAR() function, emulating it in SQL Server using CONVERT():

```java
// Create a CustomField implementation taking two arguments in its constructor
class ToChar extends CustomField<String> {
    final Field<?> arg0;
    final Field<?> arg1;

    ToChar(Field<?> arg0, Field<?> arg1) {
        super("to_char", VARCHAR);
        this.arg0 = arg0;
        this.arg1 = arg1;
    }

    @Override
    public void toSQL(RenderContext context) {
        context.visit(delegate(context.configuration()));
    }

    @Override
    public void bind(BindContext context) {
        context.visit(delegate(context.configuration()));
    }

    private QueryPart delegate(Configuration configuration) {
        switch (configuration.dialect().family()) {
            case ORACLE:
                return DSL.field("TO_CHAR({0}, {1})", String.class, arg0, arg1);
            case SQLSERVER:
                return DSL.field("CONVERT(VARCHAR(8), {0}, {1})", String.class, arg0, arg1);
            default:
                throw new UnsupportedOperationException("Dialect not supported");
        }
    }
}
```

The above CustomField implementation can be exposed from your own custom DSL class:

```java
public class MyDSL {
    public static Field<String> toChar(Field<?> field, String format) {
        return new ToChar(field, DSL.inline(format));
    }
}
```

4.12.5. Plain SQL QueryParts

If you don't need the integration of rather complex QueryParts into jOOQ, then you might be safer using simple Plain SQL functionality, where you can provide jOOQ with a simple String representation of your embedded SQL. Plain SQL methods in jOOQ's API come in two flavours.

- `method(String, Object...)`: This is a method that accepts a SQL string and a list of bind values that are to be bound to the variables contained in the SQL string
- `method(String, QueryPart...)`: This is a method that accepts a SQL string and a list of QueryParts that are "injected" at the position of their respective placeholders in the SQL string

The above distinction is best explained using an example:
The above technique allows for creating rather complex SQL clauses that are currently not supported by jOOQ, without extending any of the custom QueryParts as indicated in the previous chapter.

4.12.6. Serializability

A lot of jOOQ types extend and implement the java.io.Serializable interface for your convenience. Beware, however, that jOOQ will make no guarantees related to the serialisation format, and its backwards compatible evolution. This means that while it is generally safe to rely on jOOQ types being serialisable when two processes using the exact same jOOQ version transfer jOOQ state over some network, it is not safe to rely on persisting serialised jOOQ state to be deserialised again at a later time - even after a patch release upgrade!

As always with Java's serialisation, if you want reliable serialisation of Java objects, please use your own serialisation protocol, or use one of the official export formats.

What types are serializable?

The only transient, non-serializable element in any jOOQ object is the Configuration's underlying java.sql.Connection. When you want to execute queries after de-serialisation, or when you want to store/refresh/delete Updatable Records, you may have to "re-attach" them to a Configuration

Automatically attaching QueryParts

Another way of attaching QueryParts automatically, or rather providing them with a new java.sql.Connection at will, is to hook into the Execute Listener support. More details about this can be found in the manual's chapter about ExecuteListeners

4.12.7. Custom SQL transformation

With jOOQ 3.2's org.jooq.VisitListener SPI, it is possible to perform custom SQL transformation to implement things like shared-schema multi-tenancy, or a security layer centrally preventing access to certain data. This SPI is extremely powerful, as you can make ad-hoc decisions at runtime regarding local or global transformation of your SQL statement. The following sections show a couple of simple, yet real-world use-cases.
4.12.7.1. Logging abbreviated bind values

When implementing a logger, one needs to carefully assess how much information should really be disclosed on what logger level. In log4j and similar frameworks, we distinguish between FATAL, ERROR, WARN, INFO, DEBUG, and TRACE. In DEBUG level, jOOQ's internal default logger logs all executed statements including inlined bind values as such:

Executing query : select * from "BOOK" where "BOOK"."TITLE" like ?
-> with bind values : select * from "BOOK" where "BOOK"."TITLE" like 'How I stopped worrying%

But textual or binary bind values can get quite long, quickly filling your log files with irrelevant information. It would be good to be able to abbreviate such long values (and possibly add a remark to the logged statement). Instead of patching jOOQ's internals, we can just transform the SQL statements in the logger implementation, cleanly separating concerns. This can be done with the following VisitListener:

```java
// This listener is inserted into a Configuration through a VisitListenerProvider that creates a
// new listener instance for every rendering lifecycle
public class BindValueAbbreviator extends DefaultVisitListener {
    private boolean anyAbbreviations = false;

    @Override
    public void visitStart(VisitContext context) {
        // Transform only when rendering values
        if (context.renderContext() != null) {
            QueryPart part = context.queryPart();
            // Consider only bind variables, leave other QueryParts untouched
            if (part instanceof Param<?>) {
                Param<?> param = (Param<?>) part;
                Object value = param.getValue();
                // If the bind value is a String (or Clob) of a given length, abbreviate it
                // e.g. using commons-lang's StringUtils.abbreviate()
                if (value instanceof String && ((String) value).length() > maxLength) {
                    anyAbbreviations = true;
                    // ... and replace it in the current rendering context (not in the Query)
                    context.queryPart(val(abbreviate((String) value, maxLength)));
                }
                // If the bind value is a byte[] (or Blob) of a given length, abbreviate it
                // e.g. by removing bytes from the array
                else if (value instanceof byte[]) {
                    // ... and replace it in the current rendering context (not in the Query)
                    context.queryPart(val(Arrays.copyOf((byte[]) value, maxLength)));
                }
            }
        }
    }

    @Override
    public void visitEnd(VisitContext context) {
        // If any abbreviations were performed before...
        if (anyAbbreviations) {
            // ... and if this is the top-level QueryPart, then append a SQL comment to indicate the abbreviation
            if (context.queryPartsLength() == 1) {
                context.renderContext().sql(" -- Bind values may have been abbreviated");
            }
        }
    }
}
```

If maxLength were set to 5, the above listener would produce the following log output:

Executing query : select * from "BOOK" where "BOOK"."TITLE" like ?
-> with bind values : select * from "BOOK" where "BOOK"."TITLE" like 'Ho...'

The above VisitListener is in place since jOOQ 3.3 in the org.jooq.tools.LoggerListener.
4.13. Zero-based vs one-based APIs

Any API that bridges two languages / mind sets, such as Java / SQL will inevitably face the difficulty of finding a consistent strategy to solving the "based-ness" problem. Should arrays be one-based or zero-based?

Clearly, Java is zero-based and SQL is one-based, and the best strategy for jOOQ is to keep things this way. The following are a set of rules that you should remember if this ever confuses you:

All SQL API is one-based

When using SQL API, such as the index-based `ORDER BY` clause, or `window functions` such as in the example below, jOOQ will not interpret indexes but send them directly as-is to the SQL engine. For instance:

```sql
SELECT nth_value(title, 3) OVER (ORDER BY id)
FROM book
ORDER BY 1
```

In the above example, we're looking for the 3rd value of X in T ordered by Y. Clearly, this window function uses one-based indexing. The same is true for the `ORDER BY` clause, which orders the result by the 1st column - again one-based counting. There is no column zero in SQL.

All jOOQ API is zero-based

jOOQ is a Java API and as such, one-basedness would be quite surprising despite the fact that JDBC is one-based (see below). For instance, when you access a record by index in a jOOQ `org.jooq.Result`, given that the result extends `java.util.List`, you will use zero-based index access:

```java
Result<?> result = create.select(BOOK.ID, BOOK.TITLE)
    .from(BOOK)
    .orderBy(1)
    .fetch();

for (int i = 0; i < result.size(); i++)
    System.out.println(result.get(i));
```

Unlike in JDBC, where `java.sql.ResultSet#absolute(int)` positions the underlying cursor at the one-based index, we Java developers really don't like that way of thinking. As can be seen in the above loop, we iterate over this result as we do over any other Java collection.

All JDBC API is one-based

An exception to the above rule is, obviously, all jOOQ API that is JDBC-interfacing.

4.14. SQL building in Scala

jOOQ-Scala is a maven module used for leveraging some advanced Scala features for those users that wish to use jOOQ with Scala.
Using Scala's implicit defs to allow for operator overloading

The most obvious Scala feature to use in jOOQ are implicit defs for implicit conversions in order to enhance the `org.jooq.Field` type with SQL-esque operators.

The following depicts a trait which wraps all fields:

```scala
/**
 * A Scala-esque representation of [link org.jooq.Field], adding overloaded
 * operators for common jOOQ operations to arbitrary fields
 */
trait SAnyField[T] extends Field[T] {

  // String operations
  // -----------------
  def ||(value : String)  : Field[String]
  def ||(value : Field[_]) : Field[String]

  // Comparison predicates
  // ---------------------
  def ===(value : T)      : Condition
  def ===(value : Field[T]) : Condition
  def !==(value : T)      : Condition
  def !==(value : Field[T]) : Condition
  def <>(value : T)       : Condition
  def <>(value : Field[T]) : Condition
  def >(value : T)        : Condition
  def >(value : Field[T]) : Condition
  def >=(value : T)       : Condition
  def >=(value : Field[T]) : Condition
  def <(value : T)        : Condition
  def <(value : Field[T]) : Condition
  def <=(value : T)       : Condition
  def <=(value : Field[T]) : Condition
  def <=>(value : T)      : Condition
  def <=>(value : Field[T]) : Condition
}
```

The following depicts a trait which wraps numeric fields:
/**
 * A Scala-esque representation of `{link org.jooq.Field}` adding overloaded
 * operators for common jOOQ operations to numeric fields
 */
trait SNumberField[T <: Number] extends SAnyField[T] {
 // Arithmetic operations
 // ---------------------
 def unary_- : Field[T]
 def +(value : Number) : Field[T]
 def +(value : Field[_ <: Number]) : Field[T]
 def -(value : Number) : Field[T]
 def -(value : Field[_ <: Number]) : Field[T]
 def *(value : Number) : Field[T]
 def *(value : Field[_ <: Number]) : Field[T]
 def /(value : Number) : Field[T]
 def /(value : Field[_ <: Number]) : Field[T]
 def %(value : Number) : Field[T]
 def %(value : Field[_ <: Number]) : Field[T]
 // Bitwise operations
 // ------------------
 def unary_~ : Field[T]
 def &(value : T) : Field[T]
 def &(value : Field[T]) : Field[T]
 def |(value : T) : Field[T]
 def |(value : Field[T]) : Field[T]
 def ^(value : T) : Field[T]
 def ^(value : Field[T]) : Field[T]
 def <<(value : T) : Field[T]
 def <<(value : Field[T]) : Field[T]
 def >>(value : T) : Field[T]
 def >>(value : Field[T]) : Field[T]
 }

An example query using such overloaded operators would then look like this:

```scala
select 
    BOOK.ID * BOOK.AUTHOR_ID, 
    BOOK.ID + BOOK.AUTHOR_ID * 3 + 4, 
    BOOK.TITLE || " abc" || " xy"
from BOOK
leftOuterJoin (
    select (x.ID, x.YEAR_OF_BIRTH)
    from x
    limit 1
    asTable x.getName()
) on BOOK.AUTHOR_ID === x.ID
where (BOOK.ID <> 2) 
or (BOOK.TITLE in ("O Alquimista", "Brida"))
fetch
```

Scala 2.10 Macros

This feature is still being experimented with. With Scala Macros, it might be possible to inline a true SQL dialect into the Scala syntax, backed by the jOOQ API. Stay tuned!
5. SQL execution

In a previous section of the manual, we've seen how jOOQ can be used to build SQL that can be executed with any API including JDBC or ... jOOQ. This section of the manual deals with various means of actually executing SQL with jOOQ.

SQL execution with JDBC

JDBC calls executable objects "java.sql.Statement". It distinguishes between three types of statements:

- **java.sql.Statement**, or "static statement": This statement type is used for any arbitrary type of SQL statement. It is particularly useful with inlined parameters

- **java.sql.PreparedStatement**: This statement type is used for any arbitrary type of SQL statement. It is particularly useful with indexed parameters (note that JDBC does not support named parameters)

- **java.sql.CallableStatement**: This statement type is used for SQL statements that are "called" rather than "executed". In particular, this includes calls to stored procedures. Callable statements can register OUT parameters

Today, the JDBC API may look weird to users being used to object-oriented design. While statements hide a lot of SQL dialect-specific implementation details quite well, they assume a lot of knowledge about the internal state of a statement. For instance, you can use the PreparedStatement.addBatch() method, to add a the prepared statement being created to an "internal list" of batch statements. Instead of returning a new type, this method forces user to reflect on the prepared statement's internal state or "mode".

jOOQ is wrapping JDBC

These things are abstracted away by jOOQ, which exposes such concepts in a more object-oriented way. For more details about jOOQ's batch query execution, see the manual's section about batch execution. The following sections of this manual will show how jOOQ is wrapping JDBC for SQL execution

5.1. Comparison between jOOQ and JDBC

Similarities with JDBC

Even if there are two general types of Query, there are a lot of similarities between JDBC and jOOQ. Just to name a few:

- Both APIs return the number of affected records in non-result queries. JDBC: `Statement.executeUpdate()`, jOOQ: `Query.execute()`

- Both APIs return a scrollable result set type from result queries. JDBC: `java.sql.ResultSet`, jOOQ: `org.jooq.Result`
Differences to JDBC

Some of the most important differences between JDBC and jOOQ are listed here:

- **Query vs. ResultQuery**: JDBC does not formally distinguish between queries that can return results, and queries that cannot. The same API is used for both. This greatly reduces the possibility for fetching convenience methods.
- **Exception handling**: While SQL uses the checked `java.sql.SQLException`, jOOQ wraps all exceptions in an unchecked `org.jooq.exception.DataAccessException`.
- **org.jooq.Result**: Unlike its JDBC counter-part, this type implements `java.util.List` and is fully loaded into Java memory, freeing resources as early as possible. Just like statements, this means that users don't have to deal with a "weird" internal result set state.
- **org.jooq.Cursor**: If you want more fine-grained control over how many records are fetched into memory at once, you can still do that using jOOQ's lazy fetching feature.
- **Statement type**: jOOQ does not formally distinguish between static statements and prepared statements. By default, all statements are prepared statements in jOOQ, internally. Executing a statement as a static statement can be done simply using a custom settings flag.
- **Closing Statements**: JDBC keeps open resources even if they are already consumed. With JDBC, there is a lot of verbosity around safely closing resources. In jOOQ, resources are closed after consumption, by default. If you want to keep them open after consumption, you have to explicitly say so.
- **JDBC flags**: JDBC execution flags and modes are not modified. They can be set fluently on a `Query`.
- **Zero-based vs one-based APIs**: JDBC is a one-based API, jOOQ is a zero-based API. While this makes sense intuitively (JDBC is the less intuitive API from a Java perspective), it can lead to confusion in certain cases.

5.2. Query vs. ResultQuery

Unlike JDBC, jOOQ has a lot of knowledge about a SQL query's structure and internals (see the manual's section about SQL building). Hence, jOOQ distinguishes between these two fundamental types of queries. While every `org.jooq.Query` can be executed, only `org.jooq.ResultQuery` can return results (see the manual's section about fetching to learn more about fetching results). With plain SQL, the distinction can be made clear most easily:

```java
// Create a Query object and execute it:
Query query = create.query("DELETE FROM BOOK");
query.execute();

// Create a ResultQuery object and execute it, fetching results:
ResultQuery<Record> resultQuery = create.resultQuery("SELECT * FROM BOOK");
Result<Record> result = resultQuery.fetch();
```

5.3. Fetching

Fetching is something that has been completely neglected by JDBC and also by various other database abstraction libraries. Fetching is much more than just looping or listing records or mapped objects. There are so many ways you may want to fetch data from a database, it should be considered a first-
class feature of any database abstraction API. Just to name a few, here are some of jOOQ's fetching modes:

- **Untyped vs. typed fetching**: Sometimes you care about the returned type of your records, sometimes (with arbitrary projections) you don't.
- **Fetching arrays, maps, or lists**: Instead of letting you transform your result sets into any more suitable data type, a library should do that work for you.
- **Fetching through handler callbacks**: This is an entirely different fetching paradigm. With Java 8's lambda expressions, this will become even more powerful.
- **Fetching through mapper callbacks**: This is an entirely different fetching paradigm. With Java 8's lambda expressions, this will become even more powerful.
- **Fetching custom POJOs**: This is what made Hibernate and JPA so strong. Automatic mapping of tables to custom POJOs.
- **Lazy vs. eager fetching**: It should be easy to distinguish these two fetch modes.
- **Fetching many results**: Some databases allow for returning many result sets from a single query. JDBC can handle this but it's very verbose. A list of results should be returned instead.
- **Fetching data asynchronously**: Some queries take too long to execute to wait for their results. You should be able to spawn query execution in a separate process.

Convenience and how ResultQuery, Result, and Record share API

The term "fetch" is always reused in jOOQ when you can fetch data from the database. An [org.jooq.ResultQuery](https://www.jooq.org/docs/latest/static-api/org/jooq/ResultQuery.html) provides many overloaded means of fetching data:

Various modes of fetching

These modes of fetching are also documented in subsequent sections of the manual

```java
// The *standard* fetch
Result<R> fetch();

// The *standard* fetch when you know your query returns only one record
R fetchOne();

// The *standard* fetch when you only want to fetch the first record
R fetchAny();

// Create a *lazy* Cursor, that keeps an open underlying JDBC ResultSet
Cursor<R> fetchLazy();
Cursor<R> fetchLazy(int fetchSize);

// Fetch several results at once
List<Result<Record>> fetchMany();

// Fetch records into a custom callback
<H extends RecordHandler<R>> H fetchInto(H handler);

// Map records using a custom callback
<E> List<E> fetch(RecordMapper<? super R, E> mapper);

// Map records using a custom callback
<E> List<E> fetch(RecordMapper<? super R, E> mapper);

// Execute a ResultQuery with jOOQ, but return a JDBC ResultSet, not a jOOQ object
ResultSet fetchResultSet();
```

Fetch convenience

These means of fetching are also available from [org.jooq.Result](https://www.jooq.org/docs/latest/static-api/org/jooq/Result.html) and [org.jooq.Record](https://www.jooq.org/docs/latest/static-api/org/jooq/Record.html) APIs.
Fetch transformations

These means of fetching are also available from `org.jooq.Result` and `org.jooq.Record` APIs

Note, that apart from the `fetchLazy()` methods, all fetch() methods will immediately close underlying JDBC result sets.

5.3.1. Record vs. TableRecord

jOOQ understands that SQL is much more expressive than Java, when it comes to the declarative typing of table expressions. As a declarative language, SQL allows for creating ad-hoc row value expressions (records with indexed columns, or tuples) and records (records with named columns). In Java, this is
not possible to the same extent. Yet, still, sometimes you wish to use strongly typed records, when you know that you’re selecting only from a single table

Fetching strongly or weakly typed records

When fetching data only from a single table, the table expression’s type is known to jOOQ if you use jOOQ’s code generator to generate TableRecords for your database tables. In order to fetch such strongly typed records, you will have to use the simple select API:

```java
// Use the selectFrom() method:
BookRecord book = create.selectFrom(BOOK).where(BOOK.ID.eq(1)).fetchOne();

// Typesafe field access is now possible:
System.out.println("Title       : " + book.getTitle());
System.out.println("Published in: " + book.getPublishedIn());
```

When you use the DSLContext.selectFrom() method, jOOQ will return the record type supplied with the argument table. Beware though, that you will no longer be able to use any clause that modifies the type of your table expression. This includes:

- The SELECT clause
- The JOIN clause

5.3.2. Record1 to Record22

jOOQ's row value expression (or tuple) support has been explained earlier in this manual. It is useful for constructing row value expressions where they can be used in SQL. The same typesafety is also applied to records for degrees up to 22. To express this fact, org.jooq.Record is extended by org.jooq.Record1 to org.jooq.Record22. Apart from the fact that these extensions of the R type can be used throughout the jOOQ DSL, they also provide a useful API. Here is org.jooq.Record2, for instance:

```java
public interface Record2<T1, T2> extends Record {

    // Access fields and values as row value expressions
    Row2<T1, T2> fieldsRow();
    Row2<T1, T2> valuesRow();

    // Access fields by index
    Field<T1> field1();
    Field<T2> field2();

    // Access values by index
    T1 value1();
    T2 value2();
}
```

Higher-degree records

jOOQ chose to explicitly support degrees up to 22 to match Scala's typesafe tuple, function and product support. Unlike Scala, however, jOOQ also supports higher degrees without the additional typesafety.
5.3.3. Arrays, Maps and Lists

By default, jOOQ returns an org.jooq.Result object, which is essentially a java.util.List of org.jooq.Record. Often, you will find yourself wanting to transform this result object into a type that corresponds more to your specific needs. Or you just want to list all values of one specific column. Here are some examples to illustrate those use cases:

```java
// Fetching only book titles (the two calls are equivalent):
List<String> titles1 = create.select().from(BOOK).fetch().getValues(BOOK.TITLE);
List<String> titles2 = create.select().from(BOOK).fetch(BOOK.TITLE);
String[] titles3 = create.select().from(BOOK).fetchArray(BOOK.TITLE);

// Fetching only book IDs, converted to Long
List<Long> ids1 = create.select().from(BOOK).fetch().getValues(BOOK.ID, Long.class);
List<Long> ids2 = create.select().from(BOOK).fetch(BOOK.ID, Long.class);
Long[] ids3 = create.select().from(BOOK).fetchArray(BOOK.ID, Long.class);

// Fetching book IDs and mapping each ID to their records or titles
Map<Integer, BookRecord> map1 = create.selectFrom(BOOK).fetch().intoMap(BOOK.ID);
Map<Integer, BookRecord> map2 = create.selectFrom(BOOK).fetchMap(BOOK.ID);
Map<Integer, BookRecord> map3 = create.selectFrom(BOOK).fetch().intoMap(BOOK.ID, BOOK.TITLE);
Map<Integer, BookRecord> map4 = create.selectFrom(BOOK).fetchMap(BOOK.ID, BOOK.TITLE);

// Group by AUTHOR_ID and list all books written by any author:
Map<Integer, Result<BookRecord>> group1 = create.selectFrom(BOOK).fetch().intoGroups(BOOK.AUTHOR_ID);
Map<Integer, Result<BookRecord>> group2 = create.selectFrom(BOOK).fetchGroups(BOOK.AUTHOR_ID);
Map<Integer, List<String>> group3 = create.selectFrom(BOOK).fetch().intoGroups(BOOK.AUTHOR_ID, BOOK.TITLE);
Map<Integer, List<String>> group4 = create.selectFrom(BOOK).fetchGroups(BOOK.AUTHOR_ID, BOOK.TITLE);
```

Note that most of these convenience methods are available both through org.jooq.ResultQuery and org.jooq.Result, some are even available through org.jooq.Record as well.

5.3.4. RecordHandler

In a more functional operating mode, you might want to write callbacks that receive records from your select statement results in order to do some processing. This is a common data access pattern in Spring's JdbcTemplate, and it is also available in jOOQ. With jOOQ, you can implement your own org.jooq.RecordHandler classes and plug them into jOOQ's org.jooq.ResultQuery:

```java
// Write callbacks to receive records from select statements
create.selectFrom(BOOK)
    .orderBy(BOOK.ID)
    .fetch()
    .into(new RecordHandler<BookRecord>() {
        @Override
        public void next(BookRecord book) {
            Util.doThingsWithBook(book);
        }
    });

// Or more concisely
create.selectFrom(BOOK)
    .orderBy(BOOK.ID)
    .fetchInto(new RecordHandler<BookRecord>() {
        public void next(BookRecord book) {
            Util.doThingsWithBook(book);
        };
    });

// Or even more concisely with Java 8's lambda expressions:
create.selectFrom(BOOK)
    .orderBy(BOOK.ID)
    .fetchInto((book -> Util.doThingsWithBook(book));
```

See also the manual's section about the RecordMapper, which provides similar features
5.3.5. RecordMapper

In a more functional operating mode, you might want to write callbacks that map records from your select statement results in order to do some processing. This is a common data access pattern in Spring's JdbcTemplate, and it is also available in jOOQ. With jOOQ, you can implement your own org.jooq.RecordMapper classes and plug them into jOOQ's org.jooq.ResultQuery:

```java
// Write callbacks to receive records from select statements
List<Integer> ids =
    create.selectFrom(BOOK)
    .orderBy(BOOK.ID)
    .fetch()
    .map(BookRecord::getId);

// Or more concisely, as fetch().map(mapper) can be written as fetch(mapper):
create.selectFrom(BOOK)
    .orderBy(BOOK.ID)
    .fetch(BookRecord::getId);

// Or using a lambda expression:
create.selectFrom(BOOK)
    .orderBy(BOOK.ID)
    .fetch(book -> book.getId());

// Of course, the lambda could be expanded into the following anonymous RecordMapper:
create.selectFrom(BOOK)
    .orderBy(BOOK.ID)
    .fetch(new RecordMapper<BookRecord, Integer>() {
        @Override
        public Integer map(BookRecord book) {
            return book.getId();
        }
    });
```

Your custom RecordMapper types can be used automatically through jOOQ's POJO mapping APIs, by injecting a RecordMapperProvider into your Configuration.

See also the manual's section about the RecordHandler, which provides similar features.

5.3.6. POJOs

Fetching data in records is fine as long as your application is not really layered, or as long as you're still writing code in the DAO layer. But if you have a more advanced application architecture, you may not want to allow for jOOQ artefacts to leak into other layers. You may choose to write POJOs (Plain Old Java Objects) as your primary DTOs (Data Transfer Objects), without any dependencies on jOOQ's org.jooq.Record types, which may even potentially hold a reference to a Configuration, and thus a JDBC java.sql.Connection. Like Hibernate/JPA, jOOQ allows you to operate with POJOs. Unlike Hibernate/JPA, jOOQ does not "attach" those POJOs or create proxies with any magic in them.

If you're using jOOQ's code generator, you can configure it to generate POJOs for you, but you're not required to use those generated POJOs. You can use your own. See the manual's section about POJOs with custom RecordMappers to see how to modify jOOQ's standard POJO mapping behaviour.

Using JPA-annotated POJOs

jOOQ tries to find JPA annotations on your POJO types. If it finds any, they are used as the primary source for mapping meta-information. Only the javax.persistence.Column annotation is used and understood by jOOQ. An example:
// A JPA-annotated POJO class
public class MyBook {
 @Column(name = "ID")
 public int myId;
 @Column(name = "TITLE")
 public String myTitle;
}

// The various *into()* methods allow for fetching records into your custom POJOs:
MyBook myBook = create.select().from(BOOK).fetchAny().into(MyBook.class);
List<MyBook> myBooks = create.select().from(BOOK).fetch().into(MyBook.class);
List<MyBook> myBooks = create.select().from(BOOK).fetchInto(MyBook.class);

Just as with any other JPA implementation, you can put the javax.persistence.Column annotation on any class member, including attributes, setters and getters. Please refer to the Record.into() Javadoc for more details.

Using simple POJOs

If jOOQ does not find any JPA-annotations, columns are mapped to the "best-matching" constructor, attribute or setter. An example illustrates this:

// A "mutable" POJO class
public class MyBook1 {
 public int id;
 public String title;
}

// The various *into()* methods allow for fetching records into your custom POJOs:
MyBook1 myBook = create.select().from(BOOK).fetchAny().into(MyBook1.class);
List<MyBook1> myBooks = create.select().from(BOOK).fetch().into(MyBook1.class);
List<MyBook1> myBooks = create.select().from(BOOK).fetchInto(MyBook1.class);

Please refer to the Record.into() Javadoc for more details.

Using "immutable" POJOs

If jOOQ does not find any default constructor, columns are mapped to the "best-matching" constructor. This allows for using "immutable" POJOs with jOOQ. An example illustrates this:

// An "immutable" POJO class
public class MyBook2 {
 public final int id;
 public final String title;
 public MyBook2(int id, String title) {
 this.id = id;
 this.title = title;
 }
}

// With "immutable" POJO classes, there must be an exact match between projected fields and available constructors:
MyBook2 myBook = create.select(BOOK.ID, BOOK.TITLE).from(BOOK).fetchAny().into(MyBook2.class);
List<MyBook2> myBooks = create.select(BOOK.ID, BOOK.TITLE).from(BOOK).fetch().into(MyBook2.class);
List<MyBook2> myBooks = create.select(BOOK.ID, BOOK.TITLE).from(BOOK).fetchInto(MyBook2.class);

// An "immutable" POJO class with a java.beans.ConstructorProperties annotation
public class MyBook3 {
 public final String title;
 public final int id;
 @ConstructorProperties({ "title", "id" })
 public MyBook3(String title, int id) {
 this.title = title;
 this.id = id;
 }
}

// With annotated "immutable" POJO classes, there doesn’t need to be an exact match between fields and constructor arguments.
// In the below cases, only BOOK.ID is really set onto the POJO, BOOK.TITLE remains null and BOOK.AUTHOR_ID is ignored
MyBook3 myBook = create.select(BOOK.ID, BOOK.AUTHOR_ID).from(BOOK).fetchAny().into(MyBook3.class);
List<MyBook3> myBooks = create.select(BOOK.ID, BOOK.AUTHOR_ID).from(BOOK).fetch().into(MyBook3.class);
List<MyBook3> myBooks = create.select(BOOK.ID, BOOK.AUTHOR_ID).from(BOOK).fetchInto(MyBook3.class);
Using proxyable types

jOOQ also allows for fetching data into abstract classes or interfaces, or in other words, “proxyable” types. This means that jOOQ will return a `java.util.HashMap` wrapped in a `java.lang.reflect.Proxy` implementing your custom type. An example of this is given here:

```java
// A "proxyable" type
public interface MyBook3 {
    int getId();
    void setId(int id);
    String getTitle();
    void setTitle(String title);
}

// The various *into()* methods allow for fetching records into your custom POJOs:
List<MyBook3> myBooks = create.select(BOOK.ID, BOOK.TITLE).from(BOOK).fetchAny().into(MyBook3.class);
List<MyBook3> myBooks = create.select(BOOK.ID, BOOK.TITLE).from(BOOK).fetch().into(MyBook3.class);
List<MyBook3> myBooks = create.select(BOOK.ID, BOOK.TITLE).from(BOOK).fetchInto(MyBook3.class);
```

Please refer to the `Record.into()` Javadoc for more details.

Loading POJOs back into Records to store them

The above examples show how to fetch data into your own custom POJOs / DTOs. When you have modified the data contained in POJOs, you probably want to store those modifications back to the database. An example of this is given here:

```java
// A "mutable" POJO class
public class MyBook {
    public int id;
    public String title;
}

// Create a new POJO instance
MyBook myBook = new MyBook();
myBook.id = 10;
myBook.title = "Animal Farm";

// Load a jOOQ-generated BookRecord from your POJO
BookRecord book = create.newRecord(BOOK, myBook);

// Insert it (implicitly)
book.store();

// Insert it (explicitly)
create.executeUpdate(book);

// or update it (ID = 10)
create.executeUpdate(book);
```

Note: Because of your manual setting of ID = 10, jOOQ's `store()` method will assume that you want to insert a new record. See the manual's section about CRUD with UpdatableRecords for more details on this.

Interaction with DAOs

If you're using jOOQ's code generator, you can configure it to generate DAOs for you. Those DAOs operate on generated POJOs. An example of using such a DAO is given here:
More complex data structures

jOOQ currently doesn't support more complex data structures, the way Hibernate/JPA attempt to map relational data onto POJOs. While future developments in this direction are not excluded, jOOQ claims that generic mapping strategies lead to an enormous additional complexity that only serves very few use cases. You are likely to find a solution using any of jOOQ's various fetching modes, with only little boiler-plate code on the client side.

5.3.7. POJOs with RecordMappers

In the previous sections we have seen how to create RecordMapper types to map jOOQ records onto arbitrary objects. We have also seen how jOOQ provides default algorithms to map jOOQ records onto POJOs. Your own custom domain model might be much more complex, but you want to avoid looking up the most appropriate RecordMapper every time you need one. For this, you can provide jOOQ's Configuration with your own implementation of the org.jooq.RecordMapperProvider interface. An example is given here:

```java
DSL.using(new DefaultConfiguration()  
  .set(connection)  
  .set(SQLDialect.ORACLE)  
  .set(new RecordMapperProvider() {  
    @Override  
    public <R extends Record, E> RecordMapper<R, E> provide(RecordType<R> recordType, Class<? extends E> type) {  
      if (type == UUID.class) {  
        return new RecordMapper<R, E>() {  
          @Override  
          public E map(R record) {  
            return (E) record.getValue("ID");  
          }  
        };  
      }  
      if (type == Book.class) {  
        return new BookMapper();  
      }  
      @Override  
      public E map(R record) {  
        return (E) record.getValue("ID");  
      }  
    }  
  })  
.selectFrom(BOOK)  
.orderBy(BOOK.ID)  
.fetchInto(UUID.class);  
```

The above is a very simple example showing that you will have complete flexibility in how to override jOOQ's record to POJO mapping mechanisms.
If you're looking into a generic, third-party mapping utility, have a look at ModelMapper, or Orika Mapper, which can both be easily integrated with jOOQ.

5.3.8. Lazy fetching

Unlike JDBC's java.sql.ResultSet, jOOQ's org.jooq.Result does not represent an open database cursor with various fetch modes and scroll modes, that needs to be closed after usage. jOOQ's results are simple in-memory Java java.util.List objects, containing all of the result values. If your result sets are large, or if you have a lot of network latency, you may wish to fetch records one-by-one, or in small chunks. jOOQ supports a org.jooq.Cursor type for that purpose. In order to obtain such a reference, use the ResultQuery.fetchLazy() method. An example is given here:

```java
// Obtain a Cursor reference:
Cursor<BookRecord> cursor = null;
try {
  cursor = create.selectFrom(BOOK).fetchLazy();
  // Cursor has similar methods as Iterator<R>
  while (cursor.hasNext()) {
    BookRecord book = cursor.fetchOne();
    Util.doThingsWithBook(book);
  }
} finally {
  if (cursor != null) {
    cursor.close();
  }
}
```

As a org.jooq.Cursor holds an internal reference to an open java.sql.ResultSet, it may need to be closed at the end of iteration. If a cursor is completely scrolled through, it will conveniently close the underlying ResultSet. However, you should not rely on that.

Fetch sizes

While using a Cursor prevents jOOQ from eager fetching all data into memory, your underlying JDBC driver may still do that. To configure a fetch size in your JDBC driver, use ResultQuery.fetchSize(int), which specifies the JDBC Statement.setFetchSize(int) when executing the query. Please refer to your JDBC driver manual to learn about fetch sizes and their possible defaults and limitations.

Cursors ship with all the other fetch features

Like org.jooq.ResultSetQuery or org.jooq.Result, org.jooq.Cursor gives access to all of the other fetch features that we've seen so far, i.e.

- **Strongly or weakly typed records:** Cursors are also typed with the <R> type, allowing to fetch custom, generated org.jooq.TableRecord or plain org.jooq.Record types.
- **RecordHandler callbacks:** You can use your own org.jooq.RecordHandler callbacks to receive lazily fetched records.
- **RecordMapper callbacks:** You can use your own org.jooq.RecordMapper callbacks to map lazily fetched records.
- **POJOS:** You can fetch data into your own custom POJO types.
5.3.9. Many fetching

Many databases support returning several result sets, or cursors, from single queries. An example for this is Sybase ASE’s `sp_help` command:

```sql
> sp_help 'author'
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Owner</th>
<th>Object_type</th>
<th>Object_status</th>
<th>Create_date</th>
</tr>
</thead>
<tbody>
<tr>
<td>author</td>
<td>dbo</td>
<td>user table</td>
<td>-- none --</td>
<td>Sep 22 2011 11:20PM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Column_name</th>
<th>Type</th>
<th>Length</th>
<th>Prec</th>
<th>Scale</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>int</td>
<td>4</td>
<td>NULL</td>
<td>NULL</td>
<td>0</td>
</tr>
<tr>
<td>first_name</td>
<td>varchar</td>
<td>50</td>
<td>NULL</td>
<td>NULL</td>
<td>1</td>
</tr>
<tr>
<td>last_name</td>
<td>varchar</td>
<td>50</td>
<td>NULL</td>
<td>NULL</td>
<td>0</td>
</tr>
<tr>
<td>date_of_birth</td>
<td>date</td>
<td>4</td>
<td>NULL</td>
<td>NULL</td>
<td>1</td>
</tr>
<tr>
<td>year_of_birth</td>
<td>int</td>
<td>4</td>
<td>NULL</td>
<td>NULL</td>
<td>1</td>
</tr>
</tbody>
</table>

The correct (and verbose) way to do this with JDBC is as follows:

```java
ResultSet rs = statement.executeQuery();
// Repeat until there are no more result sets
for (;;) {
    // Empty the current result set
    while (rs.next()) {
        // 
    }
    // Get the next result set, if available
    if (statement.getMoreResults()) {
        rs = statement.getResultSet();
    } else {
        break;
    }
// Be sure that all result sets are closed
statement.getMoreResults(Statement.CLOSE_ALL_RESULTS);
statement.close();
```

As previously discussed in the chapter about differences between jOOQ and JDBC, jOOQ does not rely on an internal state of any JDBC object, which is “externalised” by Javadoc. Instead, it has a straightforward API allowing you to do the above in a one-liner:

```java
// Get some information about the author table, its columns, keys, indexes, etc
List<Result<Record>> results = create.fetchMany("sp_help 'author'"),
```

Using generics, the resulting structure is immediately clear.

5.3.10. Later fetching

Using Java 8 CompletableFutures

Java 8 has introduced the new `java.util.concurrent.CompletableFuture` type, which allows for functional composition of asynchronous execution units. When applying this to SQL and jOOQ, you might be writing code as follows:
// Initiate an asynchronous call chain
CompletableFuture

// This lambda will supply an int value indicating the number of inserted rows
.supplyAsync(() ->
 DSL.using(configuration)
 .insertInto(AUTHOR, AUTHOR.ID, AUTHOR.LAST_NAME)
 .values(3, "Hitchcock")
 .execute()
)

// This will supply an AuthorRecord value for the newly inserted author
.handleAsync((rows, throwable) ->
 DSL.using(configuration)
 .fetchOne(AUTHOR, AUTHOR.ID.eq(3))
)

// This should supply an int value indicating the number of rows,
// but in fact it'll throw a constraint violation exception
.handleAsync((record, throwable) ->
 record.changed(true);
 return record.insert();
)

// This will supply an int value indicating the number of deleted rows
.handleAsync((rows, throwable) ->
 DSL.using(configuration)
 .delete(AUTHOR)
 .where(AUTHOR.ID.eq(3))
 .execute()
)
.join();

The above example will execute four actions one after the other, but asynchronously in the JDK's default
or common java.util.concurrent.ForkJoinPool.

For more information, please refer to the java.util.concurrent.CompletableFuture
Javadoc and official
documentation.

Using deprecated API

Some queries take very long to execute, yet they are not crucial for the continuation of the main
program. For instance, you could be generating a complicated report in a Swing application, and
while this report is being calculated in your database, you want to display a background progress bar,
allowing the user to pursue some other work. This can be achieved simply with jOOQ, by creating a
org.jooq.FutureResult, a type that extends java.util.concurrent.Future. An example is given here:

// Spawn off this query in a separate process:
FutureResult<BookRecord> future = create.selectFrom(BOOK).where(... complex predicates ...).fetchLater();

// This example actively waits for the result to be done
while (!future.isDone())
{ progressBar.increment(1);
 Thread.sleep(50);
}

// The result should be ready, now
Result<BookRecord> result = future.get();

Note, that instead of letting jOOQ spawn a new thread, you can also provide jOOQ with your own
java.util.concurrent.ExecutorService:

// Spawn off this query in a separate process:
ExecutorService service = ...;
FutureResult<BookRecord> future = create.selectFrom(BOOK).where(... complex predicates ...).fetchLater(service);
5.3.11. ResultSet fetching

When interacting with legacy applications, you may prefer to have jOOQ return a `java.sql.ResultSet`, rather than jOOQ’s own `org.jooq.Result` types. This can be done simply, in two ways:

```java
// jOOQ's Cursor type exposes the underlying ResultSet:
ResultSet rs1 = create.selectFrom(BOOK).fetchLazy().resultSet();
// But you can also directly access that ResultSet from ResultQuery:
ResultSet rs2 = create.selectFrom(BOOK).fetchResultSet();
// Don't forget to close these, though!
rs1.close();
rs2.close();
```

Transform jOOQ's Result into a JDBC ResultSet

Instead of operating on a JDBC ResultSet holding an open resource from your database, you can also let jOOQ's `org.jooq.Result` wrap itself in a `java.sql.ResultSet`. The advantage of this is that the so-created ResultSet has no open connection to the database. It is a completely in-memory ResultSet:

```java
// Transform a jOOQ Result into a ResultSet
Result<BookRecord> result = create.selectFrom(BOOK).fetch();
ResultSet rs = result.intoResultSet();
```

The inverse: Fetch data from a legacy ResultSet using jOOQ

The inverse of the above is possible too. Maybe, a legacy part of your application produces JDBC `java.sql.ResultSet`, and you want to turn them into a `org.jooq.Result`:

```java
// Transform a JDBC ResultSet into a jOOQ Result
ResultSet rs = connection.createStatement().executeQuery("SELECT * FROM BOOK");
// As a Result:
Result<Record> result = create.fetch(rs);
// As a Cursor
Cursor<Record> cursor = create.fetchLazy(rs);
```

You can also tighten the interaction with jOOQ's data type system and data type conversion features, by passing the record type to the above fetch methods:

```java
// Pass an array of types:
Result<Record> result = create.fetch(rs, Integer.class, String.class);
Cursor<Record> result = create.fetchLazy(rs, Integer.class, String.class);
// Pass an array of data types:
Result<Record> result = create.fetch(rs, INTEGER, VARCHAR);
Cursor<Record> result = create.fetchLazy(rs, INTEGER, VARCHAR);
// Pass an array of fields:
Result<Record> result = create.fetch(rs, BOOK.ID, BOOK.TITLE);
Cursor<Record> result = create.fetchLazy(rs, BOOK.ID, BOOK.TITLE);
```

If supplied, the additional information is used to override the information obtained from the `ResultSet`'s `java.sql.ResultSetMetaData` information.
5.3.12. Auto data type conversion

Many native SQL data types can be automatically converted from one another, such as VARCHAR to INTEGER and vice versa.

The jOOQ API also supports a variety of such auto conversions through the `org.jooq.tools.Convert` utility API, which implements the following rules:

- null is always converted to null, or the primitive default value, or `Optional.empty()`, regardless of the target type.
- Identity conversion (converting a value to its own type) is always possible.
- Primitive types can be converted to their wrapper types and vice versa
- All types can be converted to String
- All types can be converted to Object
- All Number types can be converted to other Number types
- All Number or String types can be converted to Boolean. Possible (case-insensitive) values for true:

 * 1
 * 1.0
 * y
 * yes
 * true
 * on
 * enabled

Possible (case-insensitive) values for false:

* 0
* 0.0
* n
* no
* false
* off
* disabled

All other values evaluate to null

- All `java.util.Date` subtypes (`java.sql.Date`, `java.sql.Time`, `java.sql.Timestamp`), as well as most `java.time.temporal.Temporal` subtypes (`java.time.LocalDate`, `java.time.LocalDateTime`, `java.time.LocalTime`, `java.time.OffsetTime`, `java.time.OffsetDateTime`, as well as `java.time.Instant`) can be converted into each other.
- byte[] can be converted into String, using the platform's default charset
- Object[] can be converted into any other array type, if array elements can be converted, too

This auto conversion can be applied explicitly, but is also available through a variety of API, in particular anywhere a `java.lang.Class` reference can be provided, such as:

```java
Record record = ...;
int i = record.get(0, int.class);
String s = record.get(1, String.class);
```
5.3.13. Custom data type conversion

Apart from a few extra features (user-defined types), jOOQ only supports basic types as supported by the JDBC API. In your application, you may choose to transform these data types into your own ones, without writing too much boiler-plate code. This can be done using jOOQ’s `org.jooq.Converter` types. A converter essentially allows for two-way conversion between two Java data types `<T>` and `<U>`. By convention, the `<T>` type corresponds to the type in your database whereas the `<U>` type corresponds to your own user type. The Converter API is given here:

```java
public interface Converter<T, U> extends Serializable {
    /**
     * Convert a database object to a user object
     */
    U from(T databaseObject);

    /**
     * Convert a user object to a database object
     */
    T to(U userObject);

    /**
     * The database type
     */
    Class<T> fromType();

    /**
     * The user type
     */
    Class<U> toType();
}
```

Such a converter can be used in many parts of the jOOQ API. Some examples have been illustrated in the manual’s section about fetching.

A Converter for GregorianCalendar

Here is a some more elaborate example involving a Converter for `java.util.GregorianCalendar`:

```java
// You may prefer Java Calendars over JDBC Timestamps
public class CalendarConverter implements Converter<Timestamp, GregorianCalendar> {
    @Override
    public GregorianCalendar from(Timestamp databaseObject) {
        GregorianCalendar calendar = (GregorianCalendar) Calendar.getInstance();
        calendar.setTimeInMillis(databaseObject.getTime());
        return calendar;
    }

    @Override
    public Timestamp to(GregorianCalendar userObject) {
        return new Timestamp(userObject.getTime().getTime());
    }

    @Override
    public Class<Timestamp> fromType() {
        return Timestamp.class;
    }

    @Override
    public Class<GregorianCalendar> toType() {
        return GregorianCalendar.class;
    }
}
```

// Now you can fetch calendar values from jOOQ's API:
List<GregorianCalendar> dates1 = create.selectFrom(BOOK).fetch().getValues(BOOK.PUBLISHING_DATE, new CalendarConverter());
List<GregorianCalendar> dates2 = create.selectFrom(BOOK).fetch(BOOK.PUBLISHING_DATE, new CalendarConverter());
```
Enum Converters

jOOQ ships with a built-in default `org.jooq.impl.EnumConverter`, that you can use to map VARCHAR values to enum literals or NUMBER values to enum ordinals (both modes are supported). Let’s say, you want to map a YES / NO / MAYBE column to a custom Enum:

```java
// Define your Enum
public enum YNM {
 YES, NO, MAYBE
}

// Define your converter
public class YNMConverter extends EnumConverter<String, YNM> {
 public YNMConverter() {
 super(String.class, YNM.class);
 }
}

// And you're all set for converting records to your custom Enum:
for (BookRecord book : create.selectFrom(BOOK).fetch()) {
 switch (book.getValue(BOOK.I_LIKE, new YNMConverter())) {
 case YES: System.out.println("I like this book: " + book.getTitle()); break;
 case NO: System.out.println("I didn't like this book: " + book.getTitle()); break;
 case MAYBE: System.out.println("I'm not sure about this book: " + book.getTitle()); break;
 }
}
```

Using Converters in generated source code

jOOQ also allows for generated source code to reference your own custom converters, in order to permanently replace a `table column's <T>` type by your own, custom `<U>` type. See the manual's section about custom data types for details.

5.3.14. Interning data

SQL result tables are not optimal in terms of used memory as they are not designed to represent hierarchical data as produced by JOIN operations. Specifically, FOREIGN KEY values may repeat themselves unnecessarily:

```
+----+-----------+--------------+
<table>
<thead>
<tr>
<th>ID</th>
<th>AUTHOR_ID</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1984</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Animal Farm</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>O Alquimista</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>Brida</td>
</tr>
</tbody>
</table>
```

Now, if you have millions of records with only few distinct values for AUTHOR_ID, you may not want to hold references to distinct (but equal) `java.lang.Integer` objects. This is specifically true for IDs of type `java.util.UUID` or string representations thereof. jOOQ allows you to "intern" those values:

```
// Interning data after fetching
Result<?> r1 = create.select(BOOK.ID, BOOK.AUTHOR_ID, BOOK.TITLE)
 .from(BOOK)
 .join(AUTHOR).on(BOOK.AUTHOR_ID.eq(AUTHOR.ID))
 .fetch()
 .intern(BOOK.AUTHOR_ID);

// Interning data while fetching
Result<?> r1 = create.select(BOOK.ID, BOOK.AUTHOR_ID, BOOK.TITLE)
 .from(BOOK)
 .join(AUTHOR).on(BOOK.AUTHOR_ID.eq(AUTHOR.ID))
 .fetch();
```
You can specify as many fields as you want for interning. The above has the following effect:

- If the interned Field is of type `java.lang.String`, then `String.intern()` is called upon each string
- If the interned Field is of any other type, then the call is ignored

Future versions of jOOQ will implement interning of data for non-String data types by collecting values in `java.util.Set`, removing duplicate instances.

Note, that jOOQ will not use interned data for identity comparisons: `string1 == string2`. Interning is used only to reduce the memory footprint of `org.jooq.Result` objects.

5.4. Static statements vs. Prepared Statements

With JDBC, you have full control over your SQL statements. You can decide yourself, if you want to execute a static `java.sql.Statement` without bind values, or a `java.sql.PreparedStatement` with (or without) bind values. But you have to decide early, which way to go. And you'll have to prevent SQL injection and syntax errors manually, when inlining your bind variables.

With jOOQ, this is easier. As a matter of fact, it is plain simple. With jOOQ, you can just set a flag in your `Configuration's Settings`, and all queries produced by that configuration will be executed as static statements, with all bind values inlined. An example is given here:

```java
//-- These statements are rendered by the two factories:
SELECT ? FROM DUAL WHERE ? = ?
SELECT 1 FROM DUAL WHERE 1 = 1

// This DSLContext executes PreparedStatements
DSLContext prepare = DSL.using(connection, SQLDialect.ORACLE);
prepare.select(val(1)).where(val(1).eq(1)).fetch();

// This DSLContext executes static Statements
DSLContext inlined = DSL.using(connection, SQLDialect.ORACLE,
 new Settings().withStatementType(StatementType.STATIC_STATEMENT));
inlined.select(val(1)).where(val(1).eq(1)).fetch();
```

Reasons for choosing one or the other

Not all databases are equal. Some databases show improved performance if you use `java.sql.PreparedStatement`, as the database will then be able to re-use execution plans for identical SQL statements, regardless of actual bind values. This heavily improves the time it takes for soft-parsing a SQL statement. In other situations, assuming that bind values are irrelevant for SQL execution plans may be a bad idea, as you might run into "bind value peeking" issues. You may be better off spending the extra cost for a new hard-parse of your SQL statement and instead having the database fine-tune the new plan to the concrete bind values.

Whichever aproach is more optimal for you cannot be decided by jOOQ. In most cases, prepared statements are probably better. But you always have the option of forcing jOOQ to render inlined bind values.

Inlining bind values on a per-bind-value basis

Note that you don't have to inline all your bind values at once. If you know that a bind value is not really a variable and should be inline explicitly, you can do so by using `DSL.inline()`, as documented in the manual's section about `inlined parameters`
5.5. Reusing a Query's PreparedStatement

As previously discussed in the chapter about differences between jOOQ and JDBC, reusing PreparedStatements is handled a bit differently in jOOQ from how it is handled in JDBC.

Keeping open PreparedStatements with JDBC

With JDBC, you can easily reuse a java.sql.PreparedStatement by not closing it between subsequent executions. An example is given here:

```java
// Execute the statement
try (PreparedStatement stmt = connection.prepareStatement("SELECT 1 FROM DUAL")) {
 // Fetch a first ResultSet
 try (ResultSet rs1 = stmt.executeQuery()) { ... }
 // Without closing the statement, execute it again to fetch another ResultSet
 try (ResultSet rs2 = stmt.executeQuery()) { ... }
}
```

The above technique can be quite useful when you want to reuse expensive database resources. This can be the case when your statement is executed very frequently and your database would take non-negligible time to soft-parse the prepared statement and generate a new statement / cursor resource.

Keeping open PreparedStatements with jOOQ

This is also modeled in jOOQ. However, the difference to JDBC is that closing a statement is the default action, whereas keeping it open has to be configured explicitly. This is better than JDBC, because the default action should be the one that is used most often. Keeping open statements is rarely done in average applications. Here's an example of how to keep open PreparedStatements with jOOQ:

```java
// Create a query which is configured to keep its underlying PreparedStatement open
ResultQuery<Record> query = create.selectOne().keepStatement(true);

// Execute the query twice, against the same underlying PreparedStatement:
try {
 Result<Record> result1 = query.fetch(); // This will lazily create a new PreparedStatement
 Result<Record> result2 = query.fetch(); // This will reuse the previous PreparedStatement
}

// ... but now, you must not forget to close the query
finally {
 query.close();
}
```

The above example shows how a query can be executed twice against the same underlying PreparedStatement. Unlike in other execution scenarios, you must not forget to close this query now.

Beware of resource leaks

While jOOQ allows for explicitly keeping open PreparedStatement references in Query instances, the JDBC Connection may still be closed independently without jOOQ or the PreparedStatement noticing. It is the user's responsibility to close all resources according to the specification and behaviour of the concrete JDBC driver and the underlying database.
5.6. JDBC flags

JDBC knows a couple of execution flags and modes, which can be set through the jOOQ API as well. jOOQ essentially supports these flags and execution modes:

```java
public interface Query extends QueryPart, Attachable {
 // [...] // The query execution timeout.
 // ---
 Query queryTimeout(int timeout);
}
```

```java
public interface ResultQuery<R extends Record> extends Query {
 // [...] // The query execution timeout.
 // ---
 @Override
 ResultQuery<R> queryTimeout(int timeout);
 // Flags allowing to specify the resulting ResultSet modes
 // ---
 ResultQuery<R> resultSetConcurrency(int resultSetConcurrency);
 ResultQuery<R> resultSetType(int resultSetType);
 ResultQuery<R> resultSetHoldability(int resultSetHoldability);
 // The buffer size for JDBC cursors
 // ---
 ResultQuery<R> fetchSize(int size);
 // The maximum number of rows to be fetched by JDBC
 // ---
 ResultQuery<R> maxRows(int rows);
}
```

Using ResultSet concurrency with ExecuteListeners

An example of why you might want to manually set a ResultSet’s concurrency flag to something non-default is given here:

```java
DSL.using(new DefaultConfiguration()
 .set(connection)
 .set(SQLDialect.ORACLE)
 .set(DefaultExecuteListenerProvider.providers(
 new DefaultExecuteListener() {
 @Override
 public void recordStart(ExecuteContext ctx) {
 try {
 // Change values in the cursor before reading a record
 ctx.resultSet().updateString(BOOK.TITLE.getName(), "New Title");
 ctx.resultSet().updateRow();
 } catch (SQLException e) {
 throw new DataAccessException("Exception", e);
 }
 }
 }
))
 .select(BOOK.ID, BOOK.TITLE)
 .from(BOOK)
 .orderBy(BOOK.ID)
 .resultSetType(ResultSet.TYPE_SCROLL_INSENSITIVE)
 .resultSetConcurrency(ResultSet.CONCUR_UPDATABLE)
 .fetch(BOOK.TITLE);
```
In the above example, your custom ExecuteListener callback is triggered before jOOQ loads a new Record from the JDBC ResultSet. With the concurrency being set to ResultSet.CONCUR_UPDATABLE, you can now modify the database cursor through the standard JDBC ResultSet API.

# 5.7. Using JDBC batch operations

With JDBC, you can easily execute several statements at once using the addBatch() method. Essentially, there are two modes in JDBC:

- Execute several queries without bind values
- Execute one query several times with bind values

## Using JDBC

In code, this looks like the following snippet:

```java
// 1. several queries
// ------------------
try (Statement stmt = connection.createStatement()) {
 stmt.addBatch("INSERT INTO author(id, first_name, last_name) VALUES (1, 'Erich', 'Gamma')");
 stmt.addBatch("INSERT INTO author(id, first_name, last_name) VALUES (2, 'Richard', 'Helm')");
 stmt.addBatch("INSERT INTO author(id, first_name, last_name) VALUES (3, 'Ralph', 'Johnson')");
 stmt.addBatch("INSERT INTO author(id, first_name, last_name) VALUES (4, 'John', 'Vlissides')");
 int[] result = stmt.executeBatch();
}

// 2. a single query
// -----------------
try (PreparedStatement stmt = connection.prepareStatement("INSERT INTO author(id, first_name, last_name) VALUES (?, ?, ?)")) {
 stmt.setInt(1, 1);
 stmt.setString(2, "Erich");
 stmt.setString(3, "Gamma");
 stmt.addBatch();
 stmt.setInt(1, 2);
 stmt.setString(2, "Richard");
 stmt.setString(3, "Helm");
 stmt.addBatch();
 stmt.setInt(1, 3);
 stmt.setString(2, "Ralph");
 stmt.setString(3, "Johnson");
 stmt.addBatch();
 stmt.setInt(1, 4);
 stmt.setString(2, "John");
 stmt.setString(3, "Vlissides");
 stmt.addBatch();
 int[] result = stmt.executeBatch();
}
```

## Using jOOQ

jOOQ supports executing queries in batch mode as follows:
When creating a batch execution with a single query and multiple bind values, you will still have to provide jOOQ with dummy bind values for the original query. In the above example, these are set to null. For subsequent calls to bind(), there will be no type safety provided by jOOQ.

5.8. Sequence execution

Most databases support sequences of some sort, to provide you with unique values to be used for primary keys and other enumerations. If you're using jOOQ's code generator, it will generate a sequence object per sequence for you. There are two ways of using such a sequence object:

### Standalone calls to sequences

Instead of actually phrasing a select statement, you can also use the DSLContext's convenience methods:

```java
// Fetch the next value from a sequence
BigInteger nextID = create.nextval(S_AUTHOR_ID);

// Fetch the current value from a sequence
BigInteger currID = create.currval(S_AUTHOR_ID);
```

### Inlining sequence references in SQL

You can inline sequence references in jOOQ SQL statements. The following are examples of how to do that:

```java
// Reference the sequence in a SELECT statement:
Field<BigInteger> x = S_AUTHOR_ID.nextval();
BigInteger nextID = create.select(x).fetchOne(x);

// Reference the sequence in an INSERT statement:
create.insertInto(AUTHOR, AUTHOR.ID, AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME)
 .values(S_AUTHOR_ID.nextval(), val("William"), val("Shakespeare"));
```

For more info about inlining sequence references in SQL statements, please refer to the manual's section about sequences and serials.
5.9. Stored procedures and functions

Many RDBMS support the concept of "routines", usually calling them procedures and/or functions. These concepts have been around in programming languages for a while, also outside of databases. Famous languages distinguishing procedures from functions are:

- Ada
- BASIC
- Pascal
- etc...

The general distinction between (stored) procedures and (stored) functions can be summarised like this:

Procedures

- Are called using JDBC CallableStatement
- Have no return value
- Usually support OUT parameters

Functions

- Can be used in SQL statements
- Have a return value
- Usually don't support OUT parameters

Exceptions to these rules

- DB2, H2, and HSQLDB don't allow for JDBC escape syntax when calling functions. Functions must be used in a SELECT statement
- H2 only knows functions (without OUT parameters)
- Oracle functions may have OUT parameters
- Oracle knows functions that must not be used in SQL statements for transactional reasons
- Postgres only knows functions (with all features combined). OUT parameters can also be interpreted as return values, which is quite elegant/surprising, depending on your taste
- The Sybase jconn3 JDBC driver doesn't handle null values correctly when using the JDBC escape syntax on functions

In general, it can be said that the field of routines (procedures / functions) is far from being standardised in modern RDBMS even if the SQL:2008 standard specifies things quite well. Every database has its ways and JDBC only provides little abstraction over the great variety of procedures / functions implementations, especially when advanced data types such as cursors / UDT's / arrays are involved.
To simplify things a little bit, jOOQ handles both procedures and functions the same way, using a more general `org.jooq.Routine` type.

### Using jOOQ for standalone calls to stored procedures and functions

If you're using jOOQ's code generator, it will generate `org.jooq.Routine` objects for you. Let's consider the following example:

```sql
CREATE OR REPLACE PROCEDURE author_exists (author_name VARCHAR2, result OUT NUMBER, id OUT NUMBER);
```

The generated artefacts can then be used as follows:

```java
// Make an explicit call to the generated procedure object:
AuthorExists procedure = new AuthorExists();
// All IN and IN OUT parameters generate setters
procedure.setAuthorName("Paulo");
procedure.execute(configuration);
// All OUT and IN OUT parameters generate getters
assertEquals(new BigDecimal("1"), procedure.getResult());
assertEquals(new BigDecimal("2"), procedure.getId());
```

But you can also call the procedure using a generated convenience method in a global Routines class:

```java
// The generated Routines class contains static methods for every procedure.
// Results are also returned in a generated object, holding getters for every OUT or IN OUT parameter.
AuthorExists procedure = Routines.authorExists(configuration, "Paulo");
// All OUT and IN OUT parameters generate getters
assertEquals(new BigDecimal("1"), procedure.getResult());
assertEquals(new BigDecimal("2"), procedure.getId());
```

For more details about code generation for procedures, see the manual's section about [procedures and code generation](#).

### Inlining stored function references in SQL

Unlike procedures, functions can be inlined in SQL statements to generate [column expressions](#) or [table expressions](#), if you’re using [unnesting operators](#). Assume you have a function like this:

```sql
CREATE OR REPLACE FUNCTION author_exists (author_name VARCHAR2) RETURN NUMBER;
```

The generated artefacts can then be used as follows:

```java
-- This is the rendered SQL
SELECT AUTHOR_EXISTS('Paulo') FROM DUAL
// Use the static-imported method from Routines:
boolean exists = create.select(AuthorExists("Paulo")).fetchOne(0, boolean.class);
```

For more info about inlining stored function references in SQL statements, please refer to the manual's section about [user-defined functions](#).
5.9.1. Oracle Packages

Oracle uses the concept of a PACKAGE to group several procedures/functions into a sort of namespace. The SQL 92 standard talks about "modules", to represent this concept, even if this is rarely implemented as such. This is reflected in jOOQ by the use of Java sub-packages in the source code generation destination package. Every Oracle package will be reflected by

- A Java package holding classes for formal Java representations of the procedure/function in that package
- A Java class holding convenience methods to facilitate calling those procedures/functions

Apart from this, the generated source code looks exactly like the one for standalone procedures/functions.

For more details about code generation for procedures and packages see the manual's section about procedures and code generation.

5.9.2. Oracle member procedures

Oracle UDTs can have object-oriented structures including member functions and procedures. With Oracle, you can do things like this:

```sql
CREATE OR REPLACE TYPE u_author_type AS OBJECT (
 id NUMBER(),
 first_name VARCHAR2(50),
 last_name VARCHAR2(50),
 MEMBER PROCEDURE LOAD,
 MEMBER FUNCTION countBooks RETURN NUMBER
);
```

These member functions and procedures can simply be mapped to Java methods:

```java
// Create an empty, attached UDT record from the DSLContext
UAuthorType author = create.newRecord(U_AUTHOR_TYPE);
// Set the author ID and load the record using the LOAD procedure
author.setId(1);
author.load();
// The record is now updated with the LOAD implementation's content
assertNotNull(author.getFirstName());
assertNotNull(author.getLastName());
```

For more details about code generation for UDTs see the manual's section about user-defined types and code generation.

5.10. Exporting to XML, CSV, JSON, HTML, Text

If you are using jOOQ for scripting purposes or in a slim, unlayered application server, you might be interested in using jOOQ's exporting functionality (see also the importing functionality). You can export any Result<Record> into the formats discussed in the subsequent chapters of the manual.
5.10.1. Exporting XML

```java
// Fetch books and format them as XML
String xml = create.selectFrom(BOOK).fetch().formatXML();
```

The above query will result in an XML document looking like the following one:

```xml
<result xmlns="http://www.jooq.org/xsd/jooq-export-3.10.0.xsd">
 <fields>
 <field name="ID" type="INTEGER"/>
 <field name="AUTHOR_ID" type="INTEGER"/>
 <field name="TITLE" type="VARCHAR"/>
 </fields>
 <records>
 <record>
 <value field="ID">1</value>
 <value field="AUTHOR_ID">1</value>
 <value field="TITLE">1984</value>
 </record>
 <record>
 <value field="ID">2</value>
 <value field="AUTHOR_ID">1</value>
 <value field="TITLE">Animal Farm</value>
 </record>
 </records>
</result>
```

The same result as an `org.w3c.dom.Document` can be obtained using the Result.intoXML() method:

```java
// Fetch books and format them as XML
Document xml = create.selectFrom(BOOK).fetch().intoXML();
```

See the XSD schema definition here, for a formal definition of the XML export format:

http://www.jooq.org/xsd/jooq-export-3.10.0.xsd

5.10.2. Exporting CSV

```java
// Fetch books and format them as CSV
String csv = create.selectFrom(BOOK).fetch().formatCSV();
```

The above query will result in a CSV document looking like the following one:

```
ID,AUTHOR_ID,TITLE
1,1,1984
2,1,Animal Farm
```

In addition to the standard behaviour, you can also specify a separator character, as well as a special string to represent NULL values (which cannot be represented in standard CSV):

```java
// Use ";" as the separator character
String csv = create.selectFrom(BOOK).fetch().formatCSV(';');

// Specify "{(null)}" as a representation for NULL values
String csv = create.selectFrom(BOOK).fetch().formatCSV(';', '{(null)}');
```
5.10.3. Exporting JSON

```java
// Fetch books and format them as JSON
String json = create.selectFrom(BOOK).fetch().formatJSON();
```

The above query will result in a JSON document looking like the following one:

```
{"fields": ["name":"field-1","type":"type-1"],
 "name":"field-2","type":"type-2"},
...
"records": ["value-1-1","value-1-2",... ,"value-1-\n"value-2-1","value-2-2",... ,"value-2-\n"value-3-1","value-3-2",... ,"value-3-\n"
```

Note: This format has changed in jOOQ 2.6.0

5.10.4. Exporting HTML

```java
// Fetch books and format them as HTML
String html = create.selectFrom(BOOK).fetch().formatHTML();
```

The above query will result in an HTML document looking like the following one:

```
<table>
<thead>
<tr>
<th>ID</th>
<th>AUTHOR_ID</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1984</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Animal Farm</td>
</tr>
</tbody>
</table>
```

5.10.5. Exporting Text

```java
// Fetch books and format them as text
String text = create.selectFrom(BOOK).fetch().format();
```

The above query will result in a text document looking like the following one
5.11. Importing data

jOOQ's loader API can be used to import tabular data into a table from a variety of data sources. It offers a simplified API to solve common data import challenges such as:

- Mapping different data sources, like CSV, JSON, XML, records to SQL tables
- Specifying behaviour when duplicate keys are encountered
- Fine tuning batch, bulk, and commit sizes
- Error handling

5.11.1. The Loader API

The loader API is implemented like any other DSL statement in jOOQ, following a few steps:

For example:

```java
create.loadInto(TARGET_TABLE)
 .[options]
 .[source and source to target mapping]
 .[listeners]
 .[execution and error handling]
```

```java
create.loadInto(BOOK)
 // Options
 .onDuplicateKeyError()
 .bulkAll()
 .batchAll()
 .commitAll()

 // Source and source to target mapping
 .loadCSV(inputStream)
 .fields(BOOK.ID, BOOK.AUTHOR_ID, BOOK.TITLE)

 // Listeners
 .onRow(ctx -> { /* ... */ })

 // Execution and error handling
 .execute()
 .errors()
 .forEach(e -> { /* ... */ });
```

See the following sections for details about each step:

- Import options
- Import data sources
- Import result and error handling
5.11.2. Import options

Prior to specifying data sources, data source independent loading options can be specified. These include throttling, duplicate handling, and error handling:

5.11.2.1. Throttling

Not all RDBMS offer the same optimisation capabilities. Please refer to your database manual to learn how these tuning capabilities may affect your data import performance. Also, actual measurements may help improve these numbers. Do not optimise prematurely, or based on assumptions. Always measure if your optimisation has the desired effect!

The commit size

Committing a transaction can be a costly operation if done too often, or not often enough. If there are too many commits, this can lead to a lot of logging overhead on the server. If a too many changes are left uncommitted for too long, there may be too much locking in 2PL transaction models, or log contention in MVCC transaction models. An empirically discovered, optimal commit size that leads to committing e.g. 1000 rows (or 10000, or 100, please measure what works best for you) may produce best results.

There are 3 possible, mutually exclusive configurations of specifying the batch size:

```java
create.loadInto(BOOK)
 .commitAll() // Commit all statements (batch, bulk, or not) in a single large transaction.
 .commitAfter(32) // Put up to 32 statements (batch, bulk, or not) in a transaction.
 .commitEach() // Commit each statement (batch, bulk, or not) in a transaction, just like commitAfter(1)
 .commitNone() // Do not commit any statement, leave committing to client code
 .loadCSV(inputStream)
 .fields(BOOK.ID, BOOK.AUTHOR_ID, BOOK.TITLE)
 .execute();
```

5.11.2.2. Duplicate handling

When importing data, some data may already be present and needs to be updated. jOOQ supports a variety of UPSERT style statements.
create.loadInto(BOOK)
    // Insert each row using INSERT .. ON DUPLICATE KEY UPDATE
    .onDuplicateKeyUpdate()
    // Insert each row using INSERT .. ON DUPLICATE KEY IGNORE
    .onDuplicateKeyIgnore()
    // Use ordinary INSERT statements, which will produce errors on duplicate keys
    .onDuplicateKeyError()
    .loadCSV(inputstream)
    .fields(BOOK.ID, BOOK.AUTHOR_ID, BOOK.TITLE)
    .execute();

5.11.2.3. Error handling

When importing large amounts of data, errors may be inevitable and may need to be processed after the import, without impacting the entire import. In these cases, it may be useful to specify error handling. In all cases, errors will be reported after the execution of the import process:

create.loadInto(BOOK)
    // Ignore any errors and continue inserting. Errors will be reported nonetheless.
    .onErrorIgnore()
    // Abort the import upon encountering the first error.
    .onErrorAbort()
    .loadCSV(inputstream)
    .fields(BOOK.ID, BOOK.AUTHOR_ID, BOOK.TITLE)
    .execute();

5.11.3. Import data sources

Different types of data sources are supported by jOOQ in the same formats as the export API. These include:

5.11.3.1. Importing CSV

The below CSV data represents two author records that may have been exported previously, by jOOQ's exporting functionality, and then modified in Microsoft Excel or any other spreadsheet tool:

ID,AUTHOR_ID,TITLE  <-- Note the CSV header. By default, the first line is ignored
1,1,1984
2,1,Animal Farm

The following examples show how to map source and target tables.
// Specify fields from the target table to be matched with fields from the source CSV by position.
// Positional matching is independent of the presence of a header row in the CSV content.
create.loadInto(BOOK)
    .loadCSV(inputstream, encoding)
    .fields(BOOK.ID, BOOK.AUTHOR_ID, BOOK.TITLE)
    .execute();

// Use "null" field placeholders to ignore source columns by position.
create.loadInto(BOOK)
    .loadCSV(inputstream, encoding)
    .fields(BOOK.ID, null, BOOK.TITLE)
    .execute();

**CSV specific options**

You may pass one of the following flags to specify how the CSV content should be parsed:

```java
create.loadInto(BOOK)
 .loadCSV(inputstream, encoding)
 .fields(BOOK.ID, BOOK.AUTHOR_ID, BOOK.TITLE)
 // Ignore a certain number of header rows. By default, this is 1.
 .ignoreRows(1)
 // The quote character for use with string content containing quotes or separators. By default, this is
 .quote('"
 // The separator character that separates columns. By default, this is ,
 .separator(',
 // The null string encoding, which allows for distinguishing between empty strings and null. By default, there is no null
 .nullString("{null}"
 .execute();
```

### 5.11.3.2. Importing JSON

The below JSON data represents two author records that may have been exported previously, by jOOQ’s exporting functionality:

```json
{"fields":[{"name":"ID","type":"INTEGER"},
 {"name":"AUTHOR_ID","type":"INTEGER"},
 {"name":"TITLE","type":"VARCHAR"}],
"records": [[1,1,"1984"],
 [2,1,"Animal Farm"]}
```

The following examples show how to map source data and target table.

```java
// Specify fields from the target table to be matched with fields from the source JSON array by position.
// Positional matching is independent of the presence of a header information in the JSON content.
create.loadInto(BOOK)
 .loadJSON(inputstream, encoding)
 .fields(BOOK.ID, BOOK.AUTHOR_ID, BOOK.TITLE)
 .execute();

// Use "null" field placeholders to ignore source columns by position.
create.loadInto(BOOK)
 .loadJSON(inputstream, encoding)
 .fields(BOOK.ID, null, BOOK.TITLE)
 .execute();
```

No other, JSON-specific options are currently available.
5.11.3.3. Importing XML

This is not yet supported

5.11.4. Import result and error handling

After completed execution, a number of diagnostics are available to implement error handling:

```java
Loader<?> loader =
 create.loadInto(BOOK)
 .loadCSV(inputStream, encoding)
 .fields(BOOK.ID, BOOK.AUTHOR_ID, BOOK.TITLE)
 .execute();

// The number of processed rows
int processed = loader.processed();

// The number of stored rows (INSERT or UPDATE)
int stored = loader.stored();

// The number of ignored rows (due to errors, or duplicate rule)
int ignored = loader.ignored();

// The errors that may have occurred during loading
List<LoaderError> errors = loader.errors();
LoaderError error = errors.get(0);

// The exception that caused the error
DataAccessException exception = error.exception();

// The row that caused the error
int rowIndex = error.rowIndex();
String[] row = error.row();

// The query that caused the error
Query query = error.query();
```

5.12. CRUD with UpdatableRecords

Your database application probably consists of 50% - 80% CRUD, whereas only the remaining 20% - 50% of querying is actual querying. Most often, you will operate on records of tables without using any advanced relational concepts. This is called CRUD for

- Create (INSERT)
- Read (SELECT)
- Update (UPDATE)
- Delete (DELETE)

CRUD always uses the same patterns, regardless of the nature of underlying tables. This again, leads to a lot of boilerplate code, if you have to issue your statements yourself. Like Hibernate / JPA and other ORMs, jOOQ facilitates CRUD using a specific API involving `org.jooq.UpdatableRecord` types.

Primary keys and updatability

In normalised databases, every table has a primary key by which a tuple/record within that table can be uniquely identified. In simple cases, this is a (possibly auto-generated) number called ID. But in many...
cases, primary keys include several non-numeric columns. An important feature of such keys is the fact that in most databases, they are enforced using an index that allows for very fast random access to the table. A typical way to access / modify / delete a book is this:

```
-- Inserting uses a previously generated key value or generates it afresh
INSERT INTO BOOK (ID, TITLE) VALUES (5, 'Animal Farm');
-- Other operations can use a previously generated key value
SELECT * FROM BOOK WHERE ID = 5;
UPDATE BOOK SET TITLE = '1984' WHERE ID = 5;
DELETE FROM BOOK WHERE ID = 5;
```

Normalised databases assume that a primary key is unique "forever", i.e. that a key, once inserted into a table, will never be changed or re-inserted after deletion. In order to use jOOQ's CRUD operations correctly, you should design your database accordingly.

### 5.12.1. Simple CRUD

If you're using jOOQ's code generator, it will generate `org.jooq.UpdatableRecord` implementations for every table that has a primary key. When fetching such a record form the database, these records are "attached" to the Configuration that created them. This means that they hold an internal reference to the same database connection that was used to fetch them. This connection is used internally by any of the following methods of the UpdatableRecord:

```
// Refresh a record from the database.
void refresh() throws DataAccessException;

// Store (insert or update) a record to the database.
int store() throws DataAccessException;

// Delete a record from the database
int delete() throws DataAccessException;
```

See the manual's section about serializability for some more insight on "attached" objects.

### Storing

Storing a record will perform an `INSERT statement` or an `UPDATE statement`. In general, new records are always inserted, whereas records loaded from the database are always updated. This is best visualised in code:

```
// Create a new record
BookRecord book1 = create.newRecord(BOOK);
book1.setTitle("1984");
book1.store();

// Update the record: UPDATE BOOK SET PUBLISHED_IN = 1984 WHERE ID = [id]
book1.setPublishedIn(1948);
book1.store();

// Get the (possibly) auto-generated ID from the record
Integer id = book1.getId();

// Get another instance of the same book
BookRecord book2 = create.fetchOne(BOOK, BOOK.ID.eq(id));

// Update the record: UPDATE BOOK SET TITLE = 'Animal Farm' WHERE ID = [id]
book2.setTitle("Animal Farm");
book2.store();
```

Some remarks about storing:
- jOOQ sets only modified values in **INSERT statements** or **UPDATE statements**. This allows for default values to be applied to inserted records, as specified in CREATE TABLE DDL statements.
- When `store()` performs an **INSERT statement**, jOOQ attempts to load any generated keys from the database back into the record. For more details, see the manual's section about **IDENTITY values**.
- When loading records from **POJs**, jOOQ will assume the record is a new record. It will hence attempt to INSERT it.
- When you activate **optimistic locking**, storing a record may fail, if the underlying database record has been changed in the mean time.

### Deleting

Deleting a record will remove it from the database. Here's how you delete records:

```java
// Get a previously inserted book
BookRecord book = create.fetchOne(BOOK, BOOK.ID.eq(5));

// Delete the book
book.delete();
```

### Refreshing

Refreshing a record from the database means that jOOQ will issue a **SELECT statement** to refresh all record values that are not the primary key. This is particularly useful when you use jOOQ's **optimistic locking** feature, in case a modified record is "stale" and cannot be stored to the database, because the underlying database record has changed in the mean time.

In order to perform a refresh, use the following Java code:

```java
// Fetch an updatable record from the database
BookRecord book = create.fetchOne(BOOK, BOOK.ID.eq(5));

// Refresh the record
book.refresh();
```

### CRUD and SELECT statements

CRUD operations can be combined with regular querying, if you select records from single database tables, as explained in the manual's section about **SELECT statements**. For this, you will need to use the `selectFrom()` method from the **DSLContext**:

```java
// Loop over records returned from a SELECT statement
for (BookRecord book : create.fetch(BOOK, BOOK.PUBLISHED_IN.eq(1948))) {
 // Perform actions on BookRecords depending on some conditions
 if ("Orwell".equals(book.fetchParent(Keys.FK_BOOK_AUTHOR).getLastName())) {
 book.delete();
 }
}
```
5.12.2. Records' internal flags

All of jOOQ's Record types and subtypes maintain an internal state for every column value. This state is composed of three elements:

- The value itself
- The "original" value, i.e. the value as it was originally fetched from the database or null, if the record was never in the database
- The "changed" flag, indicating if the value was ever changed through the Record API.

The purpose of the above information is for jOOQ's CRUD operations to know, which values need to be stored to the database, and which values have been left untouched.

5.12.3. IDENTITY values

Many databases support the concept of IDENTITY values, or SEQUENCE-generated key values. This is reflected by JDBC's `getGeneratedKeys()` method. jOOQ abstracts using this method as many databases and JDBC drivers behave differently with respect to generated keys. Let's assume the following SQL Server BOOK table:

```sql
CREATE TABLE book (
 ID INTEGER IDENTITY(1,1) NOT NULL,
 -- [...]
 CONSTRAINT pk_book PRIMARY KEY (id)
)
```

If you're using jOOQ's code generator, the above table will generate a `org.jooq.UpdatableRecord` with an IDENTITY column. This information is used by jOOQ internally, to update IDs after calling `store()`:

```java
BookRecord book = create.newRecord(BOOK);
book.setTitle("1984");
book.store();

// The generated ID value is fetched after the above INSERT statement
System.out.println(book.getId());
```

Database compatibility

DB2, Derby, HSQLDB, Ingres
These SQL dialects implement the standard very neatly.

```sql
id INTEGER GENERATED BY DEFAULT AS IDENTITY
```

H2, MySQL, Postgres, SQL Server, Sybase ASE, Sybase SQL Anywhere
These SQL dialects implement identites, but the DDL syntax doesn't follow the standard

```sql
id INTEGER GENERATED BY DEFAULT AS IDENTITY (START WITH 1)
```
### 5.12.4. Navigation methods

`org.jooq.TableRecord` and `org.jooq.UpdatableRecord` contain foreign key navigation methods. These navigation methods allow for "navigating" inbound or outbound foreign key references by executing an appropriate query. An example is given here:

```java
CREATE TABLE book {
 AUTHOR_ID NUMBER(7) NOT NULL,
 /* [...]
 FOREIGN KEY (AUTHOR_ID) REFERENCES author(ID)
}

BookRecord book = create.fetch(BOOK, BOOK.ID.eq(5));
// Find the author of a book (static imported from Keys)
AuthorRecord author = book.fetchParent(FK_BOOK_AUTHOR);
// Find other books by that author
Result<BookRecord> books = author.fetchChildren(FK_BOOK_AUTHOR);
```

Note that, unlike in Hibernate, jOOQ's navigation methods will always lazy-fetch relevant records, without caching any results. In other words, every time you run such a fetch method, a new query will be issued.

These fetch methods only work on "attached" records. See the manual's section about [serializability](#) for some more insight on "attached" objects.

### 5.12.5. Non-updatable records

Tables without a PRIMARY KEY are considered non-updatable by jOOQ, as jOOQ has no way of uniquely identifying such a record within the database. If you're using jOOQ's [code generator](#), such tables will generate `org.jooq.TableRecord` classes, instead of `org.jooq.UpdatableRecord` classes. When you fetch [typed records](#) from such a table, the returned records will not allow for calling any of the `store()`, `refresh()`, `delete()` methods.

Note, that some databases use internal rowid or object-id values to identify such records. jOOQ does not support these vendor-specific record meta-data.

### 5.12.6. Optimistic locking

jOOQ allows you to perform [CRUD](#) operations using optimistic locking. You can immediately take advantage of this feature by activating the relevant [executeWithOptimisticLocking Setting](#). Without any
further knowledge of the underlying data semantics, this will have the following impact on store() and delete() methods:

- INSERT statements are not affected by this Setting flag
- Prior to UPDATE or DELETE statements, jOOQ will run a `SELECT .. FOR UPDATE` statement, pessimistically locking the record for the subsequent UPDATE / DELETE
- The data fetched with the previous SELECT will be compared against the data in the record being stored or deleted
- An `org.jooq.exception.DataChangedException` is thrown if the record had been modified in the mean time
- The record is successfully stored / deleted, if the record had not been modified in the mean time.

The above changes to jOOQ's behaviour are transparent to the API, the only thing you need to do for it to be activated is to set the Settings flag. Here is an example illustrating optimistic locking:

```java
// Properly configure the DSLContext
DSLContext optimistic = DSL.using(connection, SQLDialect.ORACLE,
 new Settings().withExecuteWithOptimisticLocking(true));

// Fetch a book two times
BookRecord book1 = optimistic.fetchOne(BOOK, BOOK.ID.eq(5));
BookRecord book2 = optimistic.fetchOne(BOOK, BOOK.ID.eq(5));

// Change the title and store this book. The underlying database record has not been modified, it can be safely updated.
book1.setTitle("Animal Farm");
book1.store();

// Book2 still references the original TITLE value, but the database holds a new value from book1.store().
// This store() will thus fail:
book2.setTitle("1984");
book2.store();
```

Optimised optimistic locking using TIMESTAMP fields

If you're using jOOQ's code generator, you can take indicate TIMESTAMP or UPDATE COUNTER fields for every generated table in the code generation configuration. Let's say we have this table:

```sql
CREATE TABLE book (
 -- This column indicates when each book record was modified for the last time
 MODIFIED TIMESTAMP NOT NULL,
 -- [...]
)
```

The MODIFIED column will contain a timestamp indicating the last modification timestamp for any book in the BOOK table. If you're using jOOQ and it's store() methods on UpdatableRecords, jOOQ will then generate this TIMESTAMP value for you, automatically. However, instead of running an additional `SELECT .. FOR UPDATE` statement prior to an UPDATE or DELETE statement, jOOQ adds a WHERE-clause to the UPDATE or DELETE statement, checking for TIMESTAMP's integrity. This can be best illustrated with an example:
As before, without the added TIMESTAMP column, optimistic locking is transparent to the API.

Optimised optimistic locking using VERSION fields

Instead of using TIMESTAMPS, you may also use numeric VERSION fields, containing version numbers that are incremented by jOOQ upon store() calls.

Note, for explicit pessimistic locking, please consider the manual’s section about the FOR UPDATE clause. For more details about how to configure TIMESTAMP or VERSION fields, consider the manual's section about advanced code generator configuration.

5.12.7. Batch execution

When inserting, updating, deleting a lot of records, you may wish to profit from JDBC batch operations, which can be performed by jOOQ. These are available through jOOQ's DSLContext as shown in the following example:

```java
// Fetch a bunch of books
Result<BookRecord> books = create.fetch(BOOK);

// Modify the above books, and add some new ones:
modify(books);
addMore(books);

// Batch-update and/or insert all of the above books
create.batchStore(books).execute();
```

Internally, jOOQ will render all the required SQL statements and execute them as a regular JDBC batch execution.

5.12.8. CRUD SPI: RecordListener

When performing CRUD, you may want to be able to centrally register one or several listener objects that receive notification every time CRUD is performed on an UpdatableRecord. Example use cases of such a listener are:

- Adding a central ID generation algorithm, generating UUIDs for all of your records.
- Adding a central record initialisation mechanism, preparing the database prior to inserting a new record.
An example of such a RecordListener is given here:

```java
// Extending DefaultRecordListener, which provides empty implementations for all methods...
public class InsertListener extends DefaultRecordListener {
 @Override
 public void insertStart(RecordContext ctx) {
 // Generate an ID for inserted BOOKs
 if (ctx.record() instanceof BookRecord) {
 BookRecord book = (BookRecord) ctx.record();
 book.setId(IDTools.generate());
 }
 }
}
```

Now, configure jOOQ's runtime to load your listener

```java
// Create a configuration with an appropriate listener provider:
Configuration configuration = new DefaultConfiguration().set(connection).set(dialect);
configuration.set(new DefaultRecordListenerProvider(new InsertListener()));

// Create a DSLContext from the above configuration
DSLContext create = DSL.using(configuration);
```

For a full documentation of what RecordListener can do, please consider the [RecordListener Javadoc](#). Note that RecordListener instances can be registered with a Configuration independently of ExecuteListeners.

### Triggers

A RecordListener does not act as a client-side trigger. As such, it does not affect any bulk DML statements (e.g. [UPDATE statement](#)), whose affected records are not available to clients. For those purposes, use a server-side trigger if records should be changed, or a [org.jooq.VisitListener](#) if the SQL query should be changed independently of data.

### 5.13. DAOs

If you're using jOOQ's [code generator](#), you can configure it to generate POJOs and DAOs for you. jOOQ then generates one DAO per [UpdatableRecord](#), i.e. per table with a single-column primary key. Generated DAOs implement a common jOOQ type called [org.jooq.DAO](#). This type contains the following methods:
Besides these base methods, generated DAO classes implement various useful fetch methods. An incomplete example is given here, for the BOOK table:

```java
// An example generated BookDao class
public class BookDao extends DAOImpl<BookRecord, Book, Integer> { ...
// Columns with primary / unique keys produce fetchOne() methods
public Book fetchOneById(Integer value) { ... }
// Other columns produce fetch() methods, returning several records
public List<Book> fetchByAuthorId(Integer... values) { ... }
public List<Book> fetchByTitle(String... values) { ... }
}
```

Note that you can further subtype those pre-generated DAO classes, to add more useful DAO methods to them. Using such a DAO is simple:

```java
// Initialise an Configuration
Configuration configuration = new DefaultConfiguration().set(connection).set(SQLDialect.ORACLE);

// Initialise the DAO with the Configuration
BookDao bookDao = new BookDao(configuration);

// Start using the DAO
Book book = bookDao.findById(5);

// Modify and update the POJO
book.setTitle("1984");
book.setPublishedIn(1948);
bookDao.update(book);

// Delete it again
bookDao.deleteById(book);
5.14. Exception handling

Checked vs. unchecked exceptions

This is an eternal and religious debate. Pros and cons have been discussed time and again, and it still is a matter of taste, today. In this case, jOOQ clearly takes a side. jOOQ's exception strategy is simple:

- All "system exceptions" are unchecked. If in the middle of a transaction involving business logic, there is no way that you can recover sensibly from a lost database connection, or a constraint violation that indicates a bug in your understanding of your database model.
- All "business exceptions" are checked. Business exceptions are true exceptions that you should handle (e.g. not enough funds to complete a transaction).

With jOOQ, it's simple. All of jOOQ's exceptions are "system exceptions", hence they are all unchecked.

jOOQ's DataAccessException

jOOQ uses its own `org.jooq.exception.DataAccessException` to wrap any underlying `java.sql.SQLException` that might have occurred. Note that all methods in jOOQ that may cause such a `DataAccessException` document this both in the Javadoc as well as in their method signature.

`DataAccessException` is subtyped several times as follows:

- `DataAccessException`: General exception usually originating from a `java.sql.SQLException`
- `DataChangedException`: An exception indicating that the database's underlying record has been changed in the mean time (see optimistic locking)
- `DataTypeException`: Something went wrong during type conversion
- `DetachedException`: A SQL statement was executed on a "detached" `UpdatableRecord` or a "detached" `SQL statement`.
- `InvalidResultException`: An operation was performed expecting only one result, but several results were returned.
- `MappingException`: Something went wrong when loading a record from a `POJO` or when mapping a record into a `POJO`

Override jOOQ's exception handling

The following section about `execute_listeners` documents means of overriding jOOQ's exception handling, if you wish to deal separately with some types of constraint violations, or if you raise business errors from your database, etc.

5.15. ExecuteListeners

The `Configuration` lets you specify a list of `org.jooq.ExecuteListener` instances. The `ExecuteListener` is essentially an event listener for Query, Routine, or ResultSet render, prepare, bind, execute, fetch
steps. It is a base type for loggers, debuggers, profilers, data collectors, triggers, etc. Advanced ExecuteListeners can also provide custom implementations of Connection, PreparedStatement and ResultSet to jOOQ in appropriate methods.

For convenience and better backwards-compatibility, consider extending `org.jooq.impl.DefaultExecuteListener` instead of implementing this interface.

Example: Query statistics ExecuteListener

Here is a sample implementation of an ExecuteListener, that is simply counting the number of queries per type that are being executed using jOOQ:

```java
class StatisticsListener extends DefaultExecuteListener {
    private static final long serialVersionUID = 7399239846062763212L;

    public static final Map<ExecuteType, Integer> STATISTICS = new ConcurrentHashMap<>();

    @Override
    public void start(ExecuteContext ctx) {
        STATISTICS.compute(ctx.type(), (k, v) -> v == null ? 1 : v + 1);
    }
}
```

Now, configure jOOQ's runtime to load your listener

```java
// Create a configuration with an appropriate listener provider:
Configuration configuration = new DefaultConfiguration().set(connection).set(dialect);
configuration.set(new DefaultExecuteListenerProvider(new StatisticsListener()));

// Create a DSLContext from the above configuration
DSLContext create = DSL.using(configuration);
```

And log results any time with a snippet like this:

```java
log.info("STATISTICS");
log.info("----------");
for (ExecuteType type : ExecuteType.values()) {
    log.info(type.name(), StatisticsListener.STATISTICS.get(type) + " executions");
}
```

This may result in the following log output:

```
15:16:52,982 INFO - TEST STATISTICS
15:16:52,982 INFO - READ : 919 executions
15:16:52,982 INFO - WRITE : 117 executions
15:16:52,982 INFO - DDL : 2 executions
15:16:52,982 INFO - BATCH : 4 executions
15:16:52,982 INFO - ROUTINE : 21 executions
15:16:52,982 INFO - OTHER : 30 executions
```

Please read the [ExecuteListener Javadoc](#) for more details

Example: Custom Logging ExecuteListener

The following depicts an example of a custom ExecuteListener, which pretty-prints all queries being executed by jOOQ to stdout:

```java
package com.example;

public class CustomLoggingExecuteListener extends DefaultExecuteListener {
    private static final long serialVersionUID = 7399239846062763212L;

    public static final Map<ExecuteType, Integer> STATISTICS = new ConcurrentHashMap<>();

    @Override
    public void start(ExecuteContext ctx) {
        STATISTICS.compute(ctx.type(), (k, v) -> v == null ? 1 : v + 1);
    }
}
```
import org.jooq.DSLContext;
import org.jooq.ExecuteContext;
import org.jooq.conf.Settings;
import org.jooq.impl.DefaultExecuteListener;
import org.jooq.tools.StringUtils;

public class PrettyPrinter extends DefaultExecuteListener {
 /**
 * Hook into the query execution lifecycle before executing queries
 */
 @Override
 public void executeStart(ExecuteContext ctx) {
 // Create a new DSLContext for logging rendering purposes
 // This DSLContext doesn’t need a connection, only the SQLDialect...
 DSLContext create = DSL.using(ctx.configuration().dialect(),
 // ... and the flag for pretty-printing
 new Settings().withRenderFormatted(true));
 // If we’re executing a query
 if (ctx.query() != null) {
 System.out.println(create.renderInlined(ctx.query()));
 }
 // If we’re executing a routine
 else if (ctx.routine() != null) {
 System.out.println(create.renderInlined(ctx.routine()));
 }
 }
}

See also the manual’s sections about logging for more sample implementations of actual ExecuteListeners.

Example: Bad query execution ExecuteListener

You can also use ExecuteListeners to interact with your SQL statements, for instance when you want to check if executed UPDATE or DELETE statements contain a WHERE clause. This can be achieved trivially with the following sample ExecuteListener:

public class DeleteOrUpdateWithoutWhereListener extends DefaultExecuteListener {
 @Override
 public void renderEnd(ExecuteContext ctx) {
 if (ctx.sql().matches("^(?i:(UPDATE|DELETE)(?!.* WHERE).*)$") {
 throw new DeleteOrUpdateWithoutWhereException();
 }
 }
}

public class DeleteOrUpdateWithoutWhereException extends RuntimeException {}
5.17. Logging

jOOQ logs all SQL queries and fetched result sets to its internal DEBUG logger, which is implemented as an execute listener. By default, execute logging is activated in the jOOQ Settings. In order to see any DEBUG log output, put either log4j or slf4j on jOOQ’s classpath along with their respective configuration. A sample log4j configuration can be seen here:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<Configuration status="INFO">
    <Appenders>
        <Console name="Console" target="SYSTEM_OUT">
            <PatternLayout pattern="%d{ABSOLUTE} %5p \[%-50c{4}\] - %m%n"/>
        </Console>
    </Appenders>
    <Loggers>
        <!-- SQL execution logging is logged to the LoggerListener logger at DEBUG level -->
        <Logger name="org.jooq.tools.LoggerListener" level="debug">
            <AppenderRef ref="Console"/>
        </Logger>
        <!-- Other jOOQ related debug log output -->
        <Logger name="org.jooq" level="debug">
            <AppenderRef ref="Console"/>
        </Logger>
        <Root level="info">
            <AppenderRef ref="Console"/>
        </Root>
    </Loggers>
</Configuration>
```

With the above configuration, let’s fetch some data with jOOQ

```java
create.select(BOOK.ID, BOOK.TITLE).from(BOOK).orderBy(BOOK.ID).limit(1, 2).fetch();
```

The above query may result in the following log output:

<table>
<thead>
<tr>
<th>Executing query</th>
<th>: select "BOOK"."ID", "BOOK"."TITLE" from "BOOK" order by "BOOK"."ID" asc limit ? offset ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fetched result</td>
<td>:</td>
</tr>
<tr>
<td></td>
<td>:</td>
</tr>
<tr>
<td></td>
<td>:</td>
</tr>
</tbody>
</table>

Essentially, jOOQ will log

- The SQL statement as rendered to the prepared statement
- The SQL statement with inlined bind values (for improved debugging)
- The first 5 records of the result. This is formatted using jOOQ’s text export

If you wish to use your own logger (e.g. avoiding printing out sensitive data), you can deactivate jOOQ’s logger using your custom settings and implement your own execute listener logger.

5.18. Performance considerations

Many users may have switched from higher-level abstractions such as Hibernate to jOOQ, because of Hibernate’s difficult-to-manage performance, when it comes to large database schemas and
complex second-level caching strategies. However, jOOQ itself is not a lightweight database abstraction framework, and it comes with its own overhead. Please be sure to consider the following points:

- It takes some time to construct jOOQ queries. If you can reuse the same queries, you might cache them. Beware of thread-safety issues, though, as jOOQ's Configuration is not necessarily threadsafe, and queries are "attached" to their creating DSLContext.
- It takes some time to render SQL strings. Internally, jOOQ reuses the same java.lang.StringBuilder for the complete query, but some rendering elements may take their time. You could, of course, cache SQL generated by jOOQ and prepare your own java.sql.PreparedStatement objects.
- It takes some time to bind values to prepared statements. jOOQ does not keep any open prepared statements, internally. Use a sophisticated connection pool, that will cache prepared statements and inject them into jOOQ through the standard JDBC API.
- It takes some time to fetch results. By default, jOOQ will always fetch the complete java.sql.ResultSet into memory. Use lazy fetching to prevent that, and scroll over an open underlying database cursor.

Optimise wisely

Don't be put off by the above paragraphs. You should optimise wisely, i.e. only in places where you really need very high throughput to your database. jOOQ's overhead compared to plain JDBC is typically less than 1ms per query.
6. Code generation

While optional, source code generation is one of jOOQ's main assets if you wish to increase developer productivity. jOOQ's code generator takes your database schema and reverse-engineers it into a set of Java classes modelling tables, records, sequences, POJOs, DAOs, stored procedures, user-defined types and many more.

The essential ideas behind source code generation are these:

- Increased IDE support: Type your Java code directly against your database schema, with all type information available
- Type-safety: When your database schema changes, your generated code will change as well. Removing columns will lead to compilation errors, which you can detect early.

The following chapters will show how to configure the code generator and how to generate various artefacts.

6.1. Configuration and setup of the generator

There are three binaries available with jOOQ, to be downloaded from https://www.jooq.org/download or from Maven central:

- jooq-3.3.4.jar
 The main library that you will include in your application to run jOOQ
- jooq-meta-3.3.4.jar
 The utility that you will include in your build to navigate your database schema for code generation. This can be used as a schema crawler as well.
- jooq-codegen-3.3.4.jar
 The utility that you will include in your build to generate your database schema

Configure jOOQ's code generator

You need to tell jOOQ some things about your database connection. Here's an example of how to do it for an Oracle database
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<configuration xmlns="http://www.jooq.org/xsd/jooq-codegen-3.3.0.xsd">
 <!-- Configure the database connection here -->
 <jdbc>
 <driver>oracle.jdbc.OracleDriver</driver>
 <url>jdbc:oracle:thin:@[your jdbc connection parameters]</url>
 <user>[your database user]</user>
 <password>[your database password]</password>
 </jdbc>
 <!-- You can also pass user/password and other JDBC properties in the optional properties tag: -->
 <properties>
 <property><key>user</key><value>[db-user]</value></property>
 <property><key>password</key><value>[db-password]</value></property>
 </properties>
 </jdbc>
 <generator>
 <database>
 <!-- The database dialect from jooq-meta. Available dialects are named org.jooq.util.[database].Database. Known values are:
 org.jooq.util.ase.ASEDatabase (to be used with Sybase ASE)
 org.jooq.util.cubrid.CUBRIDDatabase
 org.jooq.util.db2.DB2Database
 org.jooq.util.derby.DerbyDatabase
 org.jooq.util.h2.H2Database
 org.jooq.util.hsqldb.HSQLBDatabase
 org.jooq.util.ingres.IngresDatabase
 org.jooq.util.mysql.MySQLDatabase
 org.jooq.util.oracle.OracleDatabase
 org.jooq.util.postgres.PostgresDatabase
 org.jooq.util.sqlserver.SQLServerDatabase
 org.jooq.util.sqlite.SQLiteDatabase
 org.jooq.util.sybase.SybaseDatabase (to be used with Sybase SQL Anywhere)
 You can also provide your own org.jooq.util.Database implementation here, if your database is currently not supported or if you wish to read the database schema from a file, such as a Hibernate .hbm.xml file
 Note the classes have been moved to org.jooq.meta in JOOQ 3.11 -->
 <name>org.jooq.util.oracle.OracleDatabase</name>
 <!-- All elements that are generated from your schema (A Java regular expression. Use the pipe to separate several expressions) Watch out for case-sensitivity. Depending on your database, this might be important! You can create case-insensitive regular expressions using this syntax: (?i:expr) -->
 <includes>.*</includes>
 <!-- All elements that are excluded from your schema (A Java regular expression. Use the pipe to separate several expressions). Excludes match before includes, i.e. excludes have a higher priority -->
 <excludes></excludes>
 <!-- The schema that is used locally as a source for meta information. This could be your development schema or the production schema, etc This cannot be combined with the schemata element.
 If left empty, JOOQ will generate all available schemata. See the manual's next section to learn how to generate several schemata -->
 <inputSchema>[your database schema / owner / name]</inputSchema>
 </database>
 <!-- Generation flags: See advanced configuration properties -->
 <generate/>
 <target>
 <!-- The destination package of your generated classes (within the destination directory)
 JOOQ may append the schema name to this package if generating multiple schemata, e.g. org.jooq.your.packageName.schemName
 org.jooq.your.packageName.schemName -->
 <packageName>org.jooq.your.packageName</packageName>
 </target>
 </generator>
</configuration>

There are also lots of advanced configuration parameters, which will be treated in the manual's section about advanced code generation features. Note, you can find the official XSD file for a formal specification at: http://www.jooq.org/xsd/jooq-codegen-3.3.0.xsd

Run jOOQ code generation

Code generation works by calling this class with the above property file as argument.
Note: The GenerationTool class has been moved to org.jooq.codegen in jOOQ 3.11

Be sure that these elements are located on the classpath:

- The XML configuration file
- jooq-3.3.4.jar, jooq-meta-3.3.4.jar, jooq-codegen-3.3.4.jar
- The JDBC driver you configured

A command-line example (For Windows, unix/linux/etc will be similar)

- Put the property file, jooq*.jar and the JDBC driver into a directory, e.g. C:\temp\jooq
- Go to C:\temp\jooq
- Run java -cp jooq-3.3.4.jar;jooq-meta-3.3.4.jar;jooq-codegen-3.3.4.jar;[JDBC-driver].jar;.
 org.jooq.util.GenerationTool /[XML file]

Note that the property file must be passed as a classpath resource

Run code generation from Eclipse

Of course, you can also run code generation from your IDE. In Eclipse, set up a project like this. Note that:

- this example uses jOOQ's log4j support by adding log4j.xml and log4j.jar to the project classpath.
- the actual jooq-3.3.4.jar, jooq-meta-3.3.4.jar, jooq-codegen-3.3.4.jar artefacts may contain version numbers in the file names.

Once the project is set up correctly with all required artefacts on the classpath, you can configure an Eclipse Run Configuration for org.jooq.util.GenerationTool.
With the XML file as an argument

And the classpath set up correctly
Finally, run the code generation and see your generated artefacts

Run generation with ant

When running code generation with ant's `<java/>` task, you may have to set `fork="true"`:

```xml
<!-- Run the code generation task -->
<target name="generate-test-classes">
  <java fork="true" classname="org.jooq.util.GenerationTool">
    <!--...-->
  </java>
</target>
```
Integrate generation with Maven

Using the official jOOQ-codegen-maven plugin, you can integrate source code generation in your Maven build process:

```xml
<plugin>
  <!-- Specify the maven code generator plugin -->
  <groupId>org.jooq</groupId>
  <artifactId>jooq-codegen-maven</artifactId>
  <version>3.3.4</version>
  <!-- The plugin should hook into the generate goal -->
  <executions>
    <execution>
      <goals>
        <goal>generate</goal>
      </goals>
    </execution>
  </executions>
  <!-- Manage the plugin's dependency. In this example, we'll use a PostgreSQL database -->
  <dependencies>
    <dependency>
      <groupId>org.postgresql</groupId>
      <artifactId>postgresql</artifactId>
      <version>9.4.1212</version>
    </dependency>
  </dependencies>
  <!-- Specify the plugin configuration. The configuration format is the same as for the standalone code generator -->
  <configuration>
    <!-- JDBC connection parameters -->
    <jdbc>
      <driver>org.postgresql.Driver</driver>
      <url>jdbc:postgresql:postgres</url>
      <user>postgres</user>
      <password>test</password>
    </jdbc>
    <!-- Generator parameters -->
    <generator>
      <database>
        <includes>.*</includes>
        <excludes></excludes>
        <inputSchema>public</inputSchema>
      </database>
      <target>
        <packageName>org.jooq.util.maven.example</packageName>
        <directory>target/generated-sources/jooq</directory>
      </target>
    </generator>
  </configuration>
</plugin>
```

See a more complete example of a Maven pom.xml File in the jOOQ / Spring tutorial.

Use jOOQ generated classes in your application

Be sure, both jooq-3.3.4.jar and your generated package (see configuration) are located on your classpath. Once this is done, you can execute SQL statements with your generated classes.

6.2. Advanced generator configuration

In the previous section we have seen how jOOQ's source code generator is configured and run within a few steps. In this chapter we'll cover some advanced settings
jOOQ User Manual

6.2. Advanced generator configuration

jooq-meta configuration

Within the <generator/> element, there are other configuration elements:

```xml
<generator>
  <!-- These properties can be added to the database element: -->
  <database>
    <!-- This flag indicates whether include / exclude patterns should also match columns within tables. -->
    <includeExcludeColumns>false</includeExcludeColumns>
    <!-- All table and view columns that are used as "version" fields for optimistic locking (A Java regular expression. Use the pipe to separate several expressions).
    See UpdatableRecord.store() and UpdatableRecord.delete() for details -->
    <recordVersionFields>REC_VERSION</recordVersionFields>
    <!-- All table and view columns that are used as "timestamp" fields for optimistic locking (A Java regular expression. Use the pipe to separate several expressions).
    See UpdatableRecord.store() and UpdatableRecord.delete() for details -->
    <recordTimestampFields>REC_TIMESTAMP</recordTimestampFields>
    <!-- Generate java.sql.Timestamp fields for DATE columns. This is particularly useful for Oracle databases.
    Defaults to false -->
    <dateAsTimestamp>false</dateAsTimestamp>
    <!-- Generate jOOQ data types for your unsigned data types, which are not natively supported in Java.
    Defaults to true -->
    <unsignedTypes>true</unsignedTypes>
    <!-- The schema that is used in generated source code. This will be the production schema. Use this to override your local development schema name for source code generation. If not specified, this will be the same as the input-schema. -->
    <outputSchema>[your database schema / owner / name]</outputSchema>
    <!-- A configuration element to configure several input and/or output schemata for jooq-meta, in case you're using jooq-meta in a multi-schema environment.
    This cannot be combined with the above inputSchema / outputSchema -->
    <schemata>
      <schema>
        <inputSchema>...</inputSchema>
        <outputSchema>...</outputSchema>
      </schema>
    </schemata>
    <!-- A configuration element to configure custom data types -->
    <customTypes>...</customTypes>
    <!-- A configuration element to configure type overrides for generated artefacts (e.g. in combination with customTypes) -->
    <forcedTypes>...</forcedTypes>
  </database>
</generator>
```

Check out the some of the manual's "advanced" sections to find out more about the advanced configuration parameters.

- Schema mapping
- Custom types

jooq-codegen configuration

Also, you can add some optional advanced configuration parameters for the generator:
Property interdependencies

Some of the above properties depend on other properties to work correctly. For instance, when generating immutable pojos, pojos must be generated. jOOQ will enforce such properties even if you tell it otherwise. Here is a list of property interdependencies:
- When daos = true, then jOOQ will set relations = true
- When daos = true, then jOOQ will set records = true
- When daos = true, then jOOQ will set pojos = true
- When immutablePojos = true, then jOOQ will set pojos = true

6.3. Programmatic generator configuration

Configuring your code generator with Java, Groovy, etc.

In the previous sections, we have covered how to set up jOOQ's code generator using XML, either by running a standalone Java application, or by using Maven. However, it is also possible to use jOOQ's GenerationTool programmatically. The XSD file used for the configuration (http://www.jooq.org/xsd/jooq-codegen-3.3.0.xsd) is processed using XJC to produce Java artefacts. The below example uses those artefacts to produce the equivalent configuration of the previous PostgreSQL / Maven example:

```java
// Use the fluent-style API to construct the code generator configuration
import org.jooq.util.jaxb.*;

Configuration configuration = new Configuration()
    .withJdbc(new Jdbc()
        .withDriver("org.postgresql.Driver")
        .withUrl("jdbc:postgresql:postgres")
        .withUser("postgres")
        .withPassword("test")
    )
    .withGenerator(new Generator()
        .withDatabase(new Database()
            .withName("org.jooq.util.postgres.PostgresDatabase")
            .withIncludes(".*")
            .withExcludes("")
            .withInputSchema("public")
        )
        .withTarget(new Target()
            .withPackageName("org.jooq.util.maven.example")
            .withDirectory("target/generated-sources/jooq")
        )
    );
GenerationTool.main(configuration);
```

For the above example, you will need all of jooq-3.3.4.jar, jooq-meta-3.3.4.jar, and jooq-codegen-3.3.4.jar, on your classpath.

6.4. Custom generator strategies

Using custom generator strategies to override naming schemes

jOOQ allows you to override default implementations of the code generator or the generator strategy. Specifically, the latter can be very useful if you want to inject custom behaviour into jOOQ's code generator with respect to naming classes, members, methods, and other Java objects.

XML (standalone and maven)
The following example shows how you can override the DefaultGeneratorStrategy to render table and column names the way they are defined in the database, rather than switching them to camel case:
```java
public class AsInDatabaseStrategy extends DefaultGeneratorStrategy {
    // Override this to specify what identifiers in Java should look like.
    // This will just take the identifier as defined in the database.
    @Override
    public String getJavaIdentifier(Definition definition) {
        return definition.getOutputName();
    }

    // Override these to specify what a setter in Java should look like. Setters
    // are used in TableRecords, UDTRecords, and POJOs. This example will name
    // setters "set[NAMEN_IN_DATABASE]"
    @Override
    public String getJavaSetterName(Definition definition, Mode mode) {
        return "set" + definition.getOutputName();
    }

    // Just like setters...
    @Override
    public String getJavaGetterName(Definition definition, Mode mode) {
        return "get" + definition.getOutputName();
    }

    // Override this method to define what a Java method generated from a database
    // Definition should look like. This is used mostly for convenience methods
    // on TableRecords, UDTRecords, and POJOs. This example shows how to
    // set a prefix to a CamelCase version of your procedure
    @Override
    public String getJavaMethodName(Definition definition, Mode mode) {
        return "call" + org.jooq.tools.StringUtils.toCamelCase(definition.getOutputName());
    }

    // Override this method to define how your Java classes and Java files should
    // be named. This example applies no custom setting and uses CamelCase versions
    // instead
    @Override
    public String getJavaClassName(Definition definition, Mode mode) {
        return super.getJavaClassName(definition, mode);
    }

    // Override this method to define the package names of your generated
    // artefacts.
    @Override
    public String getJavaPackageName(Definition definition, Mode mode) {
        return super.getJavaPackageName(definition, mode);
    }

    // Override this method to define how Java members should be named. This is
    // used for POJOs and method arguments
    @Override
    public String getJavaMemberName(Definition definition, Mode mode) {
        return definition.getOutputName();
    }

    // Override this method to re-define the package names of your generated
    // artefacts.
    @Override
    public String getJavaClassExtends(Definition definition, Mode mode) {
        return Object.class.getName();
    }

    // Override this method to define the interfaces to be implemented by those
    // artefacts that allow for custom interface implementation
    @Override
    public List<String> getJavaClassImplements(Definition definition, Mode mode) {
        return Arrays.asList(Serializable.class.getName(), Cloneable.class.getName());
    }

    // Override this method to define the suffix to apply to routines when
    // they are overloaded.
    @Override
    public String getOverloadSuffix(Definition definition, Mode mode, String overloadIndex) {
        return "_OverloadIndex_" + overloadIndex;
    }
}
```
An org.jooq.Table example:

This is an example showing which generator strategy method will be called in what place when generating tables. For improved readability, full qualification is omitted:

```java
package com.example.tables;

// 1: ^^^^^^^^^^^^^^^^^^ 2: _____ 3: ^^^^^^^^^^ 4: _____
public class Book extends TableImpl<com.example.tables.records.BookRecord> {
// 1: strategy.getJavaPackageName(table) 2: strategy.getJavaClassName(table) 3: strategy.getJavaClassName(table, Mode.RECORD) 4: strategy.getJavaIdentifier(table)
// 3: ^^^^^^ 4: ^
public static final Book BOOK = new Book();
// 2: ^^^^ 4: ^
public final TableField<BookRecord, Integer> ID = /* ... */
// 3: ^^^^^^ 5: ^
}

// 1: strategy.getJavaPackageName(table) 2: strategy.getJavaClassName(table) 3: strategy.getJavaClassName(table, Mode.RECORD) 4: strategy.getJavaIdentifier(table) 5: strategy.getJavaIdentifier(column)
```

An org.jooq.Record example:

This is an example showing which generator strategy method will be called in what place when generating records. For improved readability, full qualification is omitted:

```java
package com.example.tables.records;

// 1: ^^^^^^^^^^^^^^^^^^^^^^^^^^ 2: ^^^^^^ 3: ^
public class BookRecord extends UpdatableRecordImpl<BookRecord> {
// 1: strategy.getJavaPackageName(table, Mode.RECORD) 2: strategy.getJavaClassName(table, Mode.RECORD) 3: strategy.getJavaIdentifier(column, Mode.RECORD) 4: strategy.getJavaSetterName(column, Mode.RECORD) 5: strategy.getJavaGetterName(column, Mode.RECORD)
// 2: ^^^^^^ 3: ^
public void setId(Integer value) { /* ... */ }
// 4: ^
public Integer getId() { /* ... */ }
// 5: ^
}
```

A POJO example:

This is an example showing which generator strategy method will be called in what place when generating pojos. For improved readability, full qualification is omitted:

```java
package com.example.tables.pojos;

// 1: ^^^^^^^^^^^^^^^^^^^^^^^^ 2: ^ 3: ^
public class Book implements java.io.Serializable {
// 1: strategy.getJavaPackageName(table, Mode.POJO) 2: strategy.getJavaClassName(table, Mode.POJO) 3: strategy.getJavaIdentifier(column, Mode.POJO) 4: strategy.getJavaSetterName(column, Mode.POJO) 5: strategy.getJavaGetterName(column, Mode.POJO)
// 2: ^ 3: ^
private Integer id;
// 4: ^
public void setId(Integer value) { /* ... */ }
// 5: ^
public Integer getId() { /* ... */ }
// 5: ^
}
```

More examples can be found here:
6.5. Matcher strategies

Using custom matcher strategies

In the previous section, we have seen how to override generator strategies programmatically. In this chapter, we'll see how such strategies can be configured in the XML or Maven code generator configuration. Instead of specifying a strategy name, you can also specify a `<matchers/>` element as such:

- NOTE: All regular expressions that match object identifiers try to match identifiers first by unqualified name (org.jooq.util.Definition.getName()), then by qualified name (org.jooq.util.Definition.getQualifiedName()).

- NOTE: There had been an incompatible change between jOOQ 3.2 and jOOQ 3.3 in the configuration of these matcher strategies. See #3217 for details.

- org.jooq.codegen.example.JPrefixGeneratorStrategy
- org.jooq.codegen.example.JVMArgsGeneratorStrategy
<generator>
 <strategy>
 <matchers>
 <!-- These properties can be added directly to the generator element: -->
 <schema>
 <!-- Specify 0..n schema matchers in order to provide a naming strategy for objects created from schemas. -->
 <schemas>
 <!-- Match unqualified or qualified schema names. If left empty, this matcher applies to all schemas. -->
 <schema>
 <expression>MY_SCHEMA</expression>
 <!-- These elements influence the naming of a generated org.jooq.Schema object. -->
 <schemaClass>see below MatcherRule specification</schemaClass>
 <schemaIdentifier>see below MatcherRule specification</schemaIdentifier>
 <schemaImplements>com.example.MyOptionalCustomInterface</schemaImplements>
 </schema>
 </schemas>
 <!-- Specify 0..n table matchers in order to provide a naming strategy for objects created from database tables. -->
 <tables>
 <table>
 <expression>MY_TABLE</expression>
 <tableClass>see below MatcherRule specification</tableClass>
 <tableIdentifier>see below MatcherRule specification</tableIdentifier>
 <tableImplements>com.example.MyOptionalCustomInterface</tableImplements>
 </table>
 </tables>
 <!-- Specify 0..n field matchers in order to provide a naming strategy for objects created from table fields. -->
 <fields>
 <field>
 <expression>MY_FIELD</expression>
 <fieldIdentifier>see below MatcherRule specification</fieldIdentifier>
 <fieldMember>see below MatcherRule specification</fieldMember>
 <fieldSetter>see below MatcherRule specification</fieldSetter>
 <fieldGetter>see below MatcherRule specification</fieldGetter>
 </field>
 </fields>
 <!-- Specify 0..n routine matchers in order to provide a naming strategy for objects created from routines. -->
 <routines>
 <routine>
 <expression>MY_ROUTINE</expression>
 <routineClass>see below MatcherRule specification</routineClass>
 <routineMethod>see below MatcherRule specification</routineMethod>
 <routineImplements>com.example.MyOptionalCustomInterface</routineImplements>
 </routine>
 </routines>
 <!-- Specify 0..n sequence matchers in order to provide a naming strategy for objects created from sequences. -->
 <sequences>
 <sequence>
 <expression>MY_SEQUENCE</expression>
 <sequenceClass>see below MatcherRule specification</sequenceClass>
 <sequenceIdentifier>see below MatcherRule specification</sequenceIdentifier>
 </sequence>
 </sequences>
 </schema>
 </matchers>
 </strategy>
</generator>
The above example used references to "MatcherRule", which is an XSD type that looks like this:

```xml
<schemaClass>
  <!-- The optional transform element lets you apply a name transformation algorithm
       to transform the actual database name into a more convenient form. Possible values are:
   - AS_IS  : Leave the database name as it is             : MY_name => MY_name
   - LOWER  : Transform the database name into lower case  : MY_name => my_name
   - UPPER  : Transform the database name into upper case  : MY_name => MY_NAME
   - CAMEL  : Transform the database name into camel case  : MY_name => myName
   - PASCAL : Transform the database name into pascal case : MY_name => MyName -->
  <transform>CAMEL</transform>
  <!-- The mandatory expression element lets you specify a replacement expression to be used when
       replacing the matcher's regular expression. You can use indexed variables $0, $1, $2. -->
  <expression>PREFIX_$0_SUFFIX</expression>
</schemaClass>
```

Some examples

The following example shows a matcher strategy that adds a "T_" prefix to all table classes and to table identifiers:

```xml
<generator>

  <strategy>

    <matchers>

      <tables>
        <!-- Expression is omitted. This will make this rule apply to all tables -->
        <tableIdentifier>
          <transform>UPPER</transform>
          <expression>T_$0</expression>
        </tableIdentifier>

        <tableClass>
          <transform>PASCAL</transform>
          <expression>T_$0</expression>
        </tableClass>

      </tables>

    </matchers>

  </strategy>

</generator>
```

The following example shows a matcher strategy that renames BOOK table identifiers (or table identifiers containing BOOK) into BROCHURE (or tables containing BROCHURE):

```xml
<generator>

  <strategy>

    <matchers>

      <tables>
        <expression>^(.*?)_BOOK_(.*)$</expression>
        <tableIdentifier>
          <transform>UPPER</transform>
          <expression>$1_BROCHURE_$2</expression>
        </tableIdentifier>

        <tableClass>
          <transform>PASCAL</transform>
          <expression>T_$0</expression>
        </tableClass>

      </tables>

    </matchers>

  </strategy>

</generator>
```

For more information about each XML tag, please refer to the http://www.jooq.org/xsd/jooq-codegen-3.3.0.xsd XSD file.

6.6. Custom code sections

Power users might choose to re-implement large parts of the org.jooq.util.JavaGenerator class. If you only want to add some custom code sections, however, you can extend the JavaGenerator and override only parts of it. An example:
The above example simply adds a class footer to generated records, in this case, overriding the default toString() implementation.

Any of the below methods can be overridden:

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>generateArray(SchemaDefinition, ArrayDefinition)</code></td>
<td>Generates an Oracle array class</td>
</tr>
<tr>
<td><code>generateArrayClassFooter(ArrayDefinition, JavaWriter)</code></td>
<td>Callback for an Oracle array class footer</td>
</tr>
<tr>
<td><code>generateDao(TableDefinition)</code></td>
<td>Generates a DAO class</td>
</tr>
<tr>
<td><code>generateDaoClassFooter(TableDefinition, JavaWriter)</code></td>
<td>Callback for a DAO class footer</td>
</tr>
<tr>
<td><code>generateEnum(EnumDefinition)</code></td>
<td>Generates an enum</td>
</tr>
<tr>
<td><code>generateEnumClassFooter(EnumDefinition, JavaWriter)</code></td>
<td>Callback for an enum footer</td>
</tr>
<tr>
<td><code>generateInterface(TableDefinition)</code></td>
<td>Generates an interface</td>
</tr>
<tr>
<td><code>generateInterfaceClassFooter(TableDefinition, JavaWriter)</code></td>
<td>Callback for an interface footer</td>
</tr>
<tr>
<td><code>generatePackage(SchemaDefinition, PackageDefinition)</code></td>
<td>Generates an Oracle package class</td>
</tr>
<tr>
<td><code>generatePackageClassFooter(PackageDefinition, JavaWriter)</code></td>
<td>Callback for an Oracle package class footer</td>
</tr>
<tr>
<td><code>generatePojo(TableDefinition)</code></td>
<td>Generates a POJO class</td>
</tr>
<tr>
<td><code>generatePojoClassFooter(TableDefinition, JavaWriter)</code></td>
<td>Callback for a POJO class footer</td>
</tr>
<tr>
<td><code>generateRecord(TableDefinition)</code></td>
<td>Generates a Record class</td>
</tr>
<tr>
<td><code>generateRecordClassFooter(TableDefinition, JavaWriter)</code></td>
<td>Callback for a Record class footer</td>
</tr>
<tr>
<td><code>generateRoutine(SchemaDefinition, RoutineDefinition)</code></td>
<td>Generates a Routine class</td>
</tr>
<tr>
<td><code>generateRoutineClassFooter(RoutineDefinition, JavaWriter)</code></td>
<td>Callback for a Routine class footer</td>
</tr>
<tr>
<td><code>generateSchema(SchemaDefinition)</code></td>
<td>Generates a schema class</td>
</tr>
<tr>
<td><code>generateSchemeClassFooter(SchemaDefinition, JavaWriter)</code></td>
<td>Callback for a schema class footer</td>
</tr>
<tr>
<td><code>generateTable(SchemaDefinition, TableDefinition)</code></td>
<td>Generates a Table class</td>
</tr>
<tr>
<td><code>generateTableClassFooter(TableDefinition, JavaWriter)</code></td>
<td>Callback for a Table class footer</td>
</tr>
<tr>
<td><code>generateUDT(SchemaDefinition, UDTDefinition)</code></td>
<td>Generates a UDT class</td>
</tr>
<tr>
<td><code>generateUDTClassFooter(UDTDefinition, JavaWriter)</code></td>
<td>Callback for a UDT class footer</td>
</tr>
<tr>
<td><code>generateUDTRecord(UDTDefinition)</code></td>
<td>Generates a UDT Record class</td>
</tr>
<tr>
<td><code>generateUDTRecordClassFooter(UDTDefinition, JavaWriter)</code></td>
<td>Callback for a UDT Record class footer</td>
</tr>
</tbody>
</table>

When you override any of the above, do note that according to jOOQ's understanding of semantic versioning, incompatible changes may be introduced between minor releases, even if this should be the exception.

6.7. Generated global artefacts

For increased convenience at the use-site, jOOQ generates "global" artefacts at the code generation root location, referencing tables, routines, sequences, etc. In detail, these global artefacts include the following:
- Keys.java: This file contains all of the required primary key, unique key, foreign key and identity references in the form of static members of type org.jooq.Key.
- Routines.java: This file contains all standalone routines (not in packages) in the form of static factory methods for org.jooq.Routine types.
- Sequences.java: This file contains all sequence objects in the form of static members of type org.jooq.Sequence.
- Tables.java: This file contains all table objects in the form of static member references to the actual singleton org.jooq.Table object
- UDTs.java: This file contains all UDT objects in the form of static member references to the actual singleton org.jooq.UDT object

Referencing global artefacts

When referencing global artefacts from your client application, you would typically static import them as such:

```java
// Static imports for all global artefacts (if they exist)
import static com.example.generated.Keys.*;
import static com.example.generated.Routines.*;
import static com.example.generated.Sequences.*;
import static com.example.generated.Tables.*;

// You could then reference your artefacts as follows:
create.insertInto(MY_TABLE)
    .values(MY_SEQUENCE.nextval(), myFunction());

// as a more concise form of this:
create.insertInto(com.example.generated.Tables.MY_TABLE)
    .values(com.example.generated.Sequences.MY_SEQUENCE.nextval(), com.example.generated.Routines.myFunction());
```

6.8. Generated tables

Every table in your database will generate a org.jooq.Table implementation that looks like this:

```java
public class Book extends TableImpl<BookRecord> {
    // The singleton instance
    public static final Book BOOK = new Book();

    // Generated columns
    public final TableField<BookRecord, Integer> ID        = createField("ID",        INTEGER, this);
    public final TableField<BookRecord, Integer> AUTHOR_ID = createField("AUTHOR_ID", INTEGER, this);
    public final TableField<BookRecord, String>  TITLE     = createField("TITLE", VARCHAR, this);

    // Covariant aliasing method, returning a table of the same type as BOOK
    @Override
    public Book as(java.lang.String alias) {
        return new Book(alias);
    }
}
```

Flags influencing generated tables

These flags from the code generation configuration influence generated tables:
- recordVersionFields: Relevant methods from super classes are overridden to return the VERSION field
- recordTimestampFields: Relevant methods from super classes are overridden to return the TIMESTAMP field
- dateAsTimestamp: This influences all relevant columns
- unsignedTypes: This influences all relevant columns
- relations: Relevant methods from super classes are overridden to provide primary key, unique key, foreign key and identity information
- instanceFields: This flag controls the "static" keyword on table columns, as well as aliasing convenience
- records: The generated record type is referenced from tables allowing for type-safe single-table record fetching

Flags controlling table generation

Table generation cannot be deactivated

6.9. Generated records

Every table in your database will generate an org.jooq.Record implementation that looks like this:

```java
// JPA annotations can be generated, optionally
@Entity
@Table(name = "BOOK", schema = "TEST")
public class BookRecord extends UpdatableRecordImpl<BookRecord>

// An interface common to records and pojos can be generated, optionally
implements IBook {
    // Every column generates a setter and a getter
    @Override
    public void setId(Integer value) {
        setValue(BOOK.ID, value);
    }

    @Id
    @Column(name = "ID", unique = true, nullable = false, precision = 7)
    @Override
    public Integer getId() {
        return getValue(BOOK.ID);
    }

    // More setters and getters
    public void setAuthorId(Integer value) {...}
    public Integer getAuthorId() {...}

    // Convenience methods for foreign key methods
    public void setAuthorId(AuthorRecord value) {
        if (value == null) {
            setValue(BOOK.AUTHOR_ID, null);
        } else {
            setValue(BOOK.AUTHOR_ID, value.getValue(AUTHOR.ID));
        }
    }

    // Navigation methods
    public AuthorRecord fetchAuthor() {
        return create.selectFrom(AUTHOR).where(AUTHOR.ID.eq(getValue(BOOK.AUTHOR_ID))).fetchOne();
    }
    // [...]
}
```
TableRecord vs UpdatableRecord

If primary key information is available to the code generator, an `org.jooq.UpdatableRecord` will be generated. If no such information is available, a `org.jooq.TableRecord` will be generated. Primary key information can be absent because:

- The table is a view, which does not expose the underlying primary keys
- The table does not have a primary key
- The code generator configuration has turned off primary keys usage information usage through one of various flags (see below)
- The primary key information is not available to the code generator

Flags influencing generated records

These flags from the code generation configuration influence generated records:

- `dateAsTimestamp`: This influences all relevant getters and setters
- `unsignedTypes`: This influences all relevant getters and setters
- `relations`: This is needed as a prerequisite for navigation methods
- `daos`: Records are a pre-requisite for DAOs. If DAOs are generated, records are generated as well
- `interfaces`: If interfaces are generated, records will implement them
- `jpaAnnotations`: JPA annotations are used on generated records

Flags controlling record generation

Record generation can be deactivated using the records flag

6.10. Generated POJOs

Every table in your database will generate a POJO implementation that looks like this:
Flags influencing generated POJOs

These flags from the code generation configuration influence generated POJOs:

- dateAsTimestamp: This influences all relevant getters and setters
- unsignedTypes: This influences all relevant getters and setters
- interfaces: If interfaces are generated, POJOs will implement them
- immutablePojos: Immutable POJOs have final members and no setters. All members must be passed to the constructor
- daos: POJOs are a pre-requisite for DAOs. If DAOs are generated, POJOs are generated as well
- jpaAnnotations: JPA annotations are used on generated records
- validationAnnotations: JSR-303 validation annotations are used on generated records

Flags controlling POJO generation

POJO generation can be activated using the pojos flag

6.11. Generated Interfaces

Every table in your database will generate an interface that looks like this:
Flags influencing generated interfaces

These flags from the code generation configuration influence generated interfaces:

- dateAsTimestamp: This influences all relevant getters and setters
- unsignedTypes: This influences all relevant getters and setters

Flags controlling interface generation

Interface generation can be activated using the interfaces flag

6.12. Generated DAOS

Generated DAOS

Every table in your database will generate a org.jooq.DAO implementation that looks like this:

```java
public class BookDao extends DAOImpl<BookRecord, Book, Integer> {

  // Generated constructors
  public BookDao() {
    super(BOOK, Book.class);
  }
  public BookDao(Configuration configuration) {
    super(BOOK, Book.class, configuration);
  }

  // Every column generates at least one fetch method
  public List<Book> fetchById(Integer... values) {
    return fetch(BOOK.ID, values);
  }
  public Book fetchOneById(Integer value) {
    return fetchOne(BOOK.ID, value);
  }
  public List<Book> fetchByAuthorId(Integer... values) {
    return fetch(BOOK.AUTHOR_ID, values);
  }

  // [...]
}
```

Flags controlling DAO generation

DAO generation can be activated using the daos flag

6.13. Generated sequences

Every sequence in your database will generate a org.jooq.Sequence implementation that looks like this:
Flags controlling sequence generation

Sequence generation cannot be deactivated

6.14. Generated procedures

Every procedure or function (routine) in your database will generate a `org.jooq.Routine` implementation that looks like this:

```java
public class AuthorExists extends AbstractRoutine<java.lang.Void> {

    // All IN, IN OUT, OUT parameters and function return values generate a static member
    public static final Parameter<String> AUTHOR_NAME = createParameter("AUTHOR_NAME", VARCHAR);
    public static final Parameter<BigDecimal> RESULT = createParameter("RESULT", NUMERIC);

    // A constructor for a new "empty" procedure call
    public AuthorExists() {
        super("AUTHOR_EXISTS", TEST);
        addInParameter(AUTHOR_NAME);
        addOutParameter(RESULT);
    }

    // Every IN and IN OUT parameter generates a setter
    public void setAuthorName(String value) {
        setValue(AUTHOR_NAME, value);
    }

    // Every IN OUT, OUT and RETURN_VALUE generates a getter
    public BigDecimal getResult() {
        return getValue(RESULT);
    }

    // [...]
}
```

Package and member procedures or functions

Procedures or functions contained in packages or UDTs are generated in a sub-package that corresponds to the package or UDT name.

Flags controlling routine generation

Routine generation cannot be deactivated

6.15. Generated UDTs

Every UDT in your database will generate a `org.jooq.UDT` implementation that looks like this:
public class AddressType extends UDTImpl<AddressTypeRecord> {
 // The singleton UDT instance
 public static final UAddressType U_ADDRESS_TYPE = new UAddressType();

 // Every UDT attribute generates a static member
 public static final UDTField<AddressTypeRecord, String> ZIP =
 createField("ZIP", VARCHAR, U_ADDRESS_TYPE);
 public static final UDTField<AddressTypeRecord, String> CITY =
 createField("CITY", VARCHAR, U_ADDRESS_TYPE);
 public static final UDTField<AddressTypeRecord, String> COUNTRY =
 createField("COUNTRY", VARCHAR, U_ADDRESS_TYPE);
 // [...]}
}

Besides the org.jooq.UDT implementation, a org.jooq.UDTRecord implementation is also generated

public class AddressTypeRecord extends UDTRecordImpl<AddressTypeRecord> {
 // Every attribute generates a getter and a setter
 public void setZip(String value) {...}
 public String getZip() {...}
 public void setCity(String value) {...}
 public String getCity() {...}
 public void setCountry(String value) {...}
 public String getCountry() {...}
 // [...]}
}

Flags controlling UDT generation

UDT generation cannot be deactivated

6.16. Data type rewrites

Sometimes, the actual database data type does not match the SQL data type that you would like to use in Java. This is often the case for ill-supported SQL data types, such as BOOLEAN or UUID. jOOQ's code generator allows you to apply simple data type rewriting. The following configuration will rewrite IS_VALID columns in all tables to be of type BOOLEAN.

```xml
<database>
  <!-- Associate data type rewrites with database columns -->
  <forcedTypes>
    <!-- Specify any data type that is supported in your database, or if unsupported, a type from org.jooq.impl.SQLDataType -->
    <forcedType>
      <!-- A Java regex matching fully-qualified columns, attributes, parameters. Use the pipe to separate several expressions. If provided, both "expressions" and "types" must match. -->
      <name>BOOLEAN</name>
      <expression>.*\.IS_VALID</expression>
      <types>.*</types>
    </forcedType>
  </forcedTypes>
</database>
```

You must provide at least either an <expressions/> or a <types/> element, or both.

See the section about Custom data types for rewriting columns to your own custom data types.
6.17. Custom data types and type conversion

When using a custom type in jOOQ, you need to let jOOQ know about its associated `org.jooq.Converter`. Ad-hoc usages of such converters has been discussed in the chapter about data type conversion. A more common use-case, however, is to let jOOQ know about custom types at code generation time. Use the following configuration elements to specify, that you’d like to use GregorianCalendar for all database fields that start with DATE_OF_

```
<database>
  <!-- First, register your custom types here -->
  <customTypes>
    <customType>
      <!-- Specify the fully-qualified class name of your custom type -->
      <name>java.util.GregorianCalendar</name>
      <!-- Associate that custom type with your converter. Note, a custom type can only have one converter in jOOQ -->
      <converter>com.example.CalendarConverter</converter>
    </customType>
  </customTypes>
  <!-- Then, associate custom types with database columns -->
  <forcedTypes>
    <forcedType>
      <!-- Specify again the fully-qualified class name of your custom type -->
      <name>java.util.GregorianCalendar</name>
      <!-- A Java regex matching fully-qualified columns, attributes, parameters. Use the pipe to separate several expressions. If provided, both “expressions” and “types” must match. -->
      <expression>.*\..*DATE_OF_.*</expression>
      <types>.*</types>
    </forcedType>
  </forcedTypes>
</database>
```

The above configuration will lead to AUTHOR.DATE_OF_BIRTH being generated like this:

```java
public class TAuthor extends TableImpl<TAuthorRecord> { 
  // [...]
  public final TableField<TAuthorRecord, GregorianCalendar> DATE_OF_BIRTH =  // [...]
  // [...]
}
```

This means that the bound type of `<T>` will be GregorianCalendar, wherever you reference DATE_OF_BIRTH. jOOQ will use your custom converter when binding variables and when fetching data from `java.util.ResultSet`:

```java
// Get all date of births of authors born after 1980
List<GregorianCalendar> result =
  create.selectFrom(AUTHOR).where(AUTHOR.DATE_OF_BIRTH.gt(new GregorianCalendar(1980, 0, 1))).fetch(AUTHOR.DATE_OF_BIRTH);
```

6.18. Mapping generated schemata and tables

We've seen previously in the chapter about runtime schema mapping, that schemata and tables can be mapped at runtime to other names. But you can also hard-wire schema mapping in generated artefacts at code generation time, e.g. when you have 5 developers with their own dedicated developer
databases, and a common integration database. In the code generation configuration, you would then write.

XML (standalone and maven)

```xml
<configuration xmlns="http://www.jooq.org/xsd/jooq-codegen-3.3.0.xsd">
  <generator>
    <database>
      <schemata>
        <schema>
          <!-- Use this as the developer's schema: -->
          <inputSchema>LUKAS_DEV_SCHEMA</inputSchema>
          <!-- Use this as the integration / production database: -->
          <outputSchema>PROD</outputSchema>
        </schema>
      </schemata>
    </database>
  </generator>
</configuration>
```

Programmatic

```java
new org.jooq.util.jaxb.Configuration()
    .withGenerator(new Generator()
        .withDatabase(new Database()
            .withSchemata(new SchemaMappingType()
                .withInputSchema("LUKAS_DEV_SCHEMA")
                .withOutputSchema("PROD")
            ))
        ))
```  

Gradle

```groovy
myConfigurationName(sourceSets.main) {
  generator {
    database {
      schemata {
        schema {
          // Use this as the developer's schema:
          inputSchema = 'LUKAS_DEV_SCHEMA'
          // Use this as the integration / production database:
          outputSchema = 'PROD'
        }
      }
    }
  }
}
```

6.19. Code generation for large schemas

Databases can become very large in real-world applications. This is not a problem for jOOQ's code generator, but it can be for the Java compiler. jOOQ generates some classes for global access. These classes can hit two sorts of limits of the compiler / JVM:

- Methods (including static / instance initialisers) are allowed to contain only 64kb of bytecode.
- Classes are allowed to contain at most 64k of constant literals

While there exist workarounds for the above two limitations (delegating initialisations to nested classes, inheriting constant literals from implemented interfaces), the preferred approach is either one of these:
- Distribute your database objects in several schemas. That is probably a good idea anyway for such large databases
- Configure jOOQ's code generator to exclude excess database objects
- Configure jOOQ's code generator to avoid generating global objects using `<globalObjectReferences/>`
- Remove uncompilable classes after code generation

6.20. Code generation and version control

When using jOOQ's code generation capabilities, you will need to make a strategic decision about whether you consider your generated code as

- Part of your code base
- Derived artefacts

In this section we'll see that both approaches have their merits and that none of them is clearly better.

Part of your code base

When you consider generated code as part of your code base, you will want to:

- Check in generated sources in your version control system
- Use manual source code generation
- Possibly use even partial source code generation

This approach is particularly useful when your Java developers are not in full control of or do not have full access to your database schema, or if you have many developers that work simultaneously on the same database schema, which changes all the time. It is also useful to be able to track side-effects of database changes, as your checked-in database schema can be considered when you want to analyse the history of your schema.

With this approach, you can also keep track of the change of behaviour in the jOOQ code generator, e.g. when upgrading jOOQ, or when modifying the code generation configuration.

The drawback of this approach is that it is more error-prone as the actual schema may go out of sync with the generated schema.

Derived artefacts

When you consider generated code to be derived artefacts, you will want to:

- Check in only the actual DDL
- Regenerate jOOQ code every time the schema changes
- Regenerate jOOQ code on every machine - including continuous integration
This approach is particularly useful when you have a smaller database schema that is under full control by your Java developers, who want to profit from the increased quality of being able to regenerate all derived artefacts in every step of your build.

The drawback of this approach is that the build may break in perfectly acceptable situations, when parts of your database are temporarily unavailable.

Pragmatic combination

In some situations, you may want to choose a pragmatic combination, where you put only some parts of the generated code under version control. For instance, jOOQ-meta's generated sources are put under version control as few contributors will be able to run the jOOQ-meta code generator against all supported databases.
7. Tools

These chapters hold some information about tools to be used with jOOQ

7.1. JDBC mocking for unit testing

When writing unit tests for your data access layer, you have probably used some generic mocking tool offered by popular providers like Mockito, jmock, mockrunner, or even DBUnit. With jOOQ, you can take advantage of the built-in JDBC mock API that allows you to emulate a simple database on the JDBC level for precisely those SQL/JDBC use cases supported by jOOQ.

Disclaimer: The general idea of mocking a JDBC connection with this jOOQ API is to provide quick workarounds, injection points, etc. using a very simple JDBC abstraction. It is **NOT RECOMMENDED** to emulate an entire database (including complex state transitions, transactions, locking, etc.) using this mock API. Once you have this requirement, please consider using an actual database product instead for integration testing, rather than implementing your test database inside of a MockDataProvider.

Mocking the JDBC API

JDBC is a very complex API. It takes a lot of time to write a useful and correct mock implementation, implementing at least these interfaces:

- java.sql.Connection
- java.sql.Statement
- java.sql.PreparedStatement
- java.sql.CallableStatement
- java.sql.ResultSet
- java.sql.ResultSetMetaData

Optionally, you may even want to implement interfaces, such as java.sql.Array, java.sql.Blob, java.sql.Clob, and many others. In addition to the above, you might need to find a way to simultaneously support incompatible JDBC minor versions, such as 4.0, 4.1

Using jOOQ's own mock API

This work is greatly simplified, when using jOOQ's own mock API. The org.jooq.tools.jdbc package contains all the essential implementations for both JDBC 4.0 and 4.1, which are needed to mock JDBC for jOOQ. In order to write mock tests, provide the jOOQ Configuration with a MockConnection, and implement the MockDataProvider:

```java
// Initialise your data provider (implementation further down):
MockDataProvider provider = new MyProvider();
MockConnection connection = new MockConnection(provider);

// Pass the mock connection to a jOOQ DSLContext:
DSLContext create = DSL.using(connection, SQLDialect.ORACLE);

// Execute queries transparently, with the above DSLContext:
Result<BookRecord> result = create.selectFrom(BOOK).where(BOOK.ID.eq(5)).fetch();
```
As you can see, the configuration setup is simple. Now, the MockDataProvider acts as your single point of contact with JDBC / jOOQ. It unifies any of these execution modes, transparently:

- Statements without results
- Statements without results but with generated keys
- Statements with results
- Statements with several results
- Batch statements with single queries and multiple bind value sets
- Batch statements with multiple queries and no bind values

The above are the execution modes supported by jOOQ. Whether you're using any of jOOQ's various fetching modes (e.g. **pojo fetching**, lazy fetching, many fetching, later fetching) is irrelevant, as those modes are all built on top of the standard JDBC API.

Implementing MockDataProvider

Now, here's how to implement MockDataProvider:

```java
public class MyProvider implements MockDataProvider {
    @Override
    public MockResult[] execute(MockExecuteContext ctx) throws SQLException {
        // You might need a DSLContext to create org.jooq.Result and org.jooq.Record objects
        DSLContext create = DSL.using(SQLDialect.ORACLE);
        MockResult[] mock = new MockResult[1];

        // The execute context contains SQL string(s), bind values, and other meta-data
        String sql = ctx.sql();
        // Exceptions are propagated through the JDBC and jOOQ APIs
        if (sql.toUpperCase().startsWith("DROP")) {
            throw new SQLException("Statement not supported: " + sql);
        }

        // You decide, whether any given statement returns results, and how many
        else if (sql.toUpperCase().startsWith("SELECT")) {
            // Always return one record
            Result<Record2<Integer, String>> result = create.newResult(AUTHOR.ID, AUTHOR.LAST_NAME);
            Result<Record2<Integer, String>> result = create.newResult(AUTHOR.ID, AUTHOR.LAST_NAME);
            result.add(create.newRecord(AUTHOR.ID, AUTHOR.LAST_NAME)
                .values(1, "Orwell"));
            mock[0] = new MockResult(1, result);
        }

        // You can detect batch statements easily
        else if (ctx.batch()) {
            // [...]
        }

        return mock;
    }
}
```

Essentially, the MockExecuteContext contains all the necessary information for you to decide, what kind of data you should return. The MockResult wraps up two pieces of information:

- **Statement.getUpdateCount()**: The number of affected rows
- **Statement.getResultSet()**: The result set

You should return as many MockResult objects as there were query executions (in **batch mode**) or results (in **fetch-many mode**). Instead of an awkward JDBC ResultSet, however, you can construct a “friendlier” org.jooq.ResultSet with your own record types. The jOOQ mock API will use meta data provided with this Result in order to create the necessary JDBC java.sql.ResultSetMetaData

See the MockDataProvider Javadoc for a list of rules that you should follow.
7.2. SQL 2 jOOQ Parser

The SQL 2 jOOQ Parser is no longer supported or shipped with jOOQ 3.6+. As it was not open sourced, it is no longer available for download.

7.3. jOOQ Console

The jOOQ Console is no longer supported or shipped with jOOQ 3.2+. You may still use the jOOQ 3.1 Console with new versions of jOOQ, at your own risk.
8. Reference

These chapters hold some general jOOQ reference information

8.1. Supported RDBMS

A list of supported databases

- Azure SQL Database
- CUBRID
- DB2 LUW
- Derby
- Firebird
- H2
- HSQLDB
- Ingres
- MariaDB
- Microsoft Access
- MySQL
- Oracle
- PostgreSQL
- SQL Server
- SQLite
- Sybase Adaptive Server Enterprise
- Sybase SQL Anywhere

For an up-to-date list of currently supported RDBMS and minimal versions, please refer to https://www.jooq.org/legal/licensing/#databases and https://www.jooq.org/download/support-matrix.

8.2. Data types

There is always a small mismatch between SQL data types and Java data types. This is for two reasons:

- SQL data types are insufficiently covered by the JDBC API.
- Java data types are often less expressive than SQL data types

This chapter should document the most important notes about SQL, JDBC and jOOQ data types.
8.2.1. BLOBs and CLOBs

jOOQ aims for hiding all JDBC details from jOOQ client API. Specifically, java.sql.Clob and java.sql.Blob are quite "harsh" APIs with a few caveats that may even depend on JDBC driver specifics.

Clob and Blob are resources (but not java.lang.AutoCloseable!) with open connections to the database. This makes no sense in an ordinary jOOQ context, when eagerly fetching all the results through fetch() methods. fetchLazy() and fetchStream() might be candidates where Clob and Blob types could make sense as the underlying java.sql.ResultSet and java.sql.PreparedStatement are still open while consuming these resources.

ByteArrayInputStream and ByteArrayOutputStream on the other hand are two different types which cannot be represented as a single Field<T> type. If either would be chosen as the <T> type, we'd get read-only or write-only fields. So for full lazy streaming support, we'd need another 2-way wrapper type, similar to Clob and Blob.

In many cases, streaming binary data isn't really necessary as the byte[] can be easily kept in memory (and it is done so for further processing anyway, e.g. when working with images), so the extra work might not really be needed. This is particularly true in Oracle, where BLOBs are the only binary types in the absences of a formal (VAR)BINARY type, and CLOBs start at 4000 bytes.

Hence, jOOQ currently doesn't explicitly support JDBC BLOB and CLOB data types. If you use any of these data types in your database, jOOQ will map them to byte[] and String instead. In simple cases (small data), this simplification is sufficient. In more sophisticated cases, you may have to bypass jOOQ, in order to deal with these data types and their respective resources.

8.2.2. BOOLEAN data type

The SQL standard and some databases support a BOOLEAN data type with values TRUE, FALSE, and NULL. All databases support this data type in the form of an org.jooq.Condition, a condition or predicate that can be placed in the WHERE clause, among many other places. But true SQL BOOLEAN data type support means that the data type can be used everywhere a column expression can be used, including the WHERE clause.

If the BOOLEAN data type is not natively supported, JDBC and most databases translate it to 1 or '1' (TRUE), 0 or '0' (FALSE), and NULL by convention, although other translations may be possible, including 'Y' / 'N', 'T' / 'F', 'TRUE' / 'FALSE', and many more.

jOOQ, by default, follows the most popular convention and translates to 1/0.

See the manual's section about BOOLEAN columns for details on how to use the BOOLEAN data type as a conditional expression.

8.2.3. Unsigned integer types

Some databases explicitly support unsigned integer data types. In most normal JDBC-based applications, they would just be mapped to their signed counterparts letting bit-wise shifting and tweaking to the user. jOOQ ships with a set of unsigned java.lang.Number implementations modelling the following types:
- `org.jooq.types.UByte`: Unsigned byte, an 8-bit unsigned integer
- `org.jooq.types.UShort`: Unsigned short, a 16-bit unsigned integer
- `org.jooq.types.UInteger`: Unsigned int, a 32-bit unsigned integer
- `org.jooq.types.ULong`: Unsigned long, a 64-bit unsigned integer

Each of these wrapper types extends `java.lang.Number`, wrapping a higher-level integer type, internally:

- UByte wraps `java.lang.Short`
- UShort wraps `java.lang.Integer`
- UInteger wraps `java.lang.Long`
- ULong wraps `java.math.BigInteger`

8.2.4. INTERVAL data types

jOOQ fills a gap opened by JDBC, which neglects an important SQL data type as defined by the SQL standards: INTERVAL types. SQL knows two different types of intervals:

- YEAR TO MONTH: This interval type models a number of months and years
- DAY TO SECOND: This interval type models a number of days, hours, minutes, seconds and milliseconds

Both interval types ship with a variant of subtypes, such as DAY TO HOUR, HOUR TO SECOND, etc. jOOQ models these types as Java objects extending `java.lang.Number: org.jooq.types.YearToMonth` (where `Number.intValue()` corresponds to the absolute number of months) and `org.jooq.types.DayToSecond` (where `Number.intValue()` corresponds to the absolute number of milliseconds)

Interval arithmetic

In addition to the arithmetic expressions documented previously, interval arithmetic is also supported by jOOQ. Essentially, the following operations are supported:

- `DATETIME - DATETIME` => INTERVAL
- `DATETIME + or - INTERVAL` => DATETIME
- `INTERVAL + DATETIME` => DATETIME
- `INTERVAL + - INTERVAL` => INTERVAL
- `INTERVAL * or / NUMERIC` => INTERVAL
- `NUMERIC * INTERVAL` => INTERVAL

8.2.5. XML data types

XML data types are currently not supported
8.2.6. Geospacial data types

Geospacial data types

Geospacial data types are currently not supported

8.2.7. CURSOR data types

Some databases support cursors returned from stored procedures. They are mapped to the following jOOQ data type:

```java
Field<Result<Record>> cursor;
```

In fact, such a cursor will be fetched immediately by jOOQ and wrapped in an `org.jooq.Result` object.

8.2.8. ARRAY and TABLE data types

The SQL standard specifies ARRAY data types, that can be mapped to Java arrays as such:

```java
Field<Integer[]> intArray;
```

The above array type is supported by these SQL dialects:

- H2
- HSQLDB
- Postgres

Oracle typed arrays

Oracle has strongly-typed arrays and table types (as opposed to the previously seen anonymously typed arrays). These arrays are wrapped by `org.jooq.ArrayRecord` types.

8.3. SQL to DSL mapping rules

jOOQ takes SQL as an external domain-specific language and maps it onto Java, creating an internal domain-specific language. Internal DSLs cannot 100% implement their external language counter parts, as they have to adhere to the syntax rules of their host or target language (i.e. Java). This section explains the various problems and workarounds encountered and implemented in jOOQ.
SQL allows for "keywordless" syntax

SQL syntax does not always need keywords to form expressions. The `UPDATE .. SET` clause takes various argument assignments:

```
UPDATE t SET a = 1, b = 2
```

```
update(t).set(a, 1).set(b, 2)
```

The above example also shows missing operator overloading capabilities, where "=" is replaced by "," in jOOQ. Another example are row value expressions, which can be formed with parentheses only in SQL:

```
(a, b) IN ((1, 2), (3, 4))
```

```
row(a, b).in(row(1, 2), row(3, 4))
```

In this case, ROW is an actual (optional) SQL keyword, implemented by at least PostgreSQL.

SQL contains "composed" keywords

As most languages, SQL does not attribute any meaning to whitespace. However, whitespace is important when forming "composed" keywords, i.e. SQL clauses composed of several keywords. jOOQ follows standard Java method naming conventions to map SQL keywords (case-insensitive) to Java methods (case-sensitive, camel-cased). Some examples:

```
GROUP BY
ORDER BY
WHEN MATCHED THEN UPDATE
```

```
groupBy()
orderBy()
whenMatchedThenUpdate()
```

Future versions of jOOQ may use all-uppercased method names in addition to the camel-cased ones (to prevent collisions with Java keywords):

```
GROUP BY
ORDER BY
WHEN MATCHED THEN UPDATE
```

```
GROUP_BY()
ORDER_BY()
WHEN_MATCHED_THEN_UPDATE()
```

SQL contains "superfluous" keywords

Some SQL keywords aren't really necessary. They are just part of a keyword-rich language, the way Java developers aren't used to anymore. These keywords date from times when languages such as ADA, BASIC, COBOL, FORTRAN, PASCAL were more verbose:

- BEGIN .. END
- REPEAT .. UNTIL
- IF .. THEN .. ELSE .. END IF

jOOQ omits some of those keywords when it is too tedious to write them in Java.

```
CASE WHEN .. THEN .. END
```

```
decode(., when(., .))
```
The above example omits THEN and END keywords in Java. Future versions of jOOQ may comprise a more complete DSL, including such keywords again though, to provide a more 1:1 match for the SQL language.

SQL contains "superfluous" syntactic elements

Some SQL constructs are hard to map to Java, but they are also not really necessary. SQL often expects syntactic parentheses where they wouldn't really be needed, or where they feel slightly inconsistent with the rest of the SQL language.

```java
LISTAGG(a, b) WITHIN GROUP (ORDER BY c) OVER (PARTITION BY d)
```

The parentheses used for the `WITHIN GROUP (..)` and `OVER (..)` clauses are required in SQL but do not seem to add any immediate value. In some cases, jOOQ omits them, although the above might be optionally re-phrased in the future to form a more SQLesque experience:

```java
listagg(a, b).withinGroup(orderBy(c)).over(partitionBy(d))
```

SQL uses some of Java's reserved words

Some SQL keywords map onto [Java Language Keywords](https://docs.oracle.com/javase/8/docs/technotes/guides/language/reservedwords.html) if they're mapped using camel-casing. These keywords currently include:

- CASE
- ELSE
- FOR

jOOQ replaces those keywords by "synonyms":

```java
CASE .. ELSE
PIVOT .. FOR .. IN ..
```

There is more future collision potential with:

- BOOLEAN
- CHAR
- DEFAULT
- DOUBLE
- ENUM
- FLOAT
- IF
- INT
- LONG
- PACKAGE
SQL operators cannot be overloaded in Java

Most SQL operators have to be mapped to descriptive method names in Java, as Java does not allow operator overloading:

```
-  <>, !-
||
SET a = b
```

equal(), eq()
nEqual(), ne()
concat()
set(a, b)

For those users using jOOQ with Scala or Groovy, operator overloading and implicit conversion can be leveraged to enhance jOOQ:

```
-  <>, !-
||
```

SQL’s reference before declaration capability

This is less of a syntactic SQL feature than a semantic one. In SQL, objects can be referenced before (i.e. “lexicographically before”) they are declared. This is particularly true for aliasing.

```
SELECT t.a
FROM my_table t
```

```
MyTable t = MY_TABLE.as("t");  
select(t.a).from(t)
```

A more sophisticated example are common table expressions (CTE), which are currently not supported by jOOQ:

```
WITH t(a, b) AS 
  (SELECT 1, 2 FROM DUAL )  
SELECT t.a, t.b
FROM t
```

Common table expressions define a "derived column list", just like table aliases can do. The formal record type thus created cannot be typesafely verified by the Java compiler, i.e. it is not possible to formally dereference t.a from t.

8.4. Quality Assurance

jOOQ is running some of your most mission-critical logic: the interface layer between your Java / Scala application and the database. You have probably chosen jOOQ for any of the following reasons:

- To evade JDBC's verbosity and error-proneness due to string concatenation and index-based variable binding
- To add lots of type-safety to your inline SQL
- To increase productivity when writing inline SQL using your favourite IDE's autocompletion capabilities
With jOOQ being in the core of your application, you want to be sure that you can trust jOOQ. That is why jOOQ is heavily unit and integration tested with a strong focus on integration tests:

Unit tests

Unit tests are performed against dummy JDBC interfaces using http://jmock.org/. These tests verify that various `org.jooq.QueryPart` implementations render correct SQL and bind variables correctly.

Integration tests

This is the most important part of the jOOQ test suites. Some 1500 queries are currently run against a standard integration test database. Both the test database and the queries are translated into every one of the 14 supported SQL dialects to ensure that regressions are unlikely to be introduced into the code base.

For libraries like jOOQ, integration tests are much more expressive than unit tests, as there are so many subtle differences in SQL dialects. Simple mocks just don't give as much feedback as an actual database instance.

jOOQ integration tests run the weirdest and most unrealistic queries. As a side-effect of these extensive integration test suites, many corner-case bugs for JDBC drivers and/or open source databases have been discovered, feature requests submitted through jOOQ and reported mainly to CUBRID, Derby, H2, HSQLDB.

Code generation tests

For every one of the 14 supported integration test databases, source code is generated and the tiniest differences in generated source code can be discovered. In case of compilation errors in generated source code, new test tables/views/columns are added to avoid regressions in this field.

API Usability tests and proofs of concept

jOOQ is used in jOOQ-meta as a proof of concept. This includes complex queries such as the following Postgres query
Routines r1 = ROUTINES.as("r1");
Routines r2 = ROUTINES.as("r2");

for (Record record : create.select(
 r1.ROUTINE_SCHEMA,
 r1.ROUTINE_NAME,
 r1.SPECIFIC_NAME,
 // Ignore the data type when there is at least one out parameter
 decode().when(exists(
 selectOne()
 .from(PARAMETERS)
 .where(PARAMETERS.SPECIFIC_SCHEMA.eq(r1.SPECIFIC_SCHEMA))
 .and(PARAMETERS.SPECIFIC_NAME.eq(r1.SPECIFIC_NAME))
 .and(upper(PARAMETERS.PARAMETER_MODE).ne("IN"))
 .val("void")
 .otherwise(r1.DATA_TYPE).as("data_type"),
 r1.CHARACTER_MAXIMUM_LENGTH,
 r1.NUMERIC_PRECISION,
 r1.NUMERIC_SCALE,
 r1.TYPE_UDT_NAME,
 // Calculate overload index if applicable
 decode().when(
 exists(
 select(r2)
 .from(r2)
 .where(r2.ROUTINE_SCHEMA.in(getInputSchemata()))
 .and(r2.ROUTINE_SCHEMA.eq(r1.ROUTINE_SCHEMA))
 .and(r2.ROUTINE_NAME.eq(r1.ROUTINE_NAME))
 .and(r2.SPECIFIC_NAME.le(r1.SPECIFIC_NAME))
 .select(count()).asField()
)
 .cast("long")
 .as("overload")
).orderBy(r1.ROUTINE_SCHEMA.asc(),
 r1.ROUTINE_NAME.asc()).fetch()) {
 result.add(new PostgresRoutineDefinition(this, record));
}

These rather complex queries show that the jOOQ API is fit for advanced SQL use-cases, compared to the rather simple, often unrealistic queries in the integration test suite.

Clean API and implementation. Code is kept DRY

As a general rule of thumb throughout the jOOQ code, everything is kept DRY. Some examples:

- There is only one place in the entire code base, which consumes values from a JDBC ResultSet
- There is only one place in the entire code base, which transforms jOOQ Records into custom POJOs

Keeping things DRY leads to longer stack traces, but in turn, also increases the relevance of highly reusable code-blocks. Chances that some parts of the jOOQ code base slips by integration test coverage decrease significantly.

8.5. Migrating to jOOQ 3.0

This section is for all users of jOOQ 2.x who wish to upgrade to the next major release. In the next subsections, the most important changes are explained. Some code hints are also added to help you fix compilation errors.
Type-safe row value expressions

Support for row value expressions has been added in jOOQ 2.6. In jOOQ 3.0, many API parts were thoroughly (but often incompatibly) changed, in order to provide you with even more type-safety.

Here are some affected API parts:

- \([N]\) in Row\([N]\) has been raised from 8 to 22. This means that existing row value expressions with degree \(\geq 9\) are now type-safe
- Subqueries returned from DSL.select(...) now implement Select<Record\([N]\)>, not Select<Record>
- IN predicates and comparison predicates taking subselects changed incompatibly
- INSERT and MERGE statements now take typesafe VALUES() clauses

Some hints related to row value expressions:

```java
// SELECT statements are now more typesafe:
Record2<String, Integer> record         = create.select(BOOK.TITLE, BOOK.ID).from(BOOK).where(ID.eq(1)).fetchOne();
Result<Record2<String, Integer>> result = create.select(BOOK.TITLE, BOOK.ID).from(BOOK).fetch();

// But Record2 extends Record. You don't have to use the additional typesafety:
Record record    = create.select(BOOK.TITLE, BOOK.ID).from(BOOK).where(ID.eq(1)).fetchOne();
Result<?> result = create.select(BOOK.TITLE, BOOK.ID).from(BOOK).fetch();
```

SelectQuery and SelectXXXStep are now generic

In order to support type-safe row value expressions and type-safe Record\([N]\) types, SelectQuery is now generic: SelectQuery<\(R\)>

SimpleSelectQuery and SimpleSelectXXXStep API were removed

The duplication of the SELECT API is no longer useful, now that SelectQuery and SelectXXXStep are generic.

Factory was split into DSL (query building) and DSLContext (query execution)

The pre-existing Factory class has been split into two parts:

- The DSL: This class contains only static factory methods. All QueryParts constructed from this class are "unattached", i.e. queries that are constructed through DSL cannot be executed immediately. This is useful for subqueries.
- The DSL class corresponds to the static part of the jOOQ 2.x Factory type

- The DSLContext: This type holds a reference to a Configuration and can construct executable ("attached") QueryParts.
- The DSLContext type corresponds to the non-static part of the jOOQ 2.x Factory / FactoryOperations type.

The FactoryOperations interface has been renamed to DSLContext. An example:
Quantified comparison predicates

Field.equalAny(...) and similar methods have been removed in favour of Field.eq(any(...)). This greatly simplified the Field API. An example:

```java
// jOOQ 2.6
Condition condition = BOOK.ID.equalAny(create.select(BOOK.ID).from(BOOK));

// jOOQ 3.0 adds some typesafety to comparison predicates involving quantified selects
QuantifiedSelect<Record1<Integer>> subselect = any(select(BOOK.ID).from(BOOK));
Condition condition = BOOK.ID.eq(subselect);
```

FieldProvider

The FieldProvider marker interface was removed. Its methods still exist on FieldProvider subtypes. Note, they have changed names from getField() to field() and from getIndex() to indexOf()

GroupField

GroupField has been introduced as a DSL marker interface to denote fields that can be passed to GROUP BY clauses. This includes all org.jooq.Field types. However, fields obtained from ROLLUP(), CUBE(), and GROUPING SETS() functions no longer implement Field. Instead, they only implement GroupField. An example:

```java
// jOOQ 2.6
Field<?> field1a = Factory.rollup(...); // OK
Field<?> field2a = Factory.one();       // OK

// jOOQ 3.0
GroupField field1b = DSL.rollup(...); // OK
Field<?> field1c = DSL.rollup(...); // Compilation error
GroupField field2b = DSL.one();        // OK
Field<?> field2c = DSL.one();          // OK
```

NULL predicate

Beware! Previously, Field.eq(null) was translated internally to an IS NULL predicate. This is no longer the case. Binding Java "null" to a comparison predicate will result in a regular comparison predicate (which never returns true). This was changed for several reasons:
To most users, this was a surprising "feature".
- Other predicates didn’t behave in such a way, e.g. the IN predicate, the BETWEEN predicate, or the LIKE predicate.
- Variable binding behaved unpredictably, as IS NULL predicates don’t bind any variables.
- The generated SQL depended on the possible combinations of bind values, which creates unnecessary hard-parses every time a new unique SQL statement is rendered.

Here is an example how to check if a field has a given value, without applying SQL’s ternary NULL logic:

```java
String possiblyNull = null; // Or else...

// jOOQ 2.6
Condition condition1 = BOOK.TITLE.eq(possiblyNull);

// jOOQ 3.0
Condition condition2 = BOOK.TITLE.eq(possiblyNull).or(BOOK.TITLE.isNull().and(val(possiblyNull).isNull()));
Condition condition3 = BOOK.TITLE.isNotDistinctFrom(possiblyNull);
```

Configuration

DSLContext, ExecuteContext, RenderContext, BindContext no longer extend Configuration for "convenience". From jOOQ 3.0 onwards, composition is chosen over inheritance as these objects are not really configurations. Most importantly

- DSLContext is only a DSL entry point for constructing "attached" QueryParts
- ExecuteContext has a well-defined lifecycle, tied to that of a single query execution
- RenderContext has a well-defined lifecycle, tied to that of a single rendering operation
- BindContext has a well-defined lifecycle, tied to that of a single variable binding operation

In order to resolve confusion that used to arise because of different lifecycle durations, these types are now no longer formally connected through inheritance.

ConnectionProvider

In order to allow for simpler connection / data source management, jOOQ externalised connection handling in a new ConnectionProvider type. The previous two connection modes are maintained backwards-compatibly (JDBC standalone connection mode, pooled DataSource mode). Other connection modes can be injected using:

```java
public interface ConnectionProvider {
    // Provide jOOQ with a connection
    Connection acquire() throws DataAccessException;
    // Get a connection back from jOOQ
    void release(Connection connection) throws DataAccessException;
}
```

These are some side-effects of the above change

- Connection-related JDBC wrapper utility methods (commit, rollback, etc) have been moved to the new DefaultConnectionProvider. They’re no longer available from the DSLContext. This had been confusing to some users who called upon these methods while operating in pool DataSource mode.
ExecuteListeners

ExecuteListeners can no longer be configured via Settings. Instead they have to be injected into the Configuration. This resolves many class loader issues that were encountered before. It also helps listener implementations control their lifecycles themselves.

Data type API

The data type API has been changed drastically in order to enable some new DataType-related features. These changes include:

- [SQLDialect]DataType and SQLDataType no longer implement DataType. They're mere constant containers
- Various minor API changes have been done.

Object renames

These objects have been moved / renamed:

- jOOU: a library used to represent unsigned integer types was moved from org.jooq.util.unsigned to org.jooq.util.types (which already contained INTERVAL data types)

Feature removals

Here are some minor features that have been removed in jOOQ 3.0
- The ant task for code generation was removed, as it was not up to date at all. Code generation through ant can be performed easily by calling jOOQ's GenerationTool through a <java> target.
- The navigation methods and "foreign key setters" are no longer generated in Record classes, as they are useful only to few users and the generated code is very collision-prone.
- The code generation configuration no longer accepts comma-separated regular expressions. Use the regex pipe | instead.
- The code generation configuration can no longer be loaded from .properties files. Only XML configurations are supported.
- The master data type feature is no longer supported. This feature was unlikely to behave exactly as users expected. It is better if users write their own code generators to generate master enum data types from their database tables. jOOQ's enum mapping and converter features sufficiently cover interacting with such user-defined types.
- The DSL subtypes are no longer instanciable. As DSL now only contains static methods, subclassing is no longer useful. There are still dialect-specific DSL types providing static methods for dialect-specific functions. But the code-generator no longer generates a schema-specific DSL
- The concept of a "main key" is no longer supported. The code generator produces UpdatableRecords only if the underlying table has a PRIMARY KEY. The reason for this removal is the fact that "main keys" are not reliable enough. They were chosen arbitrarily among UNIQUE KEYS.
- The UpdatableTable type has been removed. While adding significant complexity to the type hierarchy, this type adds not much value over a simple Table.getPrimaryKey() != null check.
- The USE statement support has been removed from jOOQ. Its behaviour was ill-defined, while it didn't work the same way (or didn't work at all) in some databases.

8.6. Credits

jOOQ lives in a very challenging ecosystem. The Java to SQL interface is still one of the most important system interfaces. Yet there are still a lot of open questions, best practices and no "true" standard has been established. This situation gave way to a lot of tools, APIs, utilities which essentially tackle the same problem domain as jOOQ. jOOQ has gotten great inspiration from pre-existing tools and this section should give them some credit. Here is a list of inspirational tools in alphabetical order:

- Hibernate: The de-facto standard (JPA) with its useful table-to-POJO mapping features have influenced jOOQ's org.jooq.ResultSetQuery facilities
- JaQu: H2's own fluent API for querying databases
- JPA: The de-facto standard in the javax.persistence packages, supplied by Oracle. Its annotations are useful to jOOQ as well.
- OneWebSQL: A commercial SQL abstraction API with support for DAO source code generation, which was integrated also in jOOQ
- QueryDSL: A "LINQ-port" to Java. It has a similar fluent API, a similar code-generation facility, yet quite a different purpose. While jOOQ is all about SQL, QueryDSL (like LINQ) is mostly about querying.
- SLICK: A "LINQ-like" database abstraction layer for Scala. Unlike LINQ, its API doesn't really remind of SQL. Instead, it makes SQL look like Scala.
- Spring Data: Spring's JdbcTemplate knows RowMappers, which are reflected by jOOQ's RecordHandler or RecordMapper